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A e-Companion

A.1 Matroid Proof(s)

Proof of Lemma 4. For (i): If e is a coloop then C? is a cocircuit ofM/e
butM/e =M\ e so C? is a cocircuit ofM\ e thereby validating the claim.
So we assume now that e is not a coloop.

If C? is a coloop of M, then, as C? ∪ {e} is codependent in M, the set
C? is codependent in M \ e. As it contains only one element, clearly C?

is a cocircuit of M \ e. So we assume now, that C? contains at least two
elements.

Now consider an element f ∈ C?. Notice C? \ f is coindependent in M;
as C? is codependent inM so is C?∪e, therefore C? is codependent inM\e.
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Case 1: If (C?∪e)\f is coindependent inM, then C?\f is coindependent
inM\e. But now we have that C? is codependent and C?\f is coindependent
inM\ e; hence there has to be a cocircuit inM\ e contained in C? through
f .

Case 2: If on the other hand (C? ∪ e) \ f is codependent in M, then it
contains a cocircuit D? through e. As {e} is not a coloop, |D| ≥ 2; let g be
an element of D? \ e; notice g ∈ C?. By strong cocircuit elimination, there
is a cocircuit D′? ⊆ (C? ∪ D?) \ g containing e. So D′? ⊆ (C? ∪ e) \ g and
D′? \ {e, g} ( C? is codependent in M\ e.
But C? \f is coindependent, so (C?∪ e)\f contains only the circuit D? with
g ∈ D? and (C? ∪ e) \ {f, g} is coindependent in M. Hence C? \ {f, g} is
coindependent in M \ e. On comparing (in M \ e) the coindependent set
C? \ {f, g} with the codependent set D′? \ {e, g} ( C? notice that (D′? \
{e, g}) \ (C? \ {f, g}) ⊆ {f}. This shows that the cocircuit D′? \ {e, g}
contains f and is contained in C?.

For (ii): As {e} is not a coloop, {e} 6= C?. As e∪(C?−e) is codependent in
M, the set C?−e 6= ∅ is codependent inM\e. As for any subset I? ( (C?−e)
the set I? + e is coindependent in M, the set I? is coindependent in M\ e.
So in fact, (C? − e) is minimally codependent in M\ e.

A.2 Proof of Theorem 7

To prove the relation between VCG-sequences and condensed ones, we need
a few auxiliary results.

First, we show that contracting a bi or removing an element that is placed
in Di does not affect future iterations of the algorithm. For contracting bi
the dual of Proposition 3 yields the following.

Lemma 19. Given a matroidM, a set B ⊆ E(M), and b ∈ B, we have
{C? ∈ C?(M) : C? ∩B = ∅} = {C? ∈ C?(M/b) : C? ∩ (B − b) = ∅}.

This gives us the next result.

Lemma 20. Consider a VCG-sequence ((C?
1 , b1, D1), . . . , (C

?
r , br, Dr), (Dr+1))

for M. From any iteration i, the computation of the remaining sequence
[(C?

k , bk, Dk), k ≥ i] can be obtained fromM′ =M/bi or equally fromM.

Proof. Lemma 19 implies that for any e, [every C? ∈ C(M) satisfying f ?
C = e

intersects {b1, . . . , bk−1} in M] if and only if [every C? ∈ C(M′) satisfying
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f ?
C = e intersects {b1, . . . , bk−1} \ {bi} in M′]. Hence all C?

k and Dk chosen
in one sequence also can be chosen in the other one.

Deleting arbitrary elements e is more delicate because cocircuits of M
andM′ =M\{e} might differ. Since e is not a coloop, by Cor. 5 it is clear
that if C? is a cocircuit ofM then C? \ {e} is the union of cocircuits ofM′.
Hence it is conceivable that there is no cocircuit C ′? ofM′ with fC? , bC? ∈ C ′?

and a more careful analysis becomes necessary utilizing the choice of earlier
Dk, bk.

Lemma 21. Given a VCG-sequence ((C?
1 , b1, D1), . . . , (C

?
r , br, Dr), (Dr+1))

consider iteration 1 and element e added to D1. The computation of the
remaining sequence from (1, e) onwards can be carried out on the matroid
M′ =M\ e such that (b′k, D

′
k, fC′?

k
) = (bk, Dk, fC?

k
) for k ≥ 1.

Proof. Suppose the claim holds for some steps and in the next step in it-
eration k ≥ 1 the element e′ is put into Dk. Hence all cocircuits C? ∈ M
with fC? = e′ intersect {b1, . . . , bk−1}. Now if there were in M′ a cocircuit
C ′? with fC′? = e′ disjoint from {b1, . . . , bk−1} then either C ′? or C ′? ∪ {e} is
a cocircuit of M, disjoint from {b1, . . . , bk−1} and with second-best element
e′ contradicting the assumption.

Suppose instead that in the sequence the claim held sofar and in the next
step in iteration k ≥ 1 for the element e′ there exists a cocircuit C?

k of M
with fC?

k
= e′ and disjoint from {b1, . . . , bk−1}. Since e is not a coloop, by

Cor. 5 follows C?
k − e is a union of cocircuits of M′. Let C ′? be that part of

C?
k − e that contains bk. If fC?

k
∈ C ′? then C ′? has the same best and second-

best element as C?
k . Otherwise, if fC?

k
/∈ C ′? then either C ′? or C ′? ∪ {e} is a

cocircuit of M disjoint from {b1, . . . , bk−1} and the second-best element has
value less then e′. Consequentially, this cocircuit and its top element should
have been chosen earlier; contradicting the sequence of events.

Lemma 22. Given a VCG-sequence ((C?
1 , b1, D1), . . . , (C

?
r , br, Dr),

(Dr+1)) computed up to some (i, e) with e to be added to Di with respect
to the condensed rules and thereafter computed with respect to the uncon-
densed rules. The computation can be done with respect to the uncondensed
rules from (i, e) on while the resulting sequence has the same b′k, D

′
k, fC′?

k
as

the original sequence.

Proof. For k < i we can set (C ′?k , b′k, D
′
k) = (C?

k , bk, Dk) and consider some
e′ (after e) to be added to Dk with k ≥ i. Hence all cocircuits C ′? ∈ M′
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with fC′? = e′ intersect {b1, . . . , bk−1}. Suppose there were a cocircuit C? in
M with fC? = e′ disjoint from {b1, . . . , bk−1}. Since e is not a coloop, Cor. 5
implies C?− e is a union of cocircuits ofM′. Let C ′? be that part of C?− e
that contains fC? . Then fC′? = e′ is in M′, contradicting the assumptions.

Now consider the bk chosen in iteration k. There is a C?
k ∈ C?(M′) with

fC?
k

= e′ disjoint from {b1, . . . , bk−1}. Either C?
k or C?

k ∪ {e} is a cocircuit of
M; in the first case clearly the sequences agree. In the second case, since
ve ≤ ve′ they also agree.

Proof of Theorem 7. We start with a sequence K1 = ((C?
1 , b1, D1), (C

?
2 , b2,

D2), . . . , (C
?
r , br, Dr), (Dr+1)) and apply Lemma 21 for all elements of itera-

tion one and then Lemma 20 for the chosen element. This yields a sec-
ond sequence, which has the same (b,D, f) as the original. Let the re-
sulting sequence, starting with the second element be K2 = ((C?

2
2, b22, D

2
2),

. . . , (C?
r
2, b2r, D

2
r), (Dr+1)). Now by the invoked lemmas, K2 is a VCG-sequence

ofM2. This can be iteratively repeated to obtain VCG-sequences Ki ofMi.
Clearly, the diagonal sequence ((C?

1
1, b11, D

1
1), (C

?
2
2, b22, D

2
2), . . . , (C

?
r
r, brr, D

r
r),

(Dr+1)) is a condensed VCG-sequence of M and has the same (b,D, f) as
K1.

Now for the opposite direction, consider a condensed VCG-sequence K1 =
((C?

1 , b1, D1), (C
?
2 , b2, D2), . . . , (C

?
r , br, Dr), (Dr+1)) and apply Lemma 20 for

the selected element and then Lemma 22 for all elements of iteration r. This
yields a second sequence, which has the same (b,D, f) as the original. Let
the resulting sequence be K2 = ((C?

1
2, b21, D

2
1), (C

?
2
2, b22, D

2
2), . . . , (C

?
r
2, b2r, D

2
r),

(Dr+1)). Now by the invoked lemmas, the first r − 1 component of K2 are
determined as a condensed VCG-sequence, while the two last components
are determined as a VCG-sequence; finally both sequences have the same
(b,D, f) . This can be iteratively repeated to obtain the VCG-sequence Kr

of Mi+1 that has the same (b,D, f) as K1.

A.3 Proof of Theorem 13

Proof of Theorem 13. First we have to show, that Auction 3 determines
a condensed VCG sequence if bidders behave truthfully.

We are going to do this, by showing inductively, that the sequence deter-
mined by Auction 3 with added line 12.5 could be equivalently determined
by starting with i = 1 (and empty Di) and then executing Procedure 2.
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Now, let’s have a look at the tuple (C?
1 , b1, D1) determined by Auction 3,

where C?
1 is the cocircuit that led into the while condition ultimately in-

creasing i to 2. We start with determining the set F = {f ∈ E : vf = 0}
and the elements are ordered according to tie-breaking the same way as in
Procedure 2. Notice that the term M \ (Di ∪ {e}) in Procedure 2 equals
(M\Di) \ e which matches the termM\ f` in Line 6 of Auction 3 (because
in the auction elements put into Di are immediately removed from M).

Now, beginning with ` = 1 it is checked whether M\ f` still fulfills the
no-monopoly condition and the same happens in Procedure 2. If this is the
case, then the inner part of the while-loop of Procedure 2 is carried out, and
the while loop in Line 6 of Auction 3 is skipped; in both cases, the current
element is added to Di, in the auction removed fromM, and the next element
is considered. Now, when ` = k in Auction 3 then the ‘next element’ might
be slightly more complicated; in this case p is increased and the next batch of
F = {f ∈ E : vf = 0} determined. Sooner or later both procedures will hit an
element (the same) whose removal would violate the no-monopoly condition.
At this time both chose a cocircuit C?

i showing this and its best element
(according to tie-breaking) bi. Finally, in both procedures bi is contracted in
M and Di is removed in Procedure 2 (in the auction this happend already).

After having done the case of i = 1 we assume next, that for i − 1 the
sequences agree, and consider the next moment, i.e. Procedure 2 is started
anew and we are in Auction 3 just leaving Line 10. Now we have to distinguish
whether, the while loop in the auction is done another time or not. If it is,
then there is another bidder getting a monopoly, if f` were removed, and
a cocircuit C? witnessing it. But then the very same cocircuit will do for
Procedure 2 too. In both cases the same maximum element from C? is
chosen. Finally, in the procedure, Di is empty, while in the auction we have
not put anything into Di but increase i next. So things agree.

Finally we have to consider the case that the while-condition of Line 6 is
violated, because removing f` creates no monopoly. Here we have to distin-
guish, whether f` ∈M or not. The latter case is possible, if f` was awarded
at `′ < ` when f`′ was critical, but after the set F was composed; in this
case, the if-statement of Line 12.5 prevents inclusion of this element into Di

in the auction while removing it from M does not make a difference; as it
is no longer part of M the procedure skips it automatically. If on the other
hand f` ∈ M then it puts f` into Di and deletes f` from M and for the
same reason the procedure puts f` into Di. Now this continues in sync until
either an element is found whose removal would create a monopoly in which
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case the auction and the procedure determine a cocircuit C?
i and award its

best element, or F is exhausted. If F is exhausted (which matters only for
the auction) then p is increased in the auction, and a new set F determined.
From then on, things continue as described above.

By Theorem 7 there is a corresponding VCG-sequence; hence (with Sub-
section 2.6) the efficient allocation is found. With Theorem 11 it follows that
the pi lead to Vickrey prices.

A.4 Proof of Lemma 16 for the long-step auction

Proof of Lemma 16 for the long-step auction. The proof for the long-
step version is quite similar. The only conceptual difference between the
auctions is that (truthful) bidders allow the auctioneer to skip rounds (price
levels p) in which F is empty in Line 4. Not surprisingly, bidders have
neither an incentive to slow down this price search (especially given the
added requirement in Line 4 for a bidder with uj = p to withdraw at least
one element), nor an incentive to make the price “skip ahead.” Let s, s̃, ṽ be
now the same concepts in the long-step auction.

The only differences in the auction between using s and s̃ (aside from the
ones already covered in the unit-step case) involve the augmented Line 14.
Suppose the auction would have progressed identically under either strategy
up to an instance of Line 14 where, using strategy s, bidder i would announce
some ui, while under s̃ he would announce some ũi 6= ui. Observe that
ũi = ṽf = mine∈Ej(M) ṽe for some element f , where Ej(M) denotes the
remaining elements at that point in the auction.

If both ui > minj 6=i uj and ũi > minj 6=i uj, then this difference is inconse-
quential. The auction proceeds to the same price p = minj 6=i uj and, if other
bidders are bidding truthfully, their behavior does not change. Furthermore,
under s̃, bidder i withdraws no elements because mine∈Ej(M) ṽe > p; hence
this bidder does not change the outcome of this round of the auction by using
s̃ rather than s.

If ui ≤ minj 6=i uj, then the bidder is forced to declare at least one ele-
ment f in Line 4 (at this round, under s). Therefore, ũi = ṽf = mine∈Ej(M) ṽe =
p = ui. Again, the auction continues equivalently at this point.

Finally, if ũi = p ≤ minj 6=i uj < ui, then under s bidder i simply declared
an element in Line 4 (at price p), even though he did not reveal p to be the
value of this (or any) element in the previous execution of Line 15. While
this can be inferred as inconsistent behavior, it does not change the outcome
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of the auction if he uses s̃ and declares ũi = p.
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