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1. Introduction
Consider selling bundles of indivisible objects to buyers
with utility, which is additively separable in money and
individual items. In particular, we analyze such situations
where the seller is constrained to sell a subset of objects
that forms a basis with respect to some underlying matroid
structure (described below) on the objects. Although this
may seem like an abstract class of problems in the mecha-
nism design literature, it turns out to contain various inter-
esting special cases. Examples (see §5) include scheduling
matroids (Demange et al. 1986), the allocation of homo-
geneous objects (Ausubel 2004), pairwise kidney exchange
(Roth et al. 2005), spatially distributed markets (Babaioff
et al. 2004), bandwidth markets (Tse and Hanly 1998), and
multiclass queuing systems (Shanthikumar and Yao 1992).

The primary objective is to allocate the objects effi-
ciently; i.e., to allocate the objects that form a maximum-
weight basis, where the weights are the agents’ valua-
tions for the objects. However, it is a particular list of
additional design constraints that motivates us. In this
paper we present an ascending auction that both meets
these constraints and allocates objects to form a maximum-
weight basis.

One design constraint involves incentives. If the agents’
valuations were known to the seller, it would be easy to
determine the economically efficient outcome by using the

greedy algorithm. When valuations are private information,
however, the greedy algorithm does not apply. This con-
strains us to design a method that gives agents an incentive
to reveal accurate information.

There is a well-known sealed-bid auction that can
achieve both the incentives and efficiency objectives: the
VCG mechanism (Vickrey 1961, Clarke 1971, Groves
1973). It operates by asking agents for their valuations of
all objects, computing an efficient allocation, and charging
Vickrey prices (described below) to bidders. Nevertheless,
there are reasons for eschewing sealed-bid auctions in favor
of ascending auctions. Informally, an ascending auction
has the auctioneer announcing prices and bidders report-
ing their demands at the announced prices. If the reported
demands can be feasibly satisfied, the auction ends. Oth-
erwise, the prices are adjusted upwards. An agent who
reduces demand is not allowed to increase it later.

Ascending auctions differ according to the kinds of
prices that are used (e.g., linear, nonanonymous, or nonlin-
ear) and the rules used to adjust prices. Ausubel (2004) and
Cramton (1998) list some of the advantages of ascending
auctions, including that

• they are more transparent,
• bidders reveal less private information,
• communication and computation costs for bidders may

be lower, and
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• they may be better even with mild interdependencies
among bidders’ valuations.

This motivates our second design constraint: to search
for an ascending auction in our environment. This con-
straint, too, has been addressed in the literature. Previous
work—described in §1.1—has developed ascending auc-
tions for environments more general than ours. However,
that generality comes at the price of complexity. The auc-
tions discussed in §1.1 rely on a number of prices that is
exponential in the number of objects. Our third concern,
therefore, is to design an auction with low complexity.
Unlike other combinatorial environments, we show that the
matroid environment admits an ascending auction that runs
in polynomial time. Furthermore, we prove the impossibil-
ity of an ascending auction for nonmatroidal independence
set-systems.

We meet our objectives in this paper by describing
an ascending auction for the matroid environment that
implements the outcome of a sealed-bid VCG auction.
Specifically,

1. Bidding truthfully is an ex post equilibrium of the
auction. It should be noted that this result relies neither on
proxy bidding schemes that restrict the bids that bidders
make nor on consistency checks on bids.

2. The truthful equilibrium results in the efficient
outcome.

3. The complexity of the auction scales polynomially in
the number of elements and units.

The sealed-bid VCG auction mentioned above gives
bidders the incentive to report their valuations truthfully
because it charges Vickrey prices. To describe this auc-
tion for general environments, let A be a set of abstract
alternatives. Each agent j ∈N has a valuation vj4a5 for
each alternative a ∈A. Economic efficiency requires choos-
ing an alternative a∗ that yields total value V 4N5 :=
maxa∈A

∑

j∈N vj4a5.
The VCG auction finds an allocation that is efficient with

respect to the reported valuations. Each bidder is induced
to truthfully report his valuations, however, because he is
charged the net effect his presence has on the other bidders,
in the following sense. If bidder j ∈ N were absent, eco-
nomic efficiency would require finding an alternative that
provides value V 4N\j5 := maxa∈A

∑

k∈N\j v
k4a5. Therefore,

the net effect that j’s presence has on the other bidders is

V 4N\j5−
∑

k∈N\j

vk4a∗51

which defines bidder j’s Vickrey payment. Bidder j’s net
Vickrey payoff is therefore

vj4a∗5−

[

V 4N\j5−
∑

k∈N\j

vk4a∗5

]

= V 4N5−V 4N\j50

That is, his net payoff equals his net contribution to attain-
able social surplus, which is why this amount is also called
bidder j’s marginal product (see Makowski and Ostroy

1987 for the connection between marginal product, per-
fect competition, and the Vickrey mechanism). The pay-
ments in a sealed-bid VCG auction can be found by solving
n+ 1 optimization problems: one to find V 4N5 (and a∗)
and n more to find each V 4N\j5.

1.1. Related Literature

There is a substantial literature on multiobject, ascending-
price auctions. We describe some of this previous work.

Models in which bidders have gross substitute prefer-
ences over heterogeneous objects have received particu-
lar attention. Kelso and Crawford (1982) and Gul and
Stacchetti (2000) present ascending auctions in this setting.
Although these auctions return the efficient outcome when
bidders bid truthfully, truthful bidding is not incentive com-
patible. The dynamic auction of Ausubel (2006) returns the
efficient outcome in equilibrium and is incentive compat-
ible. It works by running several dummy auctions (each
of which is an instance of the one in Gul and Stacchetti
2000) and then using the prices from each of these runs
to determine the Vickrey payments. In contrast, our paper
achieves the same outcome without the necessity of running
dummy auctions. These dummy auctions not only increase
the duration but also substantially increase the potential for
collusive behavior (see de Vries et al. 2007).

Because preferences in our model also satisfy the gross-
substitutes condition, the “agents are substitutes” condition
(Bikhchandani and Ostroy 2002) holds. The ascending auc-
tions of Parkes and Ungar (2000a), Ausubel and Milgrom
(2002), de Vries et al. (2007), and Mishra and Parkes
(2007) rely on this condition. These auctions attain (with
the appropriate consistency checks) an efficient outcome in
equilibrium, but they rely on an exponential (in the number
of goods) number of prices. This would make the complex-
ity of running such auctions exponential in the number of
goods.

Our auction, in contrast, produces the same outcome
without relying on a proxy bidding scheme (e.g., Parkes
and Ungar 2000b, Ausubel and Milgrom 2002) and with a
complexity that is polynomial in the number of elements
and units �E� +�4E5.

1.2. Motivating Example: Selling a Tree
from a Graph

Primarily to provide intuition for our analysis, we describe
an instance of a simple matroid environment: selling a
spanning tree of a graph. Although this example may
appear abstract, a procurement version of it has applica-
tions to constructing communication networks. Other appli-
cations are discussed in §5.

Let G = 4V 1E5 be a complete graph with vertex set
V and edge set E. For simplicity, suppose each agent
j ∈N is interested only in a single edge e ∈ E so that we
can identify edges with agents. Let ve be agent e’s value
from obtaining edge e. Our goal is to derive an ascend-
ing Vickrey auction to sell off edges that form a maximum
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weight spanning tree.1 Because G is complete, no single
agent is initially in a position to prevent a spanning tree
from forming.

Although there is no competition for edges between
agents, there is competition between different bidders to
cover the same minimal cut (and minimal cuts are cocir-
cuits of the underlying graphical matroid). To see this let us
compute the marginal product of an agent e that is part of a
maximum weight spanning tree T . To determine agent e’s
marginal product, we identify the reduction in weight of
the spanning tree when we remove agent e and replace her
with a (next best) edge. If f y T is the largest weight edge
such that T ∪ f contains a cycle through e, then the maxi-
mum weight spanning tree that excludes e is 4T \8e95∪ f .
Thus, agent e’s marginal product is ve − vf .

Not all algorithms for finding a maximum weight span-
ning tree lend themselves to an ascending auction inter-
pretation or generate Vickrey prices. The “greedy out”
algorithm does: Starting with the complete set of edges,
delete edges in order of increasing weight while keeping
the graph connected. An edge is spared deletion when all
smaller weight edges that could cover the same cut have
been deleted.

This algorithm can be interpreted as an auction that
begins with a price p = 0 on each edge. Throughout the
auction, this price is increased. At each point in time, each
agent announces whether he is willing to purchase his edge
at the current price.

As the price increases, agents drop out of the auction
when the price exceeds their value ve for the edge, reduc-
ing the connectivity of the graph. At some point an agent
becomes critical: removing the agent disconnects the graph.
The edge of the critical agent is a bridge of the subgraph
of remaining edges. At this point the auctioneer immedi-
ately sells the edge to the critical agent at the current price.
This edge is to be part of the final maximum weight span-
ning tree and does not drop out. The auction continues with
other agents dropping out or becoming critical and ends
when the last critical agent is awarded an edge and a tree
is formed.

A critical agent acquires his edge at the price where
another bidder dropped out of the auction. That bidder’s
edge is the best alternative to the critical edge. The Vickrey
auction would charge just the price of this best alternative.

It is clear that this should generalize from trees to
matroids. However, care is necessary regarding details of
the implementation:

• Can an arbitrary cut in the graph be picked and its
price increased until it contains only one element?

• What procedure should be followed if multiple agents
become critical at the same time?

• Suppose an agent is interested in multiple elements,
say b and b′, that are part of a maximum weight basis.
Suppose also that an element f of interest to a second
agent is a second-best replacement for both b and b′. Can
the value the second agent assigns to f be used to set the
Vickrey price for b and b′?

These issues are addressed in the next section.

2. Selling Bases of a Matroid
We begin with a review of basic matroid concepts. Sub-
sequently, we describe the model and discuss simplifying
assumptions that are without loss of generality. In §2.3,
we recall a nonstandard algorithm for finding the maxi-
mum weight basis of a matroid due to Dawson (1980).
This algorithm selects a sequence of cocircuit and element
pairs that certifies feasibility and optimality simultaneously.
We specialize this algorithm to select VCG-sequences that
also certify optimality for all marginal allocation problems
obtained after removing one buyer. The marginal alloca-
tion problems are essential to implementation of Vickrey
payments, and hence to efficiency and desirable incentive
properties of the auction.

After establishing that these sequences yield Vickrey
prices, we present Auction 3, which is an ascending-price
implementation of the sealed-bid VCG auction. In §2.9 we
investigate its runtime and prove in §2.10 that truthful bid-
ding is an ex post equilibrium in this auction.

2.1. Matroid Basics

We use the standard notions of matroid theory; see Oxley
(1992). A matroid M is an ordered pair 4E1I5 of a finite
ground set E and a set I of subsets of E satisfying the
axioms: (I1) � ∈ I, (I2) if I ∈ I and I ′ ⊆ I , then I ′ ∈ I,
and (I3) if I11 I2 ∈I and �I1�< �I2�, then there is an element
e ∈ I2 − I1 such that I1 ∪ e ∈I.

Subsets of E that belong to I are called independent;
all other sets are called dependent. Minimal dependent sets
of a matroid M are called circuits; the set of all circuits of
M is denoted C4M5. Circuits consisting of a single element
are called loops. A set C is the set of circuits of a matroid
if and only if it satisfies these three properties: (C1) � yC.
(C2) If C11C2 ∈ C and C1 ⊆ C2, then C1 = C2. (C3) If
C11C2 ∈ C, e ∈ C1 ∩ C2, f ∈ C1\C2, then there exists a
C3 ∈ C such that f ∈ C3 ⊆ 4C1 ∪ C25 − e (strong circuit
elimination).

A maximal independent set is called a basis of the
matroid; the set of all bases of M is denoted B4M5. All
B ∈ B4M5 have the same cardinality. The rank r4S5 of
S ⊆ E is the size of a largest independent set contained
in S. Matroids are characterized amongst all independence
systems by the property that for any additive weighting
w2 E 7→ �, the greedy algorithm finds an optimal (maxi-
mum weight) basis.

Let M be a matroid, E4M5 its ground set, and B?4M5 :=
8E4M5 − B2 B ∈ B4M59. Then B?4M5 is the set of bases
of a matroid on E4M5, called the dual matroid of M,
denoted M?. Independent sets and circuits of M? are
called coindependent sets and cocircuits of M, respectively.
A well-known fact we use later is that any cocircuit of
a matroid intersects each of its bases, and each element of
a basis belongs to at least one cocircuit.
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For M= 4E1I5 and X ⊆ E the deletion of X from M is
the matroid defined by M\X := 4E\X18I ⊆ E\X2 I ∈I95.
The contraction of X in M is defined by M/X := 4M?\X5?.
A matroid M′ that is derived by contractions and deletions
from a matroid M is called a minor of M. Some properties
of minors follow.

Proposition 1 (Oxley 1992, Prop. 3.1.11). The circuits
of M/T consist of the minimal nonempty members of
8C − T 2 C ∈C4M59.

Proposition 2 (Oxley 1992, Cor. 3.1.25). M\e =M/e if
and only if e is a loop or coloop of M.

Propsition 3 (Oxley 1992, 3.1.14). For every subset T of
a matroid M

C4M\T 5= 8C ⊆E\T 2 C ∈C4M590

Lemma 4. Let C? be a cocircuit of the matroid M and e ∈

E4M52
(i) If e yC?, then C? is a union of cocircuits of M\e.
(ii) If e ∈C? and 8e9 is a not a coloop of M, then C?−e

is a cocircuit of M\e.

Lemma 4 is the dual of Exercise 2 in §3.1 of Oxley
(1992). It is proven in the electronic companion to this
article (that is part of the online version at http://or.journal
.informs.org/) and implies the following.

Corollary 5. Let C? be a cocircuit of the matroid M. If
T ⊆ E4M5 contains no coloops, then C? − T is a union of
cocircuits of M\T .

2.2. The Economic Model

We consider a finite matroid M = 4E1I5 and set of
agents N . The ground set E of M is partitioned into sets
4Ej5j∈N . Interpret Ej as the set of elements that agent j ∈N
may feasibly purchase from the auctioneer. Let o4e5 denote
a prospective buyer (owner) of element e, i.e., an index
such that e ∈ Eo4e5. Since the Ej ’s partition E, of course
o4e5 is unique.

If agent j acquires some element e ∈Ej it would provide
him with a nonnegative value ve ∈ �+. Acquiring a set
S ⊆ Ej provides value v4S5 :=

∑

e∈S ve. The auctioneer is
constrained to sell combinations of elements that form a
basis of the matroid; for an extension, see §4. Social surplus
is maximized by identifying an optimal (maximum weight)
basis of M with respect to the values ve.

Until §2.6 we assume that all values are distinct.
We assume r4M5 = r4M\Ej5 for all j ∈ N as a gener-

alization of the bridge-condition of the motivating exam-
ple; this rank-condition states that it is possible to form
a basis without allocating any elements to any given bid-
der j2 r4M5= r4M\Ej5 for all j ∈N . This is equivalent to
requiring that no cocircuit C? of M belongs to any bidder
j2 C? 6⊆ Ej for all j ∈ N . If this condition were violated
for some j , then every basis of M would contain elements

of Ej , and V 4N\j5 would be undefined (−�). Bidder j’s
Vickrey payment would also be undefined (−�).

The assumption that agents are interested in distinct
items is without loss of generality. In any environment
where two agents are interested in the same item e, one can
add an element e′ parallel to e, and impose that the first
agent can only acquire e and the second only e′. Setting
I′ = I ∪ 8I ∪ 8e′92 I ∪ 8e9 ∈ I9; I′ fulfills the matroid
axioms, whereas any independent set contains at most one
of 8e1 e′9.

Our auction also applies to settings where the seller is
permitted to sell any independent set (when agents can have
negative values). To handle this case we can introduce a
dummy bidder and, for every element of M, a parallel ele-
ment that the dummy bidder values at 0.

2.3. Computing the Optimal Basis

For any cocircuit C? of M let bC? := arg max8ve2 e ∈C?9 be
its highest-valued element. Algorithm 1—due to Dawson
(1980)—finds an optimal basis for a matroid, i.e., one that
maximizes

∑

ve. Because values are distinct, M and its
minors have unique optimal bases.

Algorithm 1 (optimal basis for a matroid (Dawson 1980)).

Require. Matroid M on ground set E with distinct values.
1. i ← 0
2. while M has a cocircuit that is disjoint from

8b11 0 0 0 1 bi9 do
3. i ← i+ 1
4. Let C?

i be such a cocircuit
5. Let bi = bC?

i

6. end while
7. r ← i.

Proposition 6 (Dawson 1980, Thm. 1). For any matroid
M with distinct values, Algorithm 1 determines its optimal
basis B and its rank r = r4M5.

The way in which cocircuits C?
i are chosen in Line 4 of

Algorithm 1 is arbitrary (when more than one cocircuit is
disjoint from 8b11 0 0 0 1 bi9) according to Dawson’s theorem.
Intuitively, the algorithm works despite this because any
cocircuit of a matroid intersects each of its bases and each
element of a basis belongs to at least one cocircuit. From
this it can be shown that if a cocircuit is disjoint from a
subset of the optimal basis, then the highest-valued element
in the cocircuit is part of the optimal basis.

We show that cocircuits C?
i must be chosen in a par-

ticular order so that we obtain an algorithm that can be
interpreted as an ascending auction with Vickrey prices.
As we formalize next, this order is monotonic with respect
to the highest-valued element of C?

i \Eo4bC?i
5, that is, the

highest-valued element of C?
i ignoring elements that can be

purchased by the owner of bC?
i
.
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2.4. Sequences and Certificates

For any cocircuit C? of M, we define bC? to be the highest-
valued element in C?. Excluding the elements that can be
owned by agent o4bC?5, denote the highest-valued remain-
ing element as fC? := arg max8ve2 e ∈ C?\Eo4bC? 5

9. This is
the best element in C?\Eo4bC? 5

; it is “second-best” in C? in
the sense of being the best element of C? that is associ-
ated with a bidder distinct from o4bC?5. The element fC?

is well defined because the no-monopoly condition ensures
C?\Eo4bC? 5

6= �.
Notice that in §1.2 in the tree case, f ?

C is just the element
with value equal to the current price whose removal makes
another agent critical. Similarly, o4bC?5 is the agent that
becomes critical. Given that agent o4bC?5 might be inter-
ested in multiple elements, it may not be that removal of
bC? makes forming a maximum weight basis impossible
(because the rank drops), but that only removal of all his
elements (from C?) decreases the rank; nevertheless, of his
elements in C? he wants bC? the most.

A sequence of cocircuit-element pairs 44C?
1 1 b151 4C

?
2 1 b251

0 0 0 1 4C?
j 1 bj55 is called suitable if it can be generated during

the execution of Algorithm 1. That is, such a sequence is
suitable for M if for all i

(S1) C?
i ∈C?4M5, C?

i ∩ 8b11 0 0 0 1 bi−19= �, and
(S2) bi = arg maxe∈C?

i
ve.

(S1) ensures that C?
i satisfies the condition in Line 2

of Algorithm 1. It is easy to see that a list of elements
8b11 0 0 0 1 br4M59 is an optimal basis if and only if there is a
sequence of r4M5 cocircuits with which it is suitable.

Although there is considerable flexibility in choosing
cocircuits in a suitable sequence, our choice is constrained
by the requirement that the sequence should also yield
Vickrey prices for elements as they are allocated to buy-
ers. It will be shown that the values of second-best
elements of selected cocircuits, vfC?i

, i = 1121 0 0 0 1 r deter-
mine Vickrey prices. The ascending auction will satisfy
the following: (i) selected cocircuits, together with their
best elements, form a suitable sequence; (ii) the value of
second-best elements in the selected cocircuits is nonde-
creasing; and (iii) the increase in vfC?i

along the sequence
is minimal. That is, in any suitable sequence 44C?

1 1 b15,
4C?

2 1 b251 0 0 0 1 4C
?
j 1 bj55 selected by the auction, vfC?i

¾ vfC?i−1

and for each i there does not exist C? that satisfies (S1) and
vfC?i

> vfC? ¾ vfC?i−1
. In addition, if at any stage vfC?i

> vfC?i−1
,

then it will turn out that elements e ∈ E such that vfC?i
>

ve ¾ vfC?i−1
can be removed from consideration; these ele-

ments will never be either best or second-best elements of
cocircuits in the remaining portion of the suitable sequence.
We collect such elements in sets Di in the definition below;
hence, Di collects the elements withdrawn between the
award of bi−1 and bi.

A sequence
(

4C?
1 1 b11D151 4C

?
2 1 b21D251 0 0 0 1 4C

?
r 1 br 1Dr51 4Dr+15

)

(r = r4M5) is a VCG-sequence for M if for all i,

(V1) C?
i ∈ arg min 8C?∈C?4M52 vfC?

¾vfC?i−1
and C?∩8b11 000 1 bi−19=�9

vfC?

(for ease of notation, let vfC?0
= −�)

(V2) bi = arg maxe∈C?
i
ve, and

(V3) Di = 8e ∈E\8b11 0 0 0 1 bi−192 vfC?i−1
¶ ve < vfC?i

9, 1 ¶
i¶ r and Dr+1 =E\48b11 0 0 0 1 br9 ˙

⋃r

j=1Dj5.
In addition to ensuring that the value of second-best ele-

ments of cocircuits is minimally nondecreasing along the
sequence, (V1) implies (S1). Therefore, if we omit the com-
ponent Di of a VCG-sequence, then 44C?

1 1 b151 4C?
2 1 b251

0 0 0 1 4C?
r 1 br55 forms a suitable sequence. The resulting set

of elements B := 8b11 0 0 0 1 br9 forms the optimal basis,
whereas the Ds partition the complement of B. Let pi =

vfC?i
, the value of the second-best element in C?

i .
Call a cocircuit C? of M feasible at p ¾ 0 if vfC? = p.

We say that C? is feasible at p ¾ 0 via e if C? is feasible
at p and e = fC? .

A VCG-sequence can be identified by an algorithm
whose ith iteration is described below.2

1. Let 8e11 e21 0 0 09= 8e ∈E2 ve ¾ vfC?i−1
9\8b11 0 0 0 1 bi−19

be in increasing order of ve. Let k ← 1 and e ← ek.
2. while every C? ∈C?4M5 with fC? = e intersects

8b11 0 0 0 1 bi−19 do
3. Di ←Di ∪ 8e9; k ← k+ 1; e ← ek
4. end while
5. Choose C?

i ∈C?4M5 so that e = fC?
i

and
C?

i ∩ 8b11 0 0 0 1 bi−19= �.
6. bi ← bC?

i
.

It would be convenient to discard elements of the matroid
as we go along; for that we introduce the next definition.
A sequence 44C?

1 1 b11D151 4C
?
2 1 b21D251 0 0 0 1 4C

?
r 1 br 1Dr51

4Dr+155 is called a condensed VCG-sequence if Dr+1 =

E\
(

8b11 0 0 0 1 br9∪̇ ˙
⋃r

j=1Dj

)

for r = r4M5 and (with M1 :=M
and Mi+1 :=Mi/bi\Di) we have for all 1 ¶ i¶ r

(CV1) fi = arg max
8f∈E4Mi52Mi\8e2ve<vf 9 fulfills the no monopoly condition9

vf

and Di = 8e ∈E4Mi52 ve < vfi91
(CV2) C?

i is a cocircuit of Mi\Di with fC?
i
= fi, and

(CV3) bi = arg maxe∈C?
i
ve.

Clearly, a condensed VCG-sequence can be identified by
an algorithm whose ith iteration (starting with Di = �) is
described in Procedure 2.
Procedure 2 (determining one step of a condensed VCG

sequence).

1. Let 8e11 e21 0 0 0 19=E4M5 be in increasing order of v.
Let k ← 1 and e ← ek.

2. while M\4Di ∪ 8e95 fulfills the no-monopoly
condition do

3. Di ←Di ∪ 8e9; k ← k+ 1; e ← ek
4. end while
5. Choose C?

i ∈C?4M\Di5 with e = fC?
i
.

6. bi ← bC?
i

and pi ← ve and
7. M=Mi+1 ←M/bi\Di.
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Notice that if M\Di fulfills the no-monopoly condition,
then the while condition is equivalent to that every C? ∈

C?4M5 with f ?
C = e intersects 8b11 0 0 0 1 bi−19.

Our goal is to prove that for every condensed VCG
sequence, it is possible to find a VCG sequence that has the
same Di1 bi, and second-best element fC?

i
, and vice versa.

Theorem 7. For every VCG-sequence 44C?
1 1 b11 D151

4C?
2 1 b21 D251 0 0 0 1 4C

?
r 1 br 1 Dr51 4Dr+155 there exists a con-

densed VCG-sequence 44C ′?
1 1 b

′
11D

′
151 4C ′?

2 1 b
′
21D

′
251 0 0 0 1

4C ′?
r 1 b

′
r 1D

′
r51 4D

′
r+155 with 4b′

k1D
′
k1 fC ′?

k
5= 4bk1Dk1 fC?

k
5 for

1 ¶ k ¶ r + 1. Also for a condensed VCG-sequence there
exists a corresponding VCG-sequence.

The fairly routine proof is given for the reader’s conve-
nience in the e-companion A.2.

2.5. Vickrey Prices

We show that an element fC? can be “second-best” for
at most one cocircuit per bidder. This property is impor-
tant for determining Vickrey payments. If it did not hold,
then one bidder might be awarded two elements b1b′, when
another bidder, o4fC?5, drops his interest in fC? ; the removal
of b1b′ would require that fC? be inserted twice into the
basis, which is not possible.

Lemma 8. If a VCG-sequence contains two distinct cocir-
cuits C?

i 1C
?
j with o4bi5= o4bj5, then fC?

i
6= fC?

j
.

Proof. Recall from Procedure 2, Step 6 that pi = vfC∗
i

. If
pi 6= pj , then fC?

i
6= fC?

j
.

Assume pi = pj . Suppose that fC?
i

= fC?
j

and o4bi5 =

o4bj5, and without loss of generality that vbi > vbj .
By strong circuit elimination, there exists a cocircuit
C? ⊆ 4C?

i ∪ C?
j 5 − fC?

i
that contains bi. Because bi is the

highest-valued element of C?
i ∪C?

j , it follows that bC? = bi.
Furthermore, because fC?

i
is the highest-valued element

of 4C?
i ∪ C?

j 5\Eo4bi5
, it follows that vfC? < vfC?i

(because
fC?

i
y C?, and values are distinct). Therefore, C? must

have been selected in an earlier step k < min8i1 j9
of the sequence, and bk = bi. This contradicts C?

i ∩

8b11 0 0 0 1 bi−19= �. �

The next lemma shows that no element is best for one
cocircuit and second-best for another cocircuit in the same
VCG-sequence.

Lemma 9. For a VCG-sequence and all i1 j holds bi 6= fC?
j
.

Proof. Because C?
j is disjoint from 8b11 0 0 0 1 bj−19, i <

j implies fC?
j

6= bi. Clearly, bi 6= fC?
i

(covering the case
i = j). Finally, i > j implies vbi > vfC?i

¾ vfC?j
, proving

bi 6= fC?
j
. �

To determine Vickrey payments for the optimal basis
B = 8b11 0 0 0 1 br9 derived from a VCG-sequence, we need
information about the optimal bases for each marginal
matroid M−j := M\Ej . To prove that the pis are Vickrey

payments for the bis, we show that the optimal basis of
each M−j is

B−j := 4B\Ej5∪
{

fC?
i
2 bi ∈ B ∩Ej

}

0 (1)

We argue that B−1 is an optimal basis of M−1, the
proof of optimality of the other B−js is analogous.
Given the VCG-sequence 44C?

1 1 b11D151 4C?
2 1 b21D251 0 0 0 1

4C?
r 1 br 1Dr51 4Dr+155, consider the sequence B−1 =

4b′
11 0 0 0 1 b

′
r5:

b′

i =

{

bi if o4bi5 6= 1

fC?
i

if o4bi5= 1.

Lemmas 8 and 9 imply that b′
11 0 0 0 1 b

′
r are distinct. To

prove that B−1 is optimal for M−1, we need to construct a
sequence of cocircuits that makes B−1 suitable for M−1.

As M−1 is a deletion minor of M and M has no coloops,
it follows from Corollary 5 that for every cocircuit C?

of M, the set C?\E1 is the union of cocircuits of M−1. For
1 ¶ i¶ r let C ′?

i ⊆ C?
i be the cocircuit of M−1 that con-

tains b′
i. The sequence 44C ′?

1 1 b
′
151 4C

′?
2 1 b

′
251 0 0 0 1 4C

′?
r 1 b

′
r55

has the property that b′
i ∈ C ′?

i and b′
i = arg maxe∈C ′?

i
ve

by construction. Because all b′
i are distinct, the C ′?

i are
also distinct. However, this sequence need not be suitable,
because there could be indices i < j with b′

i = fC?
i
∈C ′?

j .
The next result establishes that this difficulty can be
overcome.

Lemma 10. Suppose a sequence K := 44C ′?
1 1 b

′
151 0 0 0 1

4C ′?
r 1 b

′
r55 of M−1 is such that

(1) all b′
i are different,

(2) b′
i = arg maxe∈C ′?

i
ve for 1 ¶ i¶ r , and

(3) the sequence 44C ′?
1 1 b

′
151 0 0 0 1 4C

′?
j 1 b

′
j55 is suitable for

some 1 ¶ j < r .
Then the cocircuit C ′?

j+1 can be modified so that condi-
tions (1)–(3) hold for j + 1 and M−1.

Proof. If 44C ′?
1 1 b

′
151 0 0 0 1 4C

′?
j+11 b

′
j+155 is suitable we are

done; otherwise, consider the smallest i < j + 1 with
b′
i ∈ C ′?

j+1. Using strong circuit elimination we can
choose a cocircuit C? of M−1 in 4C ′?

i ∪ C ′?
j+15 − b′

i

that contains b′
j+1. We replace C ′?

j+1 by C?. By assump-
tion, b′

k y 4C ′?
i ∪C ′?

j+15− b′
i for every k < i. Therefore,

8b′
11 0 0 0 1 b

′
i9∩C? = �, and we can replace C ′?

j+1 by C?. Let

K′
=
(

4C ′?
1 1 b

′

151 0 0 0 1 4C
′?
j 1 b

′

j51 4C
?1 b′

j+151

4C ′?
j+21 b

′

j+251 0 0 0 1 4C
′?
r 1 b

′

r5
)

0

Now K′ fulfills (1)–(3) for j and 8b′
11 0 0 0 1 b

′
i9∩C ′?

j+1 = �.
Either K′ fulfills (3) for j +1, or there exists another index
i′ > i with b′

i′ ∈C ′?
j+1, in which case we repeat the procedure

until K′ fulfills (1)–(3) for j + 1. �
The hypotheses of Lemma 10 are satisfied by a VCG-

sequence and j = 1. Repeated application of the lemma
proves there are cocircuits C ′?

1 1C
′?
2 1 0 0 0 1C

′?
r that make

the sequence 44C ′?
1 1 b

′
151 4C

′?
2 1 b

′
251 0 0 0 1 4C

′?
r 1 b

′
r55 suitable

in M−13 hence, B−1 is optimal for M−1 and B−i is optimal
for M−i.
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Theorem 11. Given a VCG-sequence, then B1B−11 0 0 0 1
B−n are the unique optimal bases of M1M−11 0 0 0 1M−n,
respectively. The Vickrey payoff of bidder j ∈N is

∑

i 2 bi∈8b110001br 9∩Ej

4vbi − vfC?i
51

and his Vickrey payment is

∑

i 2 bi∈8b110001br 9∩Ej

vfC?i
=

∑

i 2 bi∈8b110001br 9∩Ej

pi0

The theorem shows that if bidder j is awarded ele-
ment bi, then his final payment increases by pi. Therefore,
in a dynamic setting he could be charged pi at the moment
he is awarded element bi.

2.6. Tie Breaking

Ties among valuations present a slight technical complica-
tion that can be resolved without changing the ideas in our
results. The reader willing to ignore this technicality may
skip this subsection.

When values are not necessarily distinct, we can break
ties by choosing sufficiently small positive � and perturb-
ing ve by �e := �e to v′

e := ve +�e = ve +�e. For sufficiently
small �, the perturbed valuations have the property that
v′4S5¶ v′4T 5 implies v4S5¶ v4T 5.

Clearly, a basis that is optimal for v′ on a minor of M is
also optimal for v on the same minor yielding the following
generalization of Theorem 11.

Lemma 12. Suppose a VCG-sequence for the perturbed
valuation v′ of a no-monopoly matroid M with nonnega-
tive valuation v. Then B1B−11 0 0 0 1B−n are the unique opti-
mal bases with respect to v′ and v of M1M−11 0 0 0 1M−n.
The Vickrey payment (under v) by bidder j ∈ N is
∑

i 2 bi∈8b110001br 9∩Ej
vfC?i

.

Lemma 12 allows us to extend the notions of feasible
sequence, VCG-sequence, and condensed VCG-sequence
to valuation with ties by requiring that the sequence condi-
tions are fulfilled for a perturbed valuation. To sidestep the
issue of how to determine sufficiently small �, one could
choose an arbitrary strict order ≺ on E and use it to break
ties with respect to v. Henceforth, we will break ties in this
way and will demonstrate how this can be achieved without
relying on the cooperation of the selfish bidders.

2.7. The Ascending Auction

Auction 3 (efficient ascending auction (unit-step))
Require: No-monopoly matroid M with nonnegative

integer valuation
1. i ← 1, p ← 0, r ← r4M5
2. Determine an ordering of E (for tie-breaking)
3. while i < r do
4. Ask bidders to determine

F = 8f11 0 0 0 1 fk9← 8f ∈E4M52 vf = p9 and

label the elements of F so that they are
increasing according to the tie-breaking.

5. for `← 1 to k do
6. while there exists a bidder j and a cocircuit

C? of M\f` with C? ⊆Ej do
7. Ask bidder j to determine arg maxe∈C? ve

and let bi be the most valuable element
from this set according to tie-breaking.

8. Award bi to j and charge him pi ← p.
9. M←M/bi

10. i ← i+ 1
11. end while
12. M←M\f`
13. end for
14. M and p ← p+ 1
15. end while
16. B ← 8b11 0 0 0 1 br9 is the optimal basis.

Auction 3 is our main algorithm. Notice that the condi-
tion C? ⊆ Ej in Line 6 generalizes the condition we had
in the motivating example that an agent owns a bridge.
Observe in addition that the tie-breaking is carried out with-
out the bidders’ cooperation: in Lines 4 and 7 the bidders
are asked questions regarding their valuations; afterwards
the auctioneer breaks ties in their answers.

In ascending-price auctions, it is standard to ask bidders
to reveal their demand at current prices. Lines 4 and 7 are
to be interpreted in this spirit. These steps in Auction 3
ask bidders to reveal their demand correspondences at cur-
rent prices, and in particular to reveal those elements that
they are just indifferent between buying or not at current
prices. In implementations, this latter information can also
be extracted by asking bidders to reveal demand at current
prices at the next-higher price increment.

It is easy to show that Auction 3 determines a condensed
VCG-sequence if bidders behave truthfully, yielding our
main result.

Theorem 13. For every no-monopoly matroid with non-
negative integer valuation, if bidders behave truthfully, then
Auction 3 determines an efficient allocation and charges
Vickrey prices.

Proof (Sketch; Full Proof in E-Companion A.3).
Notice that for distinct valuations the auction determines a
condensed VCG-sequence.

This would become clear if we add the line:
12.5: if f` has not been awarded then Di ←Di ∪ 8f`9.

By Theorem 7 there is a corresponding VCG-sequence;
hence (with §2.6), the efficient allocation is found. With
Theorem 11 it follows that the pi lead to Vickrey
prices. �

The classical English-auction style of increasing p in
Line 14 is p ← p+ 1, which is why we refer to this as the
unit-step version of our auction. It is clear why this works
when valuations are integer. There is another variant, the
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Figure 1. An example illustrating Auction 3 on a graphical matroid with elements 8a251 a241 b231 b221 c219 (encoding
bidder and value) and bidders a1b1 c.

a:4

a:5

b:3b:2

c:1

b:3b:2

c:1 a:4

a:5

c:1

b:3

a:4

b:2

c:1

(a) p = 0 (b) a has no
monopoly

(c) b has no
monopoly

(d) c has no
monopoly

a:4

a:5

b:3b:2

c:1 a:4

a:5

b:3b:2

c:1 a:4

b:2 b:3

c:1 a:4

b:2 b:3

c:1

(e) p = 1; c:1
becomes indifferent

(f) p = 1; a gets a
monopoly

(g) p = 1; a:5 is
awarded and
contracted

(h) p = 1; b gets a
monopoly

a:4

b:2

c:1
a:4

b:2

a:4

b:2

(i) p = 1; b:3 is
awarded and
contracted

(j) p = 2; b:2
becomes indifferent

(k) p = 2; a gets a
monopoly

(l) p = 2; a:4 is
awarded and
contracted

long-step version, that is faster and able to handle arbitrary
(noninteger) valuation; it is introduced in §2.9.

The unit-step auction can be described simply in the fol-
lowing way. Start with the price set at zero, where, by
assumption, no bidder holds a monopoly. Then (Line 4) ask
the bidders whether they have any elements at current price
that they are indifferent about (because the price matches
their values); such a question is not unusual for an auc-
tion. Among the elements that the bidders announce, the
auctioneer can break ties in the way he has predetermined
to. Hence, he can pick “the” smallest element f among
them (and later larger ones). Now Line 6 is a question that
requires only knowledge of the matroid and the partition
of E into sets of interest Ei; because the auctioneer knows
both, checking whether there is a C? of M\f` and a bidder j
with C? ⊆Ej is easy for him and requires no further knowl-
edge. Therefore, the auctioneer can determine whether the
removal of f would give another bidder j a monopoly.
If it does, let bidder j determine in Line 7 his best ele-
ments from C?; among these best elements the auctioneer
determines with his tie-breaking plan a unique best ele-
ment e ∈C?, awards it to j , and charges j the current price.
(All of this requires no advanced knowledge of bidders val-
uations.) Then contract e and check for any other bidders

that might own a cocircuit. Afterwards, delete the unnec-
essary element f from the matroid. If at current price p
another element f ′ was announced (but not yet awarded),
then repeat the previous step; otherwise, increase p and
continue. In the next section, an example illustrates the
auction.

2.8. An Example

An example run of the auction on a graphical matroid M
is described in Figure 1. As shown in Figure 1(a), there
are three bidders 8a1 b1 c9 and five elements 8a 251 a 241
b231 b221 c 219; an element encodes the prospective buyer
and value. The matroid has rank 3. Because Figures 1(b)–
1(d) show that removal of any single agent does not
decrease the rank of the matroid, it fulfills the no-monopoly
condition.

At price p = 1 the situation in Figure 1(e) results: only
bidder c announces that the value of his element f = c21
(in gray) is reached and that he is indifferent between pay-
ing 1 for it or not getting it. At this moment it has to
be checked whether deletion of f would give bidder a a
monopoly. As the cut (dashed line) indicates in Figure 1(f),
if f is removed, then bidder a owns a monopoly, because
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removal of a251 a24 from M−f would reduce its rank. Con-
sequently, bidder a is asked for his most valuable element
out of a251 a24, to which he will answer a25. Now the auc-
tioneer awards him a25 and charges 1 for it. To remove a25
from consideration he contracts a25, yielding Figure 1(g).

Bidder c’s indifference has another consequence. As can
be seen in Figure 1(h), removal of bidder b and c 2 1
decreases the rank of the matroid; hence, b would have a
monopoly. He is awarded the better of b221 b23 at a price
of 1. Again the auctioneer contracts the awarded edge b23,
yielding Figure 1(i).

Because no more monopolies occur at p = 1, element
c21 is removed and the price increases to p = 2. Bidder b

then announces that the value of his element b22 is reached;
see Figure 1(j). If b22 were removed, then bidder a would
again have a monopoly; see Figure 1(k). Therefore, bid-
der a is awarded a24 at a price of p = 2, element a24 is
contracted, and b22 is deleted; Figure 1(l) results. Because
r4M5 elements have been awarded, the auction ends.

In the sealed-bid VCG auction, the elements a251 a241 b23
would be awarded and bidder a would pay 3, bidder b

would pay 1, and bidder c pays nothing. These payments
match the outcome of our ascending auction carried out
above.

2.9. Polynomial Auction

Not much has been said about the runtime of Auction 3.
The problem with the unit-step version is that we have to
determine several numbers (the values of the second-best
elements), but do so by querying every smaller integer.
Clearly, this yields an auction that is only pseudopolyno-
mial (in the highest value). More fundamentally, the clas-
sical English ascending auction to sell a single unit of a
single good has the same problem. From a computational
standpoint, binary search seems to be one way to solve this
problem; however, under straightforward binary search it
turns out that truth-telling need not be a weakly dominant
strategy. Recently, Grigorieva et al. (2007) proposed the
bisection auction for a single good that takes polynomial
time and in which truth-telling is again a weakly dominant
strategy.

To handle arbitrary values or to be faster, however, the
auction can be easily modified to the long-step version by
changing Line 14 to read as follows:
14L: Ask each bidder j to determine uj = mine∈Ej∩M

ve
>p; Mp ←M and p ← minj∈N uj .

This step asks each bidder for the value of his least valu-
able remaining object, then increases the price to the lowest
of these reported values.3 This can be implemented in a
variety of ways in practice. For instance, bidders can be
asked for “suggested price increases,” with the assurance
that only the lowest of these suggestions will be imple-
mented in order to speedily move the auction along. If the
bidder with the lowest reported price increase suggests too

low of a price increase (i.e., underreports his uj ), the auc-
tion is delayed because no bidder withdraws at the result-
ing price.

The long-step version of Auction 3 runs in polynomial
time and because it avoids unit-steps, can accommodate
nonnegative rational valuations. The outer loop of the long-
step auction is executed at most �E� times. It makes only
polynomially many calls to an oracle finding a cocircuit of
a minor of M contained in some Ei, and it performs only
polynomially many steps.

Theorem 14. For every no-monopoly matroid with non-
negative valuation, if bidders behave truthfully, then the
long-step version of Auction 3 determines an efficient
allocation and charges Vickrey prices. The auction goes
through a polynomial number of steps (in �E�, �N �, and the
largest encoding length of a value) and makes polynomial
use of a cocircuit oracle ( for M and its minors).

Proof. The while loop of Lines 3–15 is carried out at most
r4M5¶ n times (because in each iteration at least one ele-
ment gets contracted because bidders are honest). The inner
loops are carried out at most �E� and �N � times, respec-
tively. Therefore, the polynomial-time result holds. �

Notice that under our assumption of single “ownership”
we have N =O4�E�5, and hence one could say that the auc-
tion is polynomial in �E� and the largest encoding length of
a value. On the other hand, clearly, the auction is polyno-
mial in the number of rounds it needs, but the latter is only
endogenously determined; however, as already mentioned,
it can be bounded above by �E�.

Theorems 13 and 14 are computational results. That is, it
is implicitly assumed that the bidders honestly report their
information to the auction. Of course, this assumption is
not without loss of generality when bidders are strategic.
In the next section, we consider this issue of incentives.

2.10. Incentives

We show that in Auction 3 truthful bidding forms an ex post
equilibrium. That is, no bidder can benefit by bidding
untruthfully provided that all other bidders bid truthfully.
This is a stronger equilibrium property than Bayesian Nash
equilibrium.

When Vickrey payments are implemented through the
use of a sealed-bid auction, each bidder maximizes his pay-
off by bidding truthfully (i.e., truthfully reporting his val-
uations) regardless of the strategy used by other bidders.
In other words, the Vickrey mechanism is strategy-proof.
Therefore, it should not be surprising that an ascending
auction (i.e., extensive form game) that implements Vickrey
payments inherits good incentive properties.

The argument follows the logic of the revelation prin-
ciple. Suppose a bidder behaves in a way that is consis-
tent with some valuation function different from his true
one. This causes him to receive elements and make pay-
ments that correspond to the Vickrey allocation/payments
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for the false valuation. By strategy-proofness of the sealed-
bid (direct revelation) mechanism, the bidder cannot be
better off than if he had behaved truthfully. This yields
Lemma 15 below.

Formally, for any possible list of valuations that a bid-
der could realize, a strategy dictates how a bidder should
behave after any possible history throughout the auction.
Although we omit a tedious mathematical definition, this
means that each bidder must decide what information to
declare in Lines 4 and 7 of Auction 3, given any possible
auction history up to that point (e.g., the order and price at
which elements already have been awarded or withdrawn
by other bidders). A strategy is a truthful bidding strategy
if, regardless of the auction history, the bidder truthfully
declares which of his elements have value p (at Line 4)
and which are in arg maxe∈C? ve (at Line 7, if the bidder is
bidder j).

Lemma 15. For any profile of valuations, suppose each
bidder is using a truthful bidding strategy. Then any bidder
receives a payoff at least as great as the payoff he would
receive using any other strategy that is truthful with respect
to some other valuations.

The result follows from the strategy-proofness of the
VCG sealed-bid auction, as stated above. This argument is
not sufficient to prove a dominant-strategy result, however,
because bidders could bid in a way that is inconsistent with
any valuation function. It is conceivable for a bidder to
make declarations in Lines 4 and 7 of Auction 3 that are
inconsistent with truthful bidding under any possible valu-
ations. For example, when a bidder is awarded a cocircuit
8a1 b1 c9 he might declare that va = vb > vc and be awarded,
say, a. Later, if he is awarded the cocircuit 8b1 c1d9 but
announces vc > vb, this is inconsistent with any valuation.
Against strategies that make such inconsistent announce-
ments conditional on the announcements of others, truthful
bidding may not be a best response.4 This is why truthful
bidding is not a dominant strategy in dynamic, ascending
(i.e., extensive-form) auctions.

Nevertheless, it turns out that it is an equilibrium for all
bidders to commit to truthful bidding at all times through-
out the auction. When all other bidders are behaving truth-
fully, a bidder can do no better than to bid truthfully. The
key to proving this is Lemma 16, which makes nontruthful
strategies partially irrelevant.

Lemma 16. Fix a profile of valuations and a bidder i. Sup-
pose the other bidders are using truthful bidding strategies
but bidder i is not. Then there exists a truthful bidding
strategy for i (that is truthful with respect to some valua-
tion ṽ) that yields the same auction outcome as his original
strategy.

Proof. Under the assumptions of the lemma, suppose bid-
der i is using an arbitrary bidding strategy s. Using s,
suppose i is awarded the set of elements 8e11 0 0 0 1 ek9, in
that order, at prices pe1

1 0 0 0 1 pek
, respectively. For every

e ∈Ei\8e11 0 0 0 1 ek9 that he is not awarded, denote by pe the
price at which he dropped the element from the auction
(Line 4).

We define a valuation ṽ and show that the same outcome
would be obtained (for all agents) if bidder i bids truthfully
with respect to ṽ. For all e ∈Ei, let

ṽe =

{

41 +pr5+ 4k− l5 if e = el ∈ 8e11 0 0 0 1 ek9

pe if e ∈Ei\8e11 0 0 0 1 ek9

(where pr is the highest charged price). Therefore,
• ṽe > ṽf for all e ∈ 8e11 0 0 0 1 ek9 and f ∈Ei\8e11 0 0 0 1 ek9

and
• ṽel > ṽej if 1 ¶ l < j ¶ k.

Let s̃ be the strategy of bidding truthfully with respect to ṽ.
The differences between s and s̃ are the following. In

Line 4 of the auction when the current price is p, under s̃
bidder i will announce the elements e that he will not win,
such that ṽe = p. Under s it could be that he announces
additional elements that he is actually awarded in an exe-
cution of Line 7 (while the price is still p, but before
the element is deleted in Line 12). Suppose that such
an element (with smallest index after tie-breaking) is fm.
Because fm was awarded to him later in Line 7 under s,
this happens before the loop in Line 5 gets to l =m. Later,
at l = m, the while condition in Line 6 cannot be ful-
filled; hence, his announcing of fm has no influence on
the course of the computation. Therefore, we achieve the
same outcome (allocation and prices) for any additionally
announced element.

In Line 7, under s, bidder i may announce multiple ele-
ments of C?. However, only one element is awarded to him,
and the remaining elements are irrelevant in the computa-
tion. Under s̃, he announces that same element only; hence,
the computations in both cases are identical. �

A profile of strategies is an ex post equilibrium if, for
any realization of valuations, no bidder has an incentive to
change his strategy even if he could fully learn the others’
valuations. We have imposed no assumption on the infor-
mation that bidders possess. At one extreme, bidders may
know a lot about each other. At another extreme, bidders
may only have probabilistic beliefs about others’ valua-
tions; these beliefs may not even be commonly known. The
strength of the ex post equilibrium concept is that such
assumptions become irrelevant. For any possible realization
of valuations, no bidder regrets having used the strategy
he did, all else being fixed. Although this is a very strong
(hence desirable) concept, we should also point out that it
is not quite as strong as the concept of dominant strategies.5

Theorem 17. For any profile of valuations, the profile of
truthful bidding strategies is an ex post equilibrium of
Auction 3.

Proof. Suppose all bidders are bidding truthfully.
Lemma 16 implies that each bidder i has a best response
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among the set of strategies that are truthful with respect to
some (possibly false) valuation ṽ. Lemma 15 implies that
the truthful one (with respect to true valuations) is one best
response. Therefore, bidder i cannot do better than truthful
bidding. �

The long-step version of Auction 3 also possesses strong
incentives properties. It is straightforward to show that
Lemma 15 also applies to the long-step auction (see
the e-companion). Slight care needs to be taken with
Lemma 16, however. For example, consider Line 14. Even
if all other bidders are truthful, an untruthful bidder i could
announce ui = p+ 2−t in every round t. The auction could
then continue indefinitely if the bidders’ announcements
yield F = � in Line 4, in each round.

It is simple to fix this by adding a “consistency check”
to Line 4 that would require the following: if bidder j
announces the minimal utility uj in Line 14L of the long-
step auction, then he must announce at least one element
in the next execution of Line 4. Formally, Line 4 could be
changed to the following.
4L: Ask bidders to determine F = 8f11 0 0 0 1 fk9 ← 8f ∈

E4M52 vf = p9 and label the elements of F so that they
are increasing according to the tie-breaking. Every bidder j
with p = uj must announce at least one element.

This addition guarantees that if all bidders are bidding
truthfully, no single bidder can deviate to an arbitrary strat-
egy in order to prolong the auction indefinitely. With this,
the arguments behind Lemma 16, and hence Theorem 17,
would apply to the long-step auction.

We close this section with a remark on another way one
could achieve similar incentives results in practice. When
discussing incentives, we have been assuming (implicitly)
that information exchanged in the auction is public. Specif-
ically, information elicited from bidders in Lines 4 and 7
of the auction is revealed to everyone. If this communica-
tion between the auctioneer and bidders could be made pri-
vately, this would reduce the ways in which bidders could
react to seemingly inconsistent behavior by other bidders.
In game-theoretic terms, this would create fewer informa-
tion sets throughout the auction, making it easier to achieve
incentive compatibility. A trade-off is that this would also
reduce the transparency of the auction.

3. Impossibility
We have exhibited an ascending auction for matroids that
returns the Vickrey outcome. The auction is “simple” in
the sense that it monotonically adjusts a single parameter—
a single price—to determine the entire outcome. Can this
approach extend beyond matroids? In this section, we show
that it cannot: Outside of the matroid class, such a simple
type of auction cannot always find an optimal basis. Of
course, an auctioneer could use more-complicated auctions
(with multiple parameters/prices) in order to implement
many kinds of outcomes (see Bikhchandani and Ostroy

2002 and de Vries et al. 2007). However, the point of Theo-
rem 18 below is to show that a matroid structure is required
to achieve the simplicity exhibited in Auction 3.

To make this result precise, we first describe a more gen-
eral class of allocation problems. We assume the seller’s
problem is to allocate a best element B ∈B′, where B′ is a
set of subsets of the ground set E. Under the nonnegativity
assumption on the valuation, we know that only a maximal
element of B′ might be chosen, so without loss of gener-
ality we can assume that B′ is a clutter (i.e., if B1C ∈ B′

and B ⊆ C, then B = C). We will refer to sets from B′

as bases although they may not be matroid-bases. Next we
characterize the subsets S of E that contain a basis. For
this we need the notion of a blocker bl4B′5 that is defined
as the set of inclusionwise minimal sets C so that each C
intersects all members of B′. Lawler (1966) observed that
bl4bl4C′55 = C′ if C′ is a clutter; furthermore, bl4C′5 is
always a clutter. Let C′ := bl4B′5 and refer to its elements
as cocircuits. For a set S ⊆E there exists a set B ∈B′ with
B ⊆ S if and only if for all C? ∈C′ holds S ∩C? 6= �. Say
that for B′ the no-monopoly condition holds if for all i the
set E\Ei contains a basis; recall, this holds if and only if
no cocircuit is contained in a single Ei.

In the following it suffices to focus on the special case
in which all Ei are singletons (and all values are distinct);
clearly, any auction beyond matroids should be able to work
in this simple environment.

A mechanism that sells the best element from B′ is an
ascending, truthful, 1-parameter mechanism if

1. there is a single ascending price;
2. bidders reveal which of their items f match the cur-

rent price;
3. bidders have the incentive to reveal such items

truthfully;
4. when a bidder reveals such an item, the seller either

deletes that item (yi+1) at the current price or awards it
(later) at a price no higher than the current price; and

5. the seller must delete that item if the remaining ele-
ments (that is E\8f 1 y11 0 0 0 1 yi9) still contain a basis (oth-
erwise, the mechanism is already unable to always find the
optimum basis for matroids).

The seller deletes an element f if and only if the remain-
ing elements E\8f 1 y11 0 0 0 1 yi9 contain a basis; equiva-
lently, this requires that E\8f 1 y11 0 0 0 1 yi9 intersects every
cocircuit (or equivalently that no cocircuit is contained
in 8f 1 y11 0 0 0 1 yi9). An ascending auction has to look like
Algorithm 4 (although some additional computation for the
payments might be necessary). This is simply the well-
known worst-out greedy algorithm.

Algorithm 4 (optimal allocation from a clutter)

Require: Finite no-monopoly clutter B′ with
nonnegative, distinct rational valuation, singleton
buyership, and blocker C′ := bl4B′5.

1. i ← 0, p ← min8ve2 e ∈E9
2. while p <� do
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3. Let f ∈E be the element with vf = p
4. if E\8f 1 y11 0 0 0 1 yi9 intersects every member

of C′ then
5. i ← i+ 1
6. yi ← f
7. end if
8. p ← min8ve2 e ∈E with ve >p9
9. end while

10. Award E\8y11 0 0 0 1 yi9.

Theorem 18. For given B′ an ascending, truthful, 1-para-
meter mechanism is able to find the optimal basis for all
valuations and all buyer partitions for up to �E� agents if
and only if B′ fulfills the basis axioms of matroids.

Proof. (This is a minor variant of a proof of a different
result by Korte and Lovász 1984, Thm. 4.1.) Recall we
assume that all bidders are interested only in a single item.
Let M? := 8I ⊆ E2 ∃B ∈ B′ with I ∩ B = �9. Clearly, a
worst-out greedy basis found by Algorithm 4 is of maxi-
mum value if and only if the complementary best-in greedy
basis has minimum value. The latter can hold for all val-
uation only if M? is a matroid. However, then B′ are the
bases of M?? and therefore B′ has to fulfill the basis axioms
of matroids. The other direction is obvious. �

4. Selling Bases of a Polymatroid
A matroid’s rank function r is integer valued and satisfies
three properties.

(R1) S ⊆E ⇒ 0 ¶ r4S5¶ �S�.
(R2) S ⊆ T ⊆E ⇒ r4S5¶ r4T 5.
(R3) r is submodular, i.e., r4S5 + r4T 5 ¾ r4S ∩ T 5 +

r4S ∪ T 5 for all S1T ⊆E.
Associated with every matroid is a polyhedron

∑

e∈S

xe ¶ r4S5 ∀S ⊆E

0 ¶ xe ∀ e ∈E1

whose extreme points are 0–1 vectors corresponding to the
independent sets of the matroid.

This class of polyhedrons can be generalized by replac-
ing the rank function on the right-hand side of the first
inequality with a nondecreasing, normalized (�4�5 = 0),
submodular function �4 · 5. The polyhedrons in the resulting
class are called polymatroids and play an essential role in
combinatorial optimization. The extreme points of a poly-
matroid are sometimes referred to as the independent vec-
tors of the polymatroid. Our auction for selling a basis of
a matroid can be extended to sell a basis of a polymatroid.

As before, let E be a set of distinct items and consider a
nondecreasing, normalized, submodular, and integer-valued
function �2 2E → �0. The set of feasible allocations is
determined by the polymatroid associated with �: P� = 8x ∈

�E 2 x ¾ 01 x4S5 ¶ �4S5 ∀S ⊆ E9. It is well known that
P� has integral extreme points if, as we assume, � is inte-
ger valued. We assume that each agent j ∈N has for each

e ∈ E a valuation vje4xe5 that is nondecreasing, concave,
and piecewise-linear with integral breakpoints. Agent j’s
value for x ∈ P� ∩�E

0 is vj4x5=
∑

e∈E v
j
e4xe5. The efficient

allocation solves

max
∑

j∈N

vj4xj5

s.t.
∑

e∈S

∑

j∈N

xj
e ¶ �4S5 ∀S ⊆E (P)

xj ¾ 0 ∀ j ∈N1

and we look for an ascending auction that returns the
VCG outcome. If the values were known, the algorithms
of Fujishige (1980), Groenevelt (1991), and Nagano (2007)
would apply.

Helgason (1974) describes a pseudopolynomial reduction
from integer polymatroids to matroids; here we follow the
description given by Schrijver (2003). Let Xe = 8e9×N ×

811 0 0 0 1 �48e959 for each e ∈ E and set X =
⋃

e∈E Xe. The
idea is to replace the element e ∈ E of the polymatroid,
that could occur in quantity up to �48e95, by the elements
of the set Xe (this is the pseudopolynomial step). A set
I ⊆X is considered independent in the new matroid if, with
xe := �I ∩Xe� for all e, holds x ∈ P�.

We have already duplicated the elements for the different
agents so that agent j ∈N is interested only in the elements
of type 4e1 j1 i5 ∈X with e ∈E and 1 ¶ i¶ �48e95. Conse-
quently, no two agents are interested in the same element of
X. Set the values of the element 4e1 j1 i5 by ve1 j11 := vje415
and ve1 j1 i := vje4i5 − vje4i − 15 (for 1 < i ¶ �48e95). Note
that ve1 j1 i is nonincreasing in i. If we consider an optimal
basis B in the matroid, then because vje4 · 5 is assumed to
be nondecreasing and concave, we can assume without loss
of generality 8i 2 4e1 j1 i5 ∈ B ∩Xe9 is for every 4e1 j5 a set
of consecutive integers starting with 1. Consequently, for
every optimal basis of the matroid there is an optimal basis
of the polymatroid of the same value, and vice versa.

The resulting auction is pseudopolynomial because of the
involved pseudopolynomial transformation. If bidders are
only permitted to announce their demand for every item e
as a consecutive integer set starting at 1, then the profile of
truthful bidding turns out to be an ex post equilibrium.

5. Applications

5.1. Matroid Applications

5.1.1. Scheduling Matroids. Our auction applies to
scheduling matroids where each agent has a set of unit-
length jobs with a commonly known release and due date
but a privately known value for completion. In the special
case in which every agent has only one job to be sched-
uled, the auction by Demange et al. (1986) applies, so for
this scheduling problem, our auction generalizes theirs.
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5.1.2. Graphical Matroids. When applied to graphi-
cal matroids (for an example run of the presented auction
on a graphical matroid, see §2.8), problems like minimal
network planning where agents bid so that preferred links
become directly connected (instead of just being connected
via several hops) can be solved as an ascending auction.

5.1.3. Uniform Matroids. For selling multiple units of
a single good to bidders that have decreasing marginal val-
ues, an application of our auction to a properly constructed
uniform matroid is possible. We omit the details and refer
to §5.2.4.

5.1.4. Transversal Matroids for Pairwise Kidney Ex-
change. Consider the problem of a pairwise kidney
exchange. At present, the use of monetary transfers is con-
sidered unethical. Nevertheless, we discuss the possibility
because of its interest.

Because there are insufficiently many cadaver organs
available for the patients in need, other sources are nec-
essary. Traditionally, a patient could be helped only if
he finds a suitable (and willing) donor among his closest
family or friends, but even that helps only a minority of
patients. Even more patients could be helped by following
the approach of Roth et al. (2005), who devise a matching
method to maximize the number of transplantations. Their
transformation to a matching problem can be taken further
to a matching matroid (from Edmonds and Fulkerson 1965
this is a transversal matroid). Allowing patients to bid for
priority in being matched yields a situation that can be effi-
ciently solved with our matroid auction.

5.2. Polymatroid Applications

There are a variety of settings where the set of feasible
resources to be allocated is a polymatroid. In these cases,
the auction developed in this paper will apply.

5.2.1. Spatial Markets. Motivated by Babaioff et al.
(2004), consider a capacitated network where each arc has
both a cost and a capacity. Agents are identified with dis-
joint sets of demand nodes. The utility of each agent is the
sum of increasing and concave functions of the flow xi into
each of his nodes i. The seller is identified with a source
node s. It is well known that an allocation x is feasible if
and only if

∑

e∈S xe ¶ �4S5 for all S where �4S5 is the sub-
modular function giving the value of a minimum s-S-cut
(e.g., see Federgruen and Groenevelt 1986). Therefore, our
polymatroid auction applies to such settings. For an appli-
cation, one can imagine a (streaming) video-on-demand
service where a single customer represents, say, a group of
spatially dispersed family members, each of whom wants
to watch various movies.

5.2.2. Bandwidth Markets. In wireless communica-
tion settings the resource to be consumed is transmis-
sion rate. In a Gaussian multiple-access channel the set of
achievable rates, called the Cover–Wyner capacity region,

forms a polymatroid; see Tse and Hanly (1998). Our poly-
matroid auction would apply in this setting to allocate
transmission rates.

5.2.3. Multiclass Queuing Systems. A wide range of
manufacturing and service facilities are modeled as mul-
ticlass queuing systems. Job requests arrive from agents
and are then scheduled. The schedule determines the com-
pletion times of the various jobs. If xi is the completion
time of the job associated with agent i, then under certain
conditions the set of feasible xis forms a polymatroid (see
Shanthikumar and Yao 1992). If agents incur a disutility
that is convex in completion time, then our polymatroid
auction would apply.

5.2.4. Multiple Units of a Single Good with Decreas-
ing Marginal Value. The problem of allocating up to
k units of an identical good (let E = 819) amongst n agents
with decreasing marginal utilities can be formulated as a
polymatroidal optimization problem. Let xi be the quantity
allocated to agent i and ui4 · 5 the utility of agent i. The
problem of finding an efficient allocation is

max
∑

j∈N

vj4xj5

s.t.
∑

e∈819

∑

j∈N

xj
e ¶ k

xj
e ¾ 0 ∀ j ∈N1 e ∈ 8190

Now if we set �48195= k, �4�5= 0, then it becomes clear
that the feasible region forms a polymatroid and the valua-
tions of the bidders fulfill the conditions. Our auction when
applied to this setting yields the auction by Ausubel (2004).

Notice that the case of several goods for which bidders
have decreasing valuations separable in goods can be done
analogously.

5.2.5. A Seller Subject to Polymatroid Production
Constraints. Consider a seller who produces shoe heels
and pencil erasers and, due to capacity constraints, can
produce only up to xh ¶ �4h5 heels and up to xe ¶ �4e5
erasers. If there is limited supply of a common input (e.g.,
rubber), then the seller could be constrained to produce no
more than, say, �48e1h95¶ �4e5+ �4h5 heels and erasers
in total. Our polymatroid auction can be applied to set-
tings where a seller faces such constraints, when buyers’
valuations are both separable in heels and erasers and have
decreasing marginal values in quantity.

6. Conclusion
We proposed the first ascending auction for matroids and
polymatroids. The auction has truthful bidding as an ex post
equilibrium and has various applications. It remains an
open question whether a generalization to interdependent
valuations is possible, similar to the way Perry and Reny
(2005) generalize to interdependent valuations the auction
of Ausubel (2004).
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7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. Although we speak in terms of selling edges, one inter-
pretation for this problem involves a procurement setting,
where the auctioneer wants to purchase the right to use an
edge and the bidder incurs some cost (−ve) when it is used
(e.g., constructing a complete communications network at
minimal total social cost). For consistency with the rest of
the paper, we avoid procurement terminology and speak of
selling.
2. We follow the convention that the while condition in
step 2 below is satisfied if there exists no C? ∈C?4M5 with
f ?
C = e.

3. In the special case of a single-object auction, the price
simply jumps from zero through all the bidders’ values—
from lowest to second-highest—and then awards the object
to the highest bidder without revealing his bid. If there are
more goods, however, then significantly less information is
revealed.
4. Similar difficulties appear in the literature on extensive-
form implementation. See Moore and Repullo (1988).
5. In fact, dominant strategy equilibria are not obtainable
in many (reasonable) dynamic-auction settings. It is beyond
the scope of this paper to elaborate much on this point,
but the essential reason for this is that no strategy can be
optimal (best response) when another bidder is behaving in
a way tailored to “punish” players using that given strategy;
hence, none can be dominant.
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