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Abstract

Though some environments yield reasonable allocation rules that
are implementable in dominant strategies (i.e., strategy-proof), a sig-
nificant number yield impossibility results. On the other hand, while
there are general possibility results for implementation in Nash or
Bayesian equilibrium, these equilibrium concepts make strong assump-
tions about the players’ knowledge. Since such assumptions may not
be practical in various design scenarios, we formulate a solution con-
cept built on one premise: Players who do not have much to gain by
manipulating will not bother to do so.

For an exchange economy model and a voting/lotteries model, we
search for efficient rules that never provide players with large gains
from manipulation. Though the rules we describe are inequitable,
they are significantly more flexible than those that satisfy the stronger
condition of strategy-proofness, even when the allowable gains from
manipulation are made arbitrarily small. This demonstrates a type of
non-robustness in previous impossibility results.
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1 Introduction

In the field of mechanism design, one of the most desirable incentives prop-

erties for choice rules is that of dominant strategy implementability. For a

planner attempting to implement a rule with this property, certain issues—

such as what information he has about the agents, what information agents

have about each other, and what information is revealed during intermediate

stages of the execution of the mechanism—are basically irrelevant. These

issues are also irrelevant for a participating agent calculating an appropriate

(best) action to take. In fact, even the assumption that his fellow players

are rational need not be made by the player concerned with his own best

interests. Furthermore, calculating a player’s best action cannot be more

complex than determining his own preferences over outcomes.

Given the extreme desirability of this incentives property, it is important

to determine which rules satisfy it in various situations. Indeed this question

has been—and continues to be—answered for an increasingly diverse class of

situations. Interestingly, though, the nature of the result depends strongly

on the situation being described.

For example, the seminal works of Gibbard (1973) and Satterth-

waite (1975) provided an early negative result for the situation of voting:

no (non-dictatorial) voting rule satisfies even the (slightly weaker) condition

of strategy-proofness, requiring truth-telling to be a weakly dominant strat-

egy in the direct revelation mechanism. For the situation of choosing pub-

lic alternatives and taxation levels, the Vickrey–Clarke–Groves1 mechanisms

have been shown (e.g., by Green and Laffont (1977), Holmström (1979)) to

be the only strategy-proof ones that choose efficient public alternatives. Since

these mechanisms are typically not budget balancing, this has been seen as

a negative result.2

In contrast, in certain “simpler” situations, positive results have pre-

vailed. Moulin (1980) describes the class of strategy-proof, onto voting rules

for the situation in which agents have “single-peaked” preferences over a 1-

1See Clarke (1971) and Groves (1973).
2However, this class of mechanisms has a much better reputation in private goods

environments.
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dimensional ordering of public alternatives, generalizing the classic median-

voter rule.3 For two classes of 2-sided matching problems (known as marriage

markets and college admissions problems), Alcaldé and Barberà (1994) pro-

vide a domain of preferences for which certain stable matching rules are

strategy-proof. In such problems, stability is arguably the most important

property for a rule to possess. For 1-sided matching problems—in particular,

Shapley and Scarf’s (1974) “housing market”—Roth (1982) demonstrates the

strategy-proofness of the allocation rule that has been central to the analysis

of this domain: the Top Trading Cycles algorithm. For situations in which

agents have single-peaked preferences over consumption of a single, divisible

private good, Sprumont (1991) shows the strategy-proofness of the Uniform

Rule, which has subsequently been characterized in terms of many other de-

sirable properties; see Ching (1992,1994), Schummer and Thomson (1997),

and Thomson (1994a,b,1995).

As the literature on strategy-proofness grows, our picture of the dividing

line between possibility and impossibility becomes clearer.4 This leaves us

with the need to address those situations in which no reasonable rules are

implementable in dominant strategies. There are various ways to do this.

One approach is to require a weaker form of implementation. This is

the approach taken in the large literature on Nash implementation (and its

refinements), in which mechanisms have the property that their equilibrium

outcomes are ones that would have been chosen by some given choice rule.

For example, see Moore (1996). The results here tend to be more positive

than those in the strategy-proofness literature.

However, these results come with a price: Strong assumptions are made

concerning the structure of information that agents possess about each other,

and/or that the planner possesses about the players. For example, it is im-

plicitly assumed in this literature that players have either common knowledge

or common prior beliefs about each other’s preferences). For many mecha-

nism design environments, such an assumption is not realistic.

3This result is strengthened by Ching (1997) and generalized by Schummer and
Vohra (2001).

4For a more detailed survey of the strategy-proofness literature, including more positive
results, see Barberà (2001) and Thomson (1998).
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A second, related approach to addressing the impossibilities of strategy-

proofness applies to situations in which the planner is satisfied with approxi-

mations; he may find it sufficient to implement a rule that is “close” to some

other desirable choice rule. One application of this approach can be seen

in the literature on virtual implementation (Abreu and Matsushima (1992),

Duggan (1997)), in which the goal is to find an implementable mechanism

whose equilibrium outcomes approximate the desired outcomes. The solu-

tion concepts in this literature, however, make the same type of informational

assumptions listed above.

Another application of the “approximation approach” is to measure, in

some way, the manipulability of a mechanism. In fact, there are various ways

of performing this analysis. One way, which is applicable to large economies,

is to look at the asymptotic behavior of incentives conditions. Roberts and

Postlewaite (1976) observe that as the number of agents becomes large, the

Walrasian allocation rule is asymptotically strategy-proof (see also Córdoba

and Hammond (1998) and Ehlers et al. (1999)).

A similar analysis in an auction setting is performed by Rustichini, Sat-

terthwaite, and Williams (1994), and Satterthwaite (2001), who not only

show an analogous asymptotic result for double auctions, but also argue that

convergence happens quickly as the number of agents increases. Conversely,

Swinkels (2001) shows that the Nash equilibrium outcomes of various popular

auction mechanisms are asymptotically efficient.

A related asymptotic result is given by Kalai (2001), who shows that in

many anonymous games of incomplete information, Bayesian equilibria yield,

with high probability, ex-post ε-equilibrium outcomes.

Alternatively, Beviá and Corchón (1995) consider measuring the fre-

quency of manipulation opportunities. They show that in a public goods

setting, any efficient and individually rational mechanism must be manipu-

lable on a dense set of preference profiles. Kelly (1993), Saari (1995), and

Smith (1999) suggest ways of counting manipulable situations in a discrete

voting environment.

Finally, Harrison and McDaniels (2001) argue (with experimental evi-

dence) that since a certain Condorcet-consistent voting rule is computation-
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ally difficult to manipulate, it is not likely to be manipulated in practice.

Our Approach

The approach taken in this paper can be seen as a different type of contri-

bution to the approximation approach, involving an approximation to the

notion of a dominant strategy. The motivation behind our notion of approxi-

mation lies with a simple assumption about the strategic behavior of agents.

Specifically, we approach the problem with the single premise that if a player

does not have much to gain by manipulating an allocation rule, then he will

not bother to manipulate it. Under this modelling assumption, we search for

rules in which gains from manipulation are limited by an upper bound.

This assumption can be interpreted or applied in various ways. For exam-

ple, it applies when agents must incur a cost in order to gather information

about each other. If such costly information is necessary for a player to com-

pute a profitable way to manipulate the choice rule, it would never be worth

the expense to gather it if the potential gains were bounded above by this

cost. Another application of this idea is to situations in which the act of

computation itself is costly to a player.

A third example of an application of our assumption is to situations in

which agents value morality (or honesty) in some real, fixed terms. In such

settings, small gains from cheating do not outweigh the losses (or “guilt”)

incurred.

An important observation here is that we make no assumption on the

structure of information that agents possess. Some of the work cited previ-

ously considers a rule to be almost non-manipulable in a Bayesian setting

even if there is a small probability of a very large gain. Such a definition

implicitly assumes that players not only have beliefs consistent with those

assumed by the planner, but that the players cannot have more information

than that.

The hypothesis of our premise is that “a player does not have much to

gain by manipulating.” The critical detail of our work is to precisely define

much. One approach is to use a utility-based approach to preferences. Using

this approach, a player would be assumed not to manipulate a rule unless his
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utility gain would exceed a predetermined amount. This approach, however,

would depend heavily on the interpretation (and/or the parameterization) of

utility functions.

To avoid this difficulty, we define our condition in terms of commodities.

For example, we first examine 2-agent exchange economies. In such a model,

our behavioral assumption is that the only situations in which an agent will

manipulate a choice rule are those situations when his gains are better than

receiving prespecified, additional amounts (say, εj) of any good j. If no such

situation exists, we say that the choice rule is “almost” strategy-proof.

Second, we examine a voting model in which outcomes are lotteries over

candidates. Here, our behavioral assumption is that an agent will manipulate

a choice rule only if he can obtain a lottery which (from his perspective) is

better than any other lottery within an ε-neighborhood of the original lottery.

The “commodity space” in this model is the simplex of lotteries.

Overview of Results

Our first model is of a 2-agent exchange economy with two goods. We restrict

attention to the domain of linear (additively separable) preferences. We begin

with this simple class of preferences for two reasons: the analysis is more

tractable, and it is straightforward to quantify certain bounds imposed by

the truth-telling condition (i.e., as ε is increased), as we discuss below. In

any case, the positive aspect of our results can be extended to other domains,

as discussed in Section 7.

One of the earlier works on mechanism design is a paper by Hur-

wicz (1972), concerning 2-agent exchange economies with a more general

domain of preferences.5 He shows that it is impossible to construct a strategy-

proof, efficient rule that provides allocations which both agents prefer to their

original endowment. Zhou (1991) improves upon this result by showing that

if a rule is strategy-proof and efficient, then it is dictatorial: it must al-

ways give all of the goods to a prespecified agent. Finally, Schummer (1997)

strengthens these results by showing them to hold even on “small” domains

of preferences, including the linear preferences we use here.

5See also, Barberà and Jackson (1995).
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Our results show that when strategy-proofness is weakened by any amount

as described above, a larger class of rules becomes admissible. The class of

newly admissible rules depends on the way in which we define our condition.

In Section 4, we consider all measures of gains to be made only with

respect to a single good. Under this relatively stronger version of our condi-

tion, an efficient rule always allocates almost all of that good to a prespecified

agent. On the other hand, the rule’s allocation of the second good may have

any degree of variability. This flexibility of rules is in strong contrast to the

negative results cited above. Furthermore, we show in Section 4.3 that as

our almost-dominance condition approaches strategy-proofness (i.e., as ε con-

verges to zero), the ranges of admissible rules do not converge to the range

of the only strategy-proof, efficient rules. That is, even if strategy-proofness

is relaxed an arbitrarily small amount, there is a (discontinuous) increase in

the flexibility of admissible rules.

In Section 5, we allow measures of gains to be made with respect to any

good. Under this weaker version of almost-dominance, even more rules are

admissible, and another discontinuity occurs as discussed in Section 5.1.

In Section 6, we parameterize the preferences of the agents, and quantify

the effects of relaxing strategy-proofness to our almost-dominance condition.

Under strategy-proofness, one agent must always consume nothing. Under

the rules we discuss, one of the agents consumes relatively less than the

other agent, but occasionally consumes a bundle of goods that he considers

to be almost as good as the entire endowment. After choosing a particular

class of utility functions to represent the preferences, we are better able to

analyze this difference.

Our second model is that of choosing lotteries over public outcomes when

agents have von Neumann–Morgenstern preferences. In this setting, Gib-

bard (1977) shows that if a strategy-proof and (ex ante) efficient rule de-

pends only on the agents’ preferences over degenerate lotteries, then it must

always choose a prespecified agent’s favorite (non-random) outcome.6 Hyl-

land (1980) strengthens Gibbard’s result by dropping the latter informational

requirement.

6Barberà (1977) obtains a related result when choosing sets of public outcomes.
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In Section 8 we show, as in the previous model, that relaxing strategy-

proofness to an almost-dominance condition leads to a discontinuous increase

in the range of admissible rules. We show this by exploiting the geometric

similarity of this environment to the previous one. In particular, we are

able to reinterpret an important rule characterized in the exchange economy

model to the lotteries model. The rule is not equitable—it always chooses

one of the agent’s “almost-favorite” outcomes—but it shows that the previous

impossibility results are not entirely robust.

To summarize, the paper is organized as follows. In Section 2 we for-

malize the exchange economy model, while we provide our main definition

in Section 3. In Sections 4 and 5, we provide our results for exchange

economies. Using these results, we quantify the consequences of relaxing

strategy-proofness in this model in Section 6. In Section 7, we provide a brief

discussion on extending the analysis to more general models of exchange.

In Section 8, the previous analysis is extended to the voting model with

lotteries. Section 9 concludes.

2 Exchange Economy Model

The set of two agents is N = {1, 2}. There is a positive endowment of

two infinitely divisible goods Ω = (Ω1, Ω2) ∈ R
2
++. Each agent i ∈ N is to

consume a bundle xi ∈ R
2
+. An allocation is a pair of bundles x = (x1, x2) =

((x1
1, x

2
1), (x

1
2, x

2
2)) ∈ R

4
+ such that x1 + x2 = Ω; the set of allocations is

denoted A. Subscripts refer to agents, superscripts refer to goods, and the

vector inequalities are >, ≥, and �.

Each agent has a strictly monotonic, linear preference relation, Ri, over

his consumption space R
2
+. Precisely, such preference relations are the ones

representable by a utility function of the form u(xi) = λx1
i + (1 − λ)x2

i ,

λ ∈ (0, 1). Denote the set of such preference relations as R. The strict

(antisymmetric) and indifference (symmetric) preference relations associated

with Ri are denoted Pi and Ii.

An allocation rule is a function, ϕ:R2 → A, mapping the set of preference

profiles into the set of allocations. To simplify notation, when ϕ(R) = x, we

denote ϕi(R) = xi for any agent i ∈ N . Furthermore, we write −i to refer to
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the agent not equal to i. For example, if i = 1, then x−i = x2, and (R′
i, R−i)

is the same as (R′
1, R2).

We are interested in finding allocation rules that satisfy desirable prop-

erties not only in terms of incentives, but also in terms of efficiency. An

allocation x ∈ A is efficient with respect to a preference profile R ∈ R2 if

there exists no y ∈ A such that for some i ∈ N , yi Pi xi and y−i R−i x−i. We

also call an allocation rule efficient if it assigns to every preference relation

an allocation that is efficient with respect to that preference relation.

For any profile R ∈ R2, denote the set of efficient allocations for R as

E(R). On our domain of linear preferences, if both agents have the same

preference relation (R1 = R2), then the set of efficient allocations is the

entire set: E(R) = A. If R is such that agent 1 values good 1 relatively more

than agent 2 does, then the set of efficient allocations is E(R) = E� ≡ {x ∈
A : x2

1 = 0 or x1
2 = 0}. In the opposite, remaining case, E(R) = E� ≡ {x ∈

A : x1
1 = 0 or x2

2 = 0}.

3 A Definition of Nonmanipulability

Our goal is to find allocation rules that never afford agents the opportunity

to gain much. The difficulty in formalizing this notion is to define the idea

of much for all possible preference relations. Our approach will be to restrict

attention to measures on the consumption space.7 There are many ways to

construct such measures of gains. In this section, we give one.8

A simple way to measure manipulability is to measure gains relative to

either of the two goods; such a definition can be generalized to the case of

more than two goods in an obvious way. To be precise, consider a situation

in which an allocation rule ϕ prescribes, for R ∈ R2, an allocation x = ϕ(R).

If we postulate that agent i would not falsely report his preferences for small

gains, then there exists some number ε1 ≥ 0 such that if for some R′
i ∈ R,

we have ϕi(R
′
i, R−i) � ϕi(R)+(ε1, 0), then agent i would not manipulate the

7Alternatively, one could measure gains from manipulation in terms of some utility
measure. However, we wish to avoid the implicit assumptions imposed by such modelling.

8There are definitions of manipulability similar to ours that yield results similar to the
ones in this paper. We omit the exhaustive task of listing such definitions; it seems that
there is no added insight from considering such similar definitions.
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rule with that particular misrepresentation R′
i. That is, if agent i can gain

only ε1 (or fewer) units of good 1, then the gain is too small to be considered.

Similarly, for some ε2 ≥ 0, we say that an agent does not manipulate ϕ if

he simply gains ε2 (or fewer) units of good 2.9

Finally, consider a situation in which a false report of preferences, R′
i,

gives agent i the bundle xi = ϕ(R′
i, Ri), such that ϕi(R) + (ε1, 0) Ri xi.

Since the agent would not manipulate the rule in order to obtain the bundle

ϕi(R) + (ε1, 0), we conclude that he would not manipulate the rule in order

to obtain the (worse) bundle xi. A similar reasoning is to be applied with

respect to good 2 and ε2.

Our formal definition of this reasoning is as follows.

(ε1, ε2)-strategy-proofness: For any ε ∈ R
2
+, a rule is (ε1, ε2)-strategy-proof

if for all R ∈ R2, all i ∈ {1, 2}, and all R′
i ∈ R, we have either

(i) ϕi(R) + (ε1, 0) Ri ϕi(R
′
i, R−i), or

(ii) ϕi(R) + (0, ε2) Ri ϕi(R
′
i, R−i).

That is, by misreporting his preferences, an agent cannot procure a gain

that he considers, simultaneously, to be (i) better than simply acquiring

an additional ε1 units of good 1 and (ii) better than simply acquiring an

additional ε2 units of good 2. See Figure 1; in Figure 1a, part [i] of the

definition is redundant, while in the case of Figure 1b, part [ii] is. In the

language of Barberà and Peleg (1990), the agent’s option set should lie within

the shaded area.

It should be clear that (ε1, ε2)-strategy-proofnessis a stronger condition

than (ε′1, ε
′
2)-strategy-proofness whenever ε ≤ ε′, and that (0, 0)-strategy-

proofness is equivalent to the standard definition of strategy-proofness.

We close this section by observing a previous result for the case ε = (0, 0).

With a result related to that of Zhou (1991), Schummer (1997) shows that

on this class of problems, the only efficient rules that are (0, 0)-strategy-proof

are those that assign the entire endowment to a given agent.

9A more general definition makes the value of εj dependent on the identity of the agent
in question, or, even more generally, his preference relation Ri. For simplicity, we do not
go to this level of generality. See footnote 8.
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ϕi(R) Ri

ε1

ε2

good 1

go
od

2

ϕi(R)

Ri

ε1

ε2

(a) (b)

Figure 1: If ϕ is (ε1, ε2)-strategy-proof, then any false report by agent i
results in a bundle somewhere within the shaded area.

good 1

go
od

2

ϕi(R)

Ri

ϕi(R) + (ε1, 0)

Ri

ε1

Figure 2: (ε1, ε2)-strategy-proofness when ε2 = 0.

Theorem 1 (Schummer (1997)) Let ϕ be an efficient rule that is

(0, 0)-strategy-proof. There exists an agent i ∈ N that always receives the

entire endowment: for all R ∈ R2, ϕi(R) = (Ω1, Ω2) (and ϕ−i(R) = (0, 0)).

4 Results for (ε1,0)-strategy-proofness

We first examine the implications of (ε1, ε2)-strategy-proofness when ε2 = 0.

See Figure 2. In this case, we are able to obtain tight bounds on the flexibility

of efficient rules that satisfy this condition (Section 4.1). Furthermore, even

though this case yields a stronger condition than when ε2 > 0, there is a

discontinuous increase in the range of such rules at ε1 = 0, demonstrating

that a previous impossibility result is not robust to our weakening of strategy-

proofness.
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4.1 A Bound on the Range

Theorem 1 shows that the only efficient rules that are (0, 0)-strategy-proof

are those that always allocate all of the endowment to a prespecified agent.

By relaxing the condition to (ε1, 0)-strategy-proofness, however, the class of

admissible allocation rules is enlarged, as we show in Section 4.2.

We first provide, in this section, a result showing that in this case, such a

rule always allocates nearly all of the endowment of good 1 to a prespecified

agent. This can be considered a result corresponding to Theorem 1. However,

as we show in the example of Section 4.2, the allocation of good 2 may vary

across the entire range of feasibility. Hence Theorem 1 does not generalize

in a continuous way.

Theorem 2 Let ϕ be an efficient rule that is (ε1, 0)-strategy-proof, where

ε1 < Ω1/5. There exists an agent i ∈ N that always receives almost all of the

good 1: for all R ∈ R2, ϕ1
i (R) ≥ Ω1 − 2ε1.

To prove the result, we first provide the following lemma, which essentially

states that for all preference profiles with the same set of efficient allocations,

the chosen allocations of good 1 are not much different.

Lemma 1 Let ϕ be efficient and (ε1, 0)-strategy-proof. For all R,R′ ∈
R2, if either E(R) = E(R′) = E� or E(R) = E(R′) = E�, then |ϕ1

1(R) −
ϕ1

1(R
′)| ≤ 2ε1.

Proof: Let R,R′ ∈ R2 be such that E(R) = E(R′) = E�. It is either the

case that E(R1, R
′
2) = E�, or E(R′

1, R2) = E�. Without loss of generality,

suppose E(R1, R
′
2) = E� (which is true, for example, if the indifference curves

of R1 are “flatter” than those of R′
1).

By efficiency, ϕ(R1, R
′
2) ∈ E�. Since ϕ is (ε1, 0)-strategy-proof and

ϕ(R′
1, R

′
2) ∈ E�, we have ϕ1

1(R1, R
′
2) − ϕ1

1(R
′
1, R

′
2) ≤ ε1. Similarly,

ϕ1
1(R

′
1, R

′
2) − ϕ1

1(R1, R
′
2) ≤ ε1, so

|ϕ1
1(R1, R

′
2) − ϕ1

1(R
′
1, R

′
2)| ≤ ε1
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By the same type of argument, we have

|ϕ1
2(R1, R2) − ϕ1

2(R1, R
′
2)| ≤ ε1

implying

|ϕ1
1(R1, R2) − ϕ1

1(R1, R
′
2)| ≤ ε1

Therefore, by the triangle inequality,

|ϕ1
1(R1, R2) − ϕ1

1(R
′
1, R

′
2)| ≤ 2ε1

proving the result. �

Now we can prove the theorem.

Proof of Theorem 2: Let ϕ be efficient and (ε1, 0)-strategy-proof. There

are three possible cases.

Case 1: For all R ∈ R2, if E(R) = E�, then ϕ2
1(R) = Ω2.

Step 1a: (E�) In this case, for all δ > 0, there exists R ∈ R2 such that

E(R) = E� and ϕ1(R) � (Ω1, Ω2 − δ). To see this, let R1 satisfy (0, Ω2) P1

(Ω1 + ε1, Ω
2 − δ), let R2 be such that E(R) = E�, and let R′

1 be such that

E(R′
1, R2) = E�. Since ϕ is (ε1, 0)-strategy-proof and E(R′

1, R2) = E�,

ϕ1(R) + (ε1, 0) R1 ϕ1(R
′
1, R2) R1 (0, Ω2)

by the hypothesis of Case 1. Therefore ϕ1(R) P1 (Ω1, Ω2 − δ). Since ϕ1(R) ∈
E�, we have ϕ1(R) � (Ω1, Ω2 − δ).

Therefore by Lemma 1, for all R ∈ R2, if E(R) = E�, then ϕ1
1(R) ≥

Ω1 − 2ε1.

Step 1b: (E� and A) Let R ∈ R2 be such that E(R) ∈ {E�, A}, and suppose

in contradiction to the theorem that Ω1−ϕ1
1(R)−2ε1 = δ > 0. Let y, y′, y′′ ∈

E� satisfy (see Figure 3):

y1 I1 ϕ1(R) + (ε1 + 1
3
δ/3, 0)

y′
1 I1 ϕ1(R) + (ε1 + 2

3
δ, 0)
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y
y′

y′′

ϕ(R) Ω
ε1 δ/3

R1

R′
1

R′
2

R′′
2

Figure 3: Proof of Theorem 2. The figure represents the upper-right
corner of the Edgeworth Box.

y′′
1 I1 ϕ1(R) + (2ε1 + 2

3
δ, 0) = (Ω1 − 1

3
δ, 0)

Let R′
2 be such that y2 I ′

2 ϕ2(R) − (ε1, 0). Since ϕ(R1, R
′
2) ∈ E�, the

truth-telling condition implies ϕ2(R1, R
′
2) � y2. Let R′′

2 be sufficiently flat so

that both y′′
2 P ′′

2 (Ω1+ε1, 0) and y2 P ′′
2 y′

2+(ε1, 0). The truth-telling condition

implies ϕ2(R1, R
′′
2) + (ε1, 0) R′′

2 ϕ2(R1, R
′
2), so ϕ2(R1, R

′′
2) ≥ y′

2.

Let R′
1 satisfy (0, Ω2) I ′

1 y′′
1 + (ε1, 0). Then E(R′

1, R
′′
2) = E�. Note

that by construction, y′
1 + (ε1, 0) I1 y′′

1 . The truth-telling condition implies

ϕ1(R1, R
′′
2) + (ε1, 0) R1 ϕ1(R

′
1, R

′′
2). Therefore ϕ1(R

′
1, R

′′
2) ≤ y′′

1 .

By the hypothesis of Case 1, for all R′′
1 such that E(R′′) = E�, we have

ϕ1(R
′′) � (0, Ω2). But then for any such R′′

1, we have ϕ1(R
′′) P ′

1 ϕ1(R
′
1, R

′′
2)+

(ε1, 0), which contradicts the truth-telling condition.

Therefore, if Case 1 holds, we have derived the conclusion of the theorem.

Case 2: For all R ∈ R2, if E(R) = E�, then ϕ2
2(R) = Ω2.

This case is symmetric to Case 1. In this case, for all R ∈ R2, ϕ1
2(R) ≥

Ω1 − 2ε1.

Case 3: Neither Case 1 nor Case 2 holds, i.e., there exist R,R′ ∈ R2 such

that E(R) = E�, E(R′) = E�, ϕ2
1(R) < Ω2, and ϕ2

2(R
′) < Ω2.

In this case, by Lemma 1, for all R,R′ ∈ R2, E(R) = R� implies ϕ1
1(R) ≤

2ε1, and E(R′) = R� implies ϕ1
2(R

′) ≤ 2ε1. Since ε1 < Ω1/5, this implies that
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Figure 4: An efficient rule that is (ε1, 0)-strategy-proof.

for all such R,R′,

ϕ1
1(R

′) − ϕ1
1(R) > ε1 (1)

Let R1 be such that (2ε1, Ω
2) P1 (Ω1 − 3ε1, 0). Let R2, R

′
1 be such that

E(R) = E� and E(R′
1, R2) = E�. Then eqn. (1) implies ϕ1(R

′
1, R2) P1

ϕ1(R) + (ε1, 0), which contradicts the truth-telling condition. Therefore this

case cannot hold. �

4.2 An Important Rule

Theorem 2 states that under an efficient rule that is (ε1, 0)-strategy-proof, one

agent always must receive at least Ω1 − 2ε1 of good 1. The rule described

below in Example 1 shows that (i) this bound is tight, and (ii) there is no

such bound corresponding to good 2. In the example, agent 1 receives (i)

from as little as Ω1 − 2ε1 of the good 1 to as much as all of it, and (ii) from

as little as none of good 2 to as much as all of it.

Furthermore, and most importantly, we provide Theorem 3, showing that

this rule is, unambiguously, the “least dictatorial” (or most equitable) of all

efficient rules that are (ε1, 0)-strategy-proof. This result is not provided as a

justification for the use of the given rule. Instead, it is used later to show

a discontinuity when we relax the condition to (ε1, ε2)-strategy-proofness for

ε2 > 0.

Example 1 Fix the allocations x = ((Ω1 − ε1, Ω
2), (ε1, 0)), which gives
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agent 1 the entire endowment except for ε1 units of good 1, and x′ = ((Ω1 −
2ε1, Ω

2), (2ε1, 0)). For all R1 ∈ R, let y(R1) ∈ E� be the unique allocation

in E� that agent 1 considers indifferently to x (as in Figure 4), i.e., that

x1 I1 y1(R1). Then for all R ∈ R2, let

ϕ̃(R) =

{
x′ if x′ is efficient for R

y(R1) otherwise

We leave it to the reader to check that ϕ̃ is efficient and (ε1, 0)-strategy-

proof.10

This rule is clearly not symmetric. In fact, for most profiles of preferences,

both agents would prefer agent 1’s consumption bundle to agent 2’s. A more

formal welfare analysis appears in Section 6. The statement of Theorem 2

does not, by itself, rule out more equitable rules. As the next theorem shows,

however, ϕ̃ is the most equitable efficient rule that is (ε1, 0)-strategy-proof.

Under any other such rule, say ϕ, one of the two agents would, under any

profile of preferences, prefer the bundle that ϕ̃ prescribes to agent 2 to the

one that ϕ prescribes to that agent.

Theorem 3 No efficient, (ε1, 0)-strategy-proof rule is more equitable

than ϕ̃.11 Specifically, let ϕ be an efficient rule that is (ε1, 0)-strategy-proof,

where ε1 < Ω1/5. Then one of the agents must (weakly) prefer playing the

role of agent 2 under ϕ̃ to playing his own role under ϕ, i.e., one of the

following is true.

(1) for all R ∈ R2, ϕ̃2(R) R2 ϕ2(R) (agent 2 prefers ϕ̃ to ϕ), or,

(2) for all R ∈ R2, ϕ̃2(R
′) R1 ϕ1(R), where R′

1 = R2 and R′
2 = R1 (agent 1

prefers playing the role of agent 2 under ϕ̃ to what he gets under ϕ).

Proof: Let ϕ be an efficient rule that is (ε1, 0)-strategy-proof. Suppose (by

Theorem 2) that agent 1 is the agent who always receives at least Ω1 − 2ε1

10Clearly, a mirror image to this rule exists in which the labels of the two agents are
switched, and that rule also satisfies the two properties.

11The same result obviously applies to the rule obtained from ϕ̃ by reversing the (asym-
metric) roles of the two agents.
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of the numeraire good under ϕ. In this case, we show statement (1) of the

Theorem: for all R ∈ R2, ϕ̃2(R) R2 ϕ2(R). (If we were to suppose instead

that agent 2 always does, then we would prove statement (2).)

If E(R) = E�, the conclusion follows from Theorem 2, since ϕ2(R) �
(2ε1, 0) = ϕ̃2(R).

If either E(R) = E� or E(R) = A, suppose in contradiction to the theo-

rem that ϕ2(R) P2 ϕ̃2(R). Then there exists δ > 0 such that

ϕ1(R) I1 (Ω1 − ε1 − 2

3
δ, Ω2)

(otherwise the proof is trivial). Letting y = ϕ(R) and R′
2 = R2, and defining

y′, y′′, R′
1, and R′′

1 as in Figure 3 (proof of Theorem 2), leads to a contradiction

as it did in Step 1b of that proof. �

In light of this result, a full characterization of efficient, (ε1, 0)-strategy-

proof rules does not appear to be interesting. For example, the rule ϕ̃ can

be perturbed in many uninteresting ways (e.g., by giving slightly more of the

goods to agent 1) while remaining (ε1, 0)-strategy-proof.

4.3 A Discontinuity at ε1 = 0

To emphasize the idea that a small relaxation in strategy-proofness leads to

a large increase in the flexibility of rules, consider the implications of (ε1, 0)-

strategy-proofness as ε1 approaches zero. The rule ϕ̃ was defined in Example 1

with respect to a given value of ε1. The range of this rule for a given ε1 is

{x ∈ E� : x1
1 > Ω1 − ε1, x2

1 < Ω2} ∪ {((Ω1 − 2ε1, Ω
2), (2ε, 0))}

As ε1 converges to zero, this set converges to the right-hand border of the

Edgeworth Box, i.e., to {x ∈ A : x1
1 = Ω1}.

Therefore, as (ε1, 0)-strategy-proofness converges to strategy-proofness,

the range of admissible rules does not converge to the class of strategy-proof

and efficient rules (i.e., dictatorial rules) characterized in Schummer (1997).12

12Formally, this sequence of examples shows that the ranges of the admissible rules is
a correspondence that is not upper-semi-continuous at ε1 = 0, fixing ε2 = 0. It is clearly
lower-semi-continuous: dictatorial rules are (ε1, 0)-strategy-proof for any ε1.
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This discontinuity is important to observe because it reinforces the notion

that a small relaxation of strategy-proofness leads to a relatively large in-

crease in the range of admissible rules. On domains for which impossibility

results regarding strategy-proofness have been established, relaxing the con-

dition even in a small way may significantly enlarge the class of admissible

allocation rules.

5 Rules for (ε1, ε2)-strategy-proofness

We now turn our attention to the weaker condition of (ε1, ε2)-strategy-

proofness when ε2 > 0. The rule ϕ̃ can be generalized in various ways,

not all of which are obvious. For example, an obvious generalization could

be obtained in part by redefining x to be (Ω1 − ε1, Ω2 − ε2), and generalizing

the rule in the obvious way.

A generalization that is less asymmetric (and perhaps less obvious) is

defined in the following example.

Example 2 For all R1 ∈ R, let y(R1) ∈ E� and z(R1) ∈ E� be the

unique allocations (as in Figure 5) such that y1(R1) I1 (Ω1 − ε1, Ω2 − 2ε2)

and z1(R1) I1 (Ω1 − 2ε1, Ω2 − ε2). Then for all R ∈ R2, let

ϕ̂(R) =

{
z(R1) if z(R1) is efficient for R

y(R1) otherwise

We leave it to the reader to check that ϕ̂ is efficient and (ε1, ε2)-strategy-proof.

5.1 Discontinuity at ε2 = 0 for any ε1

We showed in section 4.3 that relaxing strategy-proofness to (ε1, 0)-strategy-

proofness results in a discontinuous increase in the range of admissible, effi-

cient rules. That discontinuity holds as ε1 approaches zero, holding ε2 = 0

fixed.

The rule ϕ̂ shows that further relaxing to (ε1, ε2)-strategy-proofness with

ε2 > 0 results in a more striking discontinuity: for any ε1 ≥ 0, the range of

admissible rules (as a function of ε2) is discontinuous at ε2 = 0.
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Figure 5: Defining an efficient rule that is (ε1, ε2)-strategy-proof.

To see this, observe that the range of ϕ̂ (defined with respect to a given

ε > (0, 0)) is

{x ∈ E� : x1
1 > Ω1−ε1, x2

1 < Ω2−2ε2}∪{x ∈ E� : x2
1 > Ω2−ε2, x1

1 < Ω1−2ε1}

As ε > (0, 0) converges to (0, 0), this range converges to the upper and right-

hand borders of the Edgeworth Box, i.e., to

{x ∈ A : x1
1 = Ω1 or x2

1 = Ω2}

However, by Theorem 2, the range of any efficient, (ε1, 0)-strategy-proof rule

is contained in the set {x ∈ A : x1
1 ≥ Ω1 − 2ε1}, which converges to {x ∈ A :

x1
1 = Ω1} as ε1 converges to zero.

To summarize, see Figure 6, showing the ranges (a) of ϕ̃ and (b) of ϕ̂.

Recall that an efficient, strategy-proof rule has a range consisting of one

point: either the point labelled Ω or the point labelled O1. Sending ε1 → 0,

Figure 6a shows a discontinuity between such a dictatorial range and ϕ̃,

and hence shows discontinuity between the consequences of strategy-proofness

and of (ε1, 0)-strategy-proofness. Furthermore, Theorem 2 shows that no

other sequence of (ε1, 0)-strategy-proof rules (for ε1 → 0) can converge to

a set larger than the limit of (a) as ε1 converges to 0. Therefore, sending

(ε1, ε2) → (0, 0), Figure 6b shows a discontinuity not only between (a) and

(b), but between (ε1, 0)-strategy-proofness and (ε1, ε2)-strategy-proofness for
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Figure 6: The ranges of (a) ϕ̃ and (b) ϕ̂.

ε2 > 0.

6 Measures of Welfare

First consider the stronger condition of (ε1, 0)-strategy-proofness. Theorem 3

provides a lower bound on the welfare of the “unfavored” agent under an

efficient, (ε1, 0)-strategy-proof rule. In order to have a better understanding

of how well-off agent 2 is under the rule ϕ̃, it is useful to consider a class

of normalized utility functions. We parameterize each preference relation

Ri ∈ R with λi ∈ ]0, 1[ such that the preference relation is represented by

the utility function

u(xi) = λix
1
i + (1 − λi)x

2
i

Below we consider the case in which Ω = (1, 1). In this case, an agent’s

utility is always equal to one when he receives the entire endowment, and

is always equal to zero when he receives nothing. In particular, a utility

level can be interpreted as a proportion of the entire endowment, that is,

u(δ, δ) = δ.

Under the rule ϕ̃ (defined with respect to a given ε1), agent 2’s utility is a

function of λ1, λ2, ε1, and Ω. It is a fairly straightforward geometric exercise

to derive agent 2’s utility under ϕ̃:13

u2(ϕ̃; λ, ε, Ω) =




2λ2ε1 if λ2 ≥ λ1;

(1 − λ2)ε1λ1/(1 − λ1) if λ2 < λ1 ≤ Ω2/(Ω2 + ε1);

λ2ε1 + Ω2(λ1 − λ2)/λ1 otherwise.

13A proof is available upon request.
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Figure 7: Utility to agent 2 from the rule ϕ̃, when ε1 = 0.1. Higher λi

indicates higher relative preference toward good 1.

Figure 7 graphs u2(ϕ̃; ·) when ε1 = 0.1 and Ω = (1, 1). We see that

agent 2 receives a non-negligible amount of utility at most profiles. The

average utility that agent 2 receives over this entire range of values for (λ1, λ2)

is approximately 0.18 (under a uniform distribution).14 This is significantly

higher than the average utility agent 2 would receive by consuming a constant

ε1 = 0.1 units of good 1, which would be 0.05 units of utility.

By the previously mentioned result of Schummer (1997), if strategy-

proofness were required, one of the agents would receive a constant utility of

zero. These numbers encourage the idea that a “small” relaxation of strategy-

proofness leads in some sense to a “larger” relaxation of dictatorship.

When the condition is weakened to (ε1, ε2)-strategy-proofness with ε2 > 0,

the rule ϕ̂ is admissible. Under that rule (defined with respect to a given ε),

14Upon request, an Excel file is available to compute u2(ϕ̃; ·).
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Figure 8: Utility to agent 2 from the rule ϕ̂, when ε1 = ε2 = 0.1.

agent 2’s utility is

u2(ϕ̂; λ, ε, Ω) =




λ2Ω
1 + (1 − λ2)(ε2 + (2ε1 − Ω1)λ1/(1 − λ1)

if λ2 ≥ λ1 and 2ε1 + ε2(1 − λ1)/λ1 > Ω1;

λ2(2ε1 + ε2(1 − λ1)/λ1)

if λ2 ≥ λ1 and 2ε1 + ε2(1 − λ1)/λ1 < Ω1;

(1 − λ2)Ω
2 + λ2(ε1 + (2ε2 − Ω2)(1 − λ1)/λ1)

if λ2 < λ1 and 2ε2 + ε1λ1/(1 − λ1) > Ω2;

(1 − λ2)(2ε2 + ε1λ1/(1 − λ1))

if λ2 < λ1 and 2ε2 + ε1λ1/(1 − λ1) < Ω2.

Figure 8 graphs agent 2’s utility under this rule when ε1 = ε2 = .1 and

Ω = (1, 1). The average value is approximately .34.15

15Upon request, an Excel file is available to compute u2(ϕ̂; ·).
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7 Other Domains

So far we have restricted attention to exchange economies with only two

goods. There is an obvious generalization of our definition of (ε1, ε2)-strategy-

proofness to settings with more than two goods. Furthermore, the definition

of (ε1, ε2)-strategy-proofness applies, as given, to more general classes of pref-

erences, such as the standard domain of quasi-linear, monotonic preferences.

In this section, we briefly mention such generalizations of the above analysis.

For economies with k goods (and linear preferences), the natural definition

of our condition is as follows.

ε-strategy-proofness: For any ε ∈ R
k
+, a rule is ε-strategy-proof if for all

R ∈ R2, all i ∈ {1, 2}, and all R′
i ∈ R, we have

(j) ϕi(R) + (0, . . . , 0, εj, 0 . . . , 0) Ri ϕi(R
′
i, R−i)

for some j, 1 ≤ j ≤ k.

The rules ϕ̃ and ϕ̂ can be generalized in a natural way. Formally, gener-

alize ϕ̃ by letting x, x′ be the allocations such that x1 = Ω− (ε1, 0, . . . , 0) and

x′
1 = Ω − (2ε1, 0, . . . , 0); let y(R1, R2) be the set of efficient allocations that

agent 1 considers indifferently to x. Then, ϕ̃ (defined as before) is efficient

and (ε1, 0, . . . , 0)-strategy-proof.

Furthermore, it seems clear that for this case, results analogous to Theo-

rems 2 and 3 can be obtained, showing this generalization of ϕ̃ to be the “least

dictatorial” such rule on this domain. With an investment in additional no-

tation, such results should be obtainable in the same way Schummer (1997)

extends the results for 2-agent/2-good economies to multiple-good economies.

For brevity, we omit this notationally tedious task.

In a similar way, ϕ̃ can also be generalized to the domain of economies in

which two agents may have any (possibly non-linear) quasi-linear preference

relation.16 In this case, generalize the notation from Example 1 (e.g., for

the 2-good case) by letting y(R1, R2) be any efficient allocation that agent 1

considers indifferently to x, and letting x′(R1, R2) (now a function) be any

efficient allocation that agent 1 considers indifferently to Ω − (2ε1, 0).

16We omit a formalization of this standard domain of preferences.
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8 Lotteries

The ideas behind the construction of ϕ̃ and ϕ̂ can be extended to a voting

environment in which agents have cardinal preferences over outcomes, and

a rule chooses a lottery over outcomes. In this section, we examine such an

environment.

The problem of choosing lotteries over public outcomes has a flavor

slightly different than the previous problem, which involved private goods.

Here, there are situations in which agents agree on what is the best outcome,

in which case efficiency requires the choice of that outcome.

8.1 The Lotteries Model

For simplicity, we examine the case in which there are exactly three pubic

outcomes, {X,Y, Z}. The analysis extends in an obvious way to the case

of more outcomes. A lottery is a triple � = (�x, �y, �z) ∈ R
3
+ such that

�x + �y + �z = 1. Let � denote the set of lotteries. Each of the two agents

has a von Neumann-Morgenstern preference relation, �i, over lotteries, i.e.,

a preference relation representable by a utility function of the form u(�) =

λx�x + λy�y + λz�z, where λx, λy, λz ∈ R. Let RL denote the set of such

preference relations.17

A rule ϕ:R2
L → � assigns a lottery ϕ(�) to every pair of preference

relations �= (�1,�2). A rule is (ex-ante) efficient if it always chooses Pareto

optimal lotteries, i.e., there never exists a lottery that both agents prefer to

the one chosen by the rule, with one agent strictly preferring it.

In this environment, we weaken strategy-proofness by requiring only that

any lottery obtained through a manipulation cannot be preferred (by the

manipulating agent) to every lottery within an ε-ball of the original one;

see Figure 9. Formally, for ε ∈ R+, a rule ϕ is ε-strategy-proof if for all

i ∈ {1, 2} and all �1,�2,�′
i∈ RL, there exists (�′x, �

′
y, �

′
z) ∈ � such that both

||�′ − ϕ(�)|| ≤ ε, and �′ �i ϕ(�′
i,�−i).

17In what follows, we ignore the “total indifference” relation, where λx = λy = λz.
Including it changes no results, but adds to the notation.
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Figure 9: Definition of ε-strategy-proofness. Lotteries attainable by agent i
must lie in the shaded area.

8.2 A Rule

The ideas behind the rules introduced for exchange economies can be applied

to the lotteries model. Again, a discontinuity in the range of admissible rules

occurs as strategy-proofness is weakened to ε-strategy-proofness for ε > 0.

Hylland (1980)18 shows that the only efficient rule that is 0-strategy-proof

is dictatorial: a rule simply chooses a prespecified agent’s favorite outcome

with probability one. When strategy-proofness is weakened, however, we have

(among others) the following class of rules.

Example 3 Let 0 < γ < 1/3. We define here the rule ϕγ for the case in

which agent 1 strictly prefers X over the other two alternatives. The rule is

defined symmetrically for the other cases simply by relabelling the outcomes.

Fix the lottery �X = (1− 2γ, γ, γ). We now define y(�1) and z(�1) as in

Fig. 10. For any �1∈ RL such that X �1 Y and X �1 Z, let y′(�1) ∈ � be

the unique lottery such that (i) y′(�1) ∼1 �X , (ii) min{y′
x(�1), y

′
z(�1)} = 0,

and (iii) y′
z(�1) ≤ γ. Let y(�1) ∈ � be such that (i) if y′

x(�1) ≥ γ, then

y(�1) = y′(�1), and (ii) otherwise, y(�1) = (γ, 1 − γ, 0). Define z′(�1) and

z(�1) symmetrically.

18See also, Gibbard (1977) and Schummer (1999).
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Figure 10: Definition of an ε-strategy-proof rule for the case X �1 Y �1

Z. Each dark line has length γ
√
2, where the length of each side of the

simplex is
√
2. Figure (b) illustrates an instance where y �= y′.

For the case in which X �1 Y and X �1 Z, the rule ϕγ is defined as

ϕγ(�) =




y(�1) if y(�1) is efficient for �,

z(�1) if z(�1) is efficient and y(�1) is not,

X otherwise

For the cases in which Y �1 X or Z �1 X, the definition of ϕγ is obtained

as above by relabelling the outcomes.

The rule is clearly efficient by definition. Additionally, when γ is small

enough, the rule is almost strategy-proof in the sense defined above.

Proposition 1 When γ ≤ ε, ϕγ is ε-strategy-proof.

Proof: (Sketch) Agent 2 can never manipulate the rule at all; it is 0-

strategy-proof from his perspective.

Consider the case in which Agent 1 considers X the best outcome. The

rule either chooses X (when both agents agree it is best), or chooses a lottery

he considers indifferently to �X . When γ ≤ ε, the only outcome in the range

of ϕγ that could be more than “ε-better” than �X is X itself. By the definition

of the rule, however, that outcome is only attainable when agent 2 considers

X to be best. �
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8.3 Welfare analysis

In this section, we examine the welfare effect of relaxing strategy-proofness

to ε-strategy-proofness. As mentioned previously, the only (efficient) rules

that are strategy-proof are dictatorial: they always choose a prespecified

individual’s favorite outcome (with probability one). Below, we compare the

utility agent 2 would receive under the rule in which agent 1 is a “dictator”

to the utility he would receive under ϕγ.

Since ϕγ is defined symmetrically with respect to the outcomes {X,Y, Z},
we can restrict attention to the case in which agent 1 has preferences such

that X �1 Y �1 Z, while varying agent 2’s preferences over the entire

domain. The other five cases for agent 1’s preferences result in analyses that

are symmetric to the analysis below.

We use the following utility representation of preferences. For any prefer-

ence relation, the “best” outcome is assigned a utility of 1, the “worst” is as-

signed utility of 0, and the middle outcome is assigned a utility of λi ∈ [0, 1].

Since we fix agent 1’s ordinal ranking of the three outcomes (and ignore

the case of indifference), his preferences are determined by the parameter

λ1 ∈ ]0, 1[, so that Y ∼1 (λ1, 0, 1 − λ1).

Agent 2’s preferences are described by both a ranking of the outcomes

{X,Y, Z} and the parameter λ2 ∈ [0, 1]. For example, if Y �2 Z �2 X,

then we are using the utility representation u(x, y, z) = 0x+1y +λ2z for the

appropriate λ2.

For the case γ = .10, Figure 11 shows Agent 2’s utility as a function

of (i) his preferences (an ordering and a value for λ2) and (ii) λ1 (fixing

X �1 Y �1 Z).19 Roughly speaking, the axis for agent 2 provides the angle

of his indifference lines in the simplex, over 360 degrees of rotation.

For example, when both agents agree that X is the best outcome (i.e.,

in the figure, the first and sixth orderings for agent 2), both agents receive

maximal utility (equal to one). Note, however, that this would be true un-

der any rule that is efficient. Therefore, it does not make sense to simply

19To completely graph Agent 2’s utility over the entire domain of preferences, we would
construct five more versions of Figure 11, for each other ordering for agent 1. Each such
graph would appear as a “permutation” of the six regions in Figure 11.
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Figure 11: Agent 2’s utility under ϕγ when γ = .10.

examine the utility to Agent 2 under ϕγ . It is more insightful to examine

the utility gains to Agent 2 from using ϕγ instead of using the rule that

always chooses Agent 1’s favorite outcome. This tells us what is gained from

relaxing strategy-proofness to ε-strategy-proofness.

Figure 12 shows the additional utility Agent 2 receives when the rule

ϕγ is used instead of the rule that always chooses Agent 1’s most-preferred

outcome, again for the case γ = .10.

What is interesting to observe is that when agent 1 is “almost” indifferent

between X and Y , we see a significant increase in agent 2’s utility by using

our ε-strategy-proof rule rather than the dictatorial rule. This parallels the

analysis of exchange economies. There, agent 2’s gains are greatest in situ-

ations where agent 1 places relatively little value on one good, and agent 2

places relatively little value on the other good.

Numerically, we have the following approximations of average utility (un-

der uniform independent distributions on the λi’s, for the cases in which

X �1 Y �1 Z), given agent 2’s ordering of the three alternatives. The first
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Figure 12: The utility gains to agent 2 from using ϕγ (γ = .10) instead
of the agent-1-dictatorial rule.

column gives the ordering; the second gives agent 2’s average utility under

ϕγ, given that ordering; the third gives his average utility, given that or-

dering, under the rule in which agent 1 is a dictator. Each of the six cases

corresponds to one-sixth of Figure 11.

ordering of �2 2’s utility (ϕγ) 2’s utility (dictatorial rule)

X �2 Y �2 Z 1 1

Y �2 X �2 Z .71 0.5

Y �2 Z �2 X .41 0

Z �2 Y �2 X .25 0

Z �2 X �2 Y .58 0.5

X �2 Z �2 Y 1 1

The largest average utility gains over the (agent 1) dictatorial rule occur

when Y �2 Z �2 X; see Figure 12.
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9 Conclusion

We have introduced a relaxation of the notion of dominant strategy imple-

mentation by requiring only that truth-telling be an almost-dominant strat-

egy. This concept is first formalized in an exchange economy model by defin-

ing ε-strategy-proofness: we only eliminate misrepresentations that would

give an agent a gain better than receiving εj of any good j. A similar formal-

ization is made in a voting model with randomization, where comparisons

are made in lottery-space.

On the simple class of 2-agent exchange economies with two goods, in

which agents have linear preference relations, we have provided (Theorem 2)

a bound on the range of any efficient rule that is (ε1, 0)-strategy-proof : A

prespecified agent must always receive almost all of good 1; the second agent

always receives at most 2ε1 units of the good. However, we provide a rule

(Example 1) which varies the allocation of the second good between the two

agents to the degree that in some situations, one agent receives all of it, while

in some other situations, the other agent receives all of it.

The flexibility of this rule is in stark contrast to the conclusions derived

when truth-telling is required to be a fully dominant strategy, i.e., that the

only strategy-proof, efficient rule in this context always allocates all of the

goods to a prespecified agent (Schummer (1997)). Admittedly, the rule pro-

vided in Example 1 is not flexible in its allocation of the first good. However,

we show (in Theorem 3) that this rule is actually the most equitable of all

efficient rules that are (ε1, 0)-strategy-proof. Furthermore, the rule shows that

the class of admissible rules is discontinuous at ε1 = 0.

When strategy-proofness is weakened even further to (ε1, ε2)-strategy-

proofness (ε2 > 0), the class of admissible rules discontinuously increases

again. A rule exists which is flexible in its allocation of both goods.

A similar discontinuity occurs in a 2-agent voting model with lotteries.

Previous results showed that the only (ex-ante) efficient, strategy-proof rules

in this model are dictatorial. However, as we weaken the condition to (ε1, ε2)-

strategy-proofness, we again see a discontinuous increase in the range of ad-

missible rules.

The negative interpretation of the results is that (ε1, ε2)-strategy-proofness
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does restrict our choice of rules in these environments. This is not surprising,

given the previous results concerning strategy-proofness.

The positive interpretation of the results is the following: Even a small

relaxation of strategy-proofness leads to a relatively large increase in the flex-

ibility of rules. This is good news not only for domains with previously es-

tablished impossibility results regarding strategy-proofness, but also for other

domains in which additional requirements—such as efficiency—may restrict

our choice of reasonable allocation rules.

There is an additional point that gives these results even more positive

flavor. In models with additional agents, the rules satisfying the truth-telling

condition may be even more flexible. The 2ε1-bound of Theorem 1 crucially

depends on the fact that there are only two agents. Roughly speaking, two

unilateral changes in preferences change the welfare of agents by an amount

comparable to at most 2ε1 units of good 1 (as in the proof of Theorem 2).

With more agents, there is reason to believe that changes in preferences

by more agents will lead to even greater flexibility in rules satisfying our

condition.20 This provides hope that for other economic environments for

which impossibility results have been obtained regarding strategy-proofness,

there is good reason for a mechanism designer to consider our weaker truth-

telling condition as a second-best incentives constraint.
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Appendix for Referees–Not to be published

9.1 Derivation of utility of agent 2 under ϕL

First we derive the probability of X at each of the two lotteries y(�1) and
z(�1). Denote those probabilities yx and zx. Recall that we are only exam-
ining the case such that X �1 Y �1 Z.

When y(�1) = y′(�1), agent 1’s utility from y(�1) is equal to his utility
from �X . Therefore,

yx · 1 + (1 − yx) · λ1 = (1 − 2γ) · 1 + γλ1 + γ · 0

which solves as

yx =
1 − 2γ + (γ − 1)λ1

1 − λ1

If y() �= y′(), then by definition yx = γ.
Similarly, when z() = z′(), zx = 1 − 2γ + γλ1. In fact in the case we

examine here, z = z′ always.
Still restricting attention to the case X �1 Y �2 Z, the rule ϕL, as

a function of agent 2’s preferences and of λ1, is described by the following
table.

preference profile Efficient set outcome under ϕ
X �2 Y �2 Z {x} X
X �2 Z �2 Y {x} X
Y �2 X �2 Z [x, y] y(�1)
Y �2 Z �2 X [x, y] y(�1)
Z �2 X �2 Y [x, z] z(�1)

Z �2 Y �2 X and (λ1 + λ2 < 1) [x, z] z(�1)
Z �2 Y �2 X and (λ1 + λ2 > 1) [x, y] ∪ [x, z] y(�1)

Given the above derivation of y() and z(), it is now straightforward to
calculate agent 2’s utility as a function of his preferences, λ2, and λ1, for the
case X �1 Y �1 Z. The other cases are symmetric.
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