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Abstract

Consider rules that allocate resources based on the preferences of agents. Facing

such a rule, selfish agents may not find it in their best interest to reveal their

actual preferences. Here, we address this concern by searching for strategy-proof

rules: Regardless of the other agents’ stated preferences, an agent should not have

the incentive to announce false preferences. We conduct our search on three types

of environments: 2-agent exchange economies, economies with public goods, and

economies with indivisible goods.

For the class of 2-agent exchange economies in which agents have homothetic,

strictly convex preferences, we show, as Zhou (1991b) did for a larger domain of

preferences, that among the set of rules that are not dictatorial, strategy-proofness

is incompatible with efficiency. We then show that this incompatibility holds even

when preferences are restricted to the domain of linear preferences. Finally, we

reach the same conclusion for any superdomain of monotonic preferences contain-

ing any one of these two small domains.

Next we consider the combination of strategy-proofness and efficiency for var-

ious classes of economies whose allocation spaces can be represented by simplices.

It has long been known that if agents have von Neumann-Morgenstern preferences

over lotteries, then the only strategy-proof and efficient rules choosing lotteries

are, as above, dictatorial (Gibbard, 1977; Hylland, 1980). We strengthen this

result by showing it to actually be a consequence of the same incompatibility on

a series of much smaller domains of preferences over simplices, each of which has

a standard economic interpretation.

Finally, we consider economies in which each agent consumes a different in-

divisible object and some amount of a divisible good. We establish another in-

compatibility between strategy-proofness and efficiency. Therefore we continue by

dropping efficiency altogether.

For the simple case of two agents and two objects, we obtain a complete char-

acterization of strategy-proof rules. For the case of more than two agents and

objects, we argue that while there are many strategy-proof rules, many of them

choose allocations “arbitrarily.” To eliminate such rules from consideration, we

strengthen strategy-proofness in three alternate ways. We show that by addition-

ally requiring either non-bossiness or coalitional strategy-proofness, a rule must

have a limited range, containing at most one allocation per assignment of the in-

divisible objects. The third strengthening of strategy-proofness is the addition of

the requirement that no agent should be able to “bribe” another agent to change

his preferences, making both agents better off after the bribe. We show that only

constant rules are bribe-proof.
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Chapter 1

Introduction

1.1 The General Problem

Consider the problem of allocating resources to a set of agents based on the prefer-

ences of those agents. A solution to such a problem is an (allocation) rule assigning

a single allocation to any combination of preferences the agents may have. Since

preferences are unobservable, they must be elicited from the agents before the rule

can be used. When asked about their preferences, however, selfish agents may or

may not find it in their best interest to reveal their actual preferences.

In this work we address this concern by searching for allocation rules that give

agents the incentive to be truthful when announcing their preferences. Specifically,

it should be the case that an agent, regardless of what preferences the other agents

announce, should be no worse off announcing his true preferences than he would

be stating any misrepresentation. In the language of the literature, we search for

strategy-proof allocation rules. We conduct this search in essentially three types

of economic environments: 2-agent exchange economies, economies with public

goods, and economies with indivisible goods.

As shown in the seminal works of Gibbard (1973) and Satterthwaite (1975),

strategy-proofness is a very demanding property in the sense that it is essentially

equivalent to dictatorship on the unrestricted domain of preferences. The strength

of the property in their model may not come as a surprise due to the fact that

strategy-proofness is a stronger property on larger domains of preferences. Intu-

itively, this is because agents have more ways to misrepresent their preferences on

larger domains. Therefore, one may expect that on smaller domains of preferences,

such as economic domains, a rule may satisfy strategy-proofness, non-dictatorship,

and perhaps even some other desirable properties, such as efficiency.

In general, however, this is not the case. Gibbard (1977), for example, consid-
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ers only von Neumann-Morgenstern preferences over lotteries.1 He shows, that if

a strategy-proof and efficient solution for this domain is required to depend only

on the agents’ preferences over degenerate lotteries, then it must be dictatorial.

Hylland’s (1980) unpublished work strengthens Gibbard’s result by dropping the

latter requirement. In the same framework, Barberà (1977) considers strategy-

proof solutions that choose sets of alternatives (after appropriately re-defining

strategy-proofness for the choice of sets). If such a solution satisfies some other

minor requirements, then it must also be dictatorial.

Other examples of restricted domains of preferences are those that apply when

we consider choosing levels of public goods. Zhou (1991a) examines various classes

of n-person pure public good economies: one with satiated preferences, and some

with monotonic preferences. He shows that when the dimension of the range of a

strategy-proof solution is at least two, the solution must be dictatorial. Barberà

and Jackson (1994) then characterize those strategy-proof solutions with a one-

dimensional range.

While the domains of preferences in these works are smaller than the Gibbard-

Satterthwaite domain, they are still in some sense “large,” at least when compared

to domains in which, for example, agents care only about their own private con-

sumption. That is, one might hope that when we consider private good economies,

the resulting reduction of the set of admissible preferences would lessen the neg-

ative consequences of strategy-proofness seen in the public-goods-type of model.

An example of this is given by Serizawa (1996), who considers one-private-good

one-public-good economies when preferences are monotonic and strictly convex.

He characterizes the strategy-proof, non-bossy,2 and individually rational solutions

as those according to which (1) agents share the cost of producing the public good

according to pre-specified cost sharing functions and, (2) the level of the public

good provided is the minimum level demanded by all of the agents, given these

cost sharing functions.

An even richer example is the work of Barberà and Jackson (1995), which

actually provides some of the methods for Serizawa (1996). Considering ex-

change economies in which agents have strictly convex, monotonic preferences,

they characterize the strategy-proof, non-bossy, and anonymous rules as “fixed-

price trading” rules: agents trade only in pre-specified proportions from their

endowments. While this class of rules is limited, it shows that the implications of

strategy-proofness are not as strong on at least one interesting restricted domain

1Considering unrestricted preferences over lotteries would just put us back in the Gibbard-
Satterthwaite model.

2See Section 4.3.1 for a definition of non-bossiness.
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of preferences — one pertaining to exchange economies.

For 2-agent exchange economies with two goods, Sprumont (1995), using a do-

main of preferences similar to Barberà and Jackson’s, characterizes strategy-proof

rules satisfying a continuity condition with respect to preferences. They are rules

in which a fixed agent receives his most preferred bundle from a predetermined

set.

Since strategy-proofness apparently loses at least some of its strength on these

restricted domains of preferences, one might hope that the combination of that

property with efficiency is achievable. Unfortunately, some other works show that

this is not to be the case.

One of the earliest such result is by Hurwicz (1972), who considers a certain

class of 2-agent exchange economies. On this domain, he shows the incompatibility

of strategy-proofness, individual rationality, and efficiency. Zhou (1991b) provides

an elegant strengthening of that result by showing that when both agents have

strictly convex, monotonic preferences, any strategy-proof and efficient rule must

be dictatorial. For the case of more than two agents, Barberà and Jackson (1995)

note that none of their fixed-price trading rules is efficient. In addition, the rules

described by Serizawa (1996) are not efficient.

A natural question follows from such results: Does strategy-proofness retain

this strength (perhaps in combination with other properties) on even smaller sub-

domains of preferences?3 This type of question, applied in particular to reasonable

subdomains in economic environments, is the motivation for our work.

1.2 An Overview of the Results

The purpose of Chapter 2 is to determine whether strategy-proof, efficient, and

non-dictatorial rules exist for restricted domains of preferences for 2-agent ex-

change economies, even though they do not for the domain of Zhou (1991b).4

First we restrict attention to the case in which both agents have only homoth-

etic, strictly convex preferences. Homothetic preferences are commonly used in

consumer and producer theory, international trade theory, and the theory of the

aggregation of preferences (see Chipman, 1974). Examples of preferences in our

3Alternative questions are: “ ‘How often’ is a strategy-proof solution not efficient?” and
“ ‘How often’ does an efficient solution violate the conditions of strategy-proofness?”. These
questions are provided with negative answers by Hurwicz and Walker (1990) for general
economies, and by Beviá and Corchón (1995) for public goods economies.

4Nagahisa (1995) asks “how large” can a subdomain of Zhou’s be if it admits such a solution.
Using the closed convergence topology, he shows that such a subdomain must be nowhere dense
in Zhou’s domain. That result does not imply any of the results obtained here.
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domain are Cobb-Douglas and CES preferences. Given the importance of the ho-

mothetic domain, it should be noted that the proof in Zhou (1991b) requires the

admissibility of non-homothetic preferences.

The first result is that even on this small domain, any strategy-proof and

efficient solution is necessarily dictatorial.

Second, we restrict attention to what intuitively appears as an even smaller

domain of preferences: linear, strictly monotonic preferences. While such a small

domain has been considered less often than one of homothetic preferences, it

is of interest in that such preferences exhibit a high degree of substitutability

across goods, whereas the proofs of Zhou’s result and of the first result here

require arbitrary degrees of complementarity between the goods at an arbitrary

consumption bundle (i.e., require that a preference relation may be arbitrarily

close to a Leontieff-type preference relation).

The second result parallels the first: Even on this domain, any strategy-proof

and efficient solution is necessarily dictatorial. Finally, we show this type of result

to hold on any domain of monotonic preferences that contains at least one of our

two small subdomains (e.g., Zhou, 1991b).

In Chapter 3, we ask the question from Chapter 2 for economies with public

goods: Do strategy-proof, efficient, non-dictatorial rules exist for restricted do-

mains of preferences in such economies, even though they do not for larger ones

(e.g., Gibbard, 1977, and Hylland, 1980)?

Our main result for this chapter (on our “smallest” domain) shows that on the

class of 2-agent economies in which agents have linear preferences over one private

good and one public good (produced according to a constant-returns production

function), a strategy-proof and efficient solution must be dictatorial.

We extend this main result to a class of economies with many public goods.

We finally extend the result to the class of economies with an arbitrary (finite)

number of agents with linear preferences over just public goods. This last domain

coincides with the domain of von Neumann-Morgenstern preferences over lotteries,

hence providing a strengthening of a result of Hylland (1980). We also discuss the

connection of this work to the literature on the Clarke-Groves mechanisms.

Finally in Chapter 4, we consider the problem of allocating a set of indivisible

objects and a fixed amount of a divisible good (e.g., money) to a set of agents with

the restriction that each agent consumes precisely one object. These indivisibles

may represent positions such as jobs, offices, or housing locations — objects of

which we typically consume no more than one.

For the simple case of two agents and two objects, we characterize the entire

class of strategy-proof solutions. Such a solution either: (1) is constant, (2) allows
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one agent to choose among two pre-specified allocations, or (3) chooses a pre-

specified (“status-quo”) allocation unless both agents prefer a pre-specified second

allocation. This characterization is domain-free in the sense that it holds on any

(sub)domain of quasi-linear preferences for our model.

For the case of more than two agents, many strategy-proof solutions exist. We

provide a parameterized family of them suggesting that many strategy-proof solu-

tions use preference information in an arbitrary way. To weed out such solutions,

we consider in turn three alternate auxiliary conditions.

First we add to strategy-proofness the requirement that if a change in one

agent’s preferences does not change what he consumes, than it also does not change

what anyone else consumes (non-bossiness). The result we obtain is that despite

the existence of a continuum of allocations, a solution satisfying this additional

condition must have a small number of allocations in its range — at most one

allocation per assignment of the indivisible objects to the agents. We show as

corollaries that some of these solutions are dictatorial on their ranges, and none

of them always treats agents with identical preferences equally. However, an

interesting class of strategy-proof solutions satisfying our additional requirement

can be derived from allocation rules provided by Roth (1982) for a related model.

Second, we consider the requirement that no coalition of agents can gain by

jointly misrepresenting their preferences. As above, we show that the range of a

solution satisfying this property must contain at most one allocation per assign-

ment of the indivisible objects to the agents.

Third, we introduce what appears to be a new condition. We require that no

agent should be able to bribe another agent to change his preferences, making both

agents better off after the bribe. Surprisingly, this condition has the strongest of

consequences — only constant solutions satisfy it.

All of these results extend to the model in which there may be more than

one copy of a single object (e.g., identical offices) between which agents do not

differentiate in terms of preferences. One application of such a model is to a

situation in which a number of agents may share offices, but do not care about

with whom they share it.

Finally, we return to the combination of strategy-proofness and efficiency.

Given that agents have quasi-linear preferences, one may make the prediction

that Groves-type mechanisms5 are the only strategy-proof rules that always as-

sign the indivisible goods efficiently, corresponding to what Green and Laffont

(1977) showed for a model with public goods. Even though the Green-Laffont

result has no direct implications for our model, Holmström (1979) shows this pre-

5See Clarke (1971), Groves (1973), Green and Laffont (1977).
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diction to be correct: He generalized the Green-Laffont characterization to any

“connected” domain of quasi-linear preferences over an arbitrary set of public

goods, which does have implications for our model with private goods. The result

is that any strategy-proof and efficient solution must be equivalent to a Groves

mechanism. However, as is the case with public goods models, we establish that

for our model, a Groves mechanism does not always allocate the entire endowment

of the divisible good, which we require. Therefore no strategy-proof solution is

fully efficient.

Inherent in this result, as in the Groves mechanism literature, is the assumption

that agents may consume arbitrary (negative) levels of the divisible good. That is

why, for example, a dictatorial mechanism does not define a strategy-proof and ef-

ficient solution — a dictator wants to consume an infinite quantity of the divisible

good! Disallowing negative consumption leads to a natural alternate formulation

of efficiency, requiring only that an allocation not be Pareto-dominated by any

other allocation prescribing non-negative consumption, instead of the stronger re-

quirement of always choosing an efficient assignment of the indivisible goods. For

the 2-agent case, we show that dictatorial solutions are in fact the only strategy-

proof solutions satisfying this Pareto-optimality condition.

A similar model in which there is no money, often called a housing market,

has been considered by Shapley and Scarf (1974), who show the non-emptiness of

the core when each agent is endowed with an object. Roth (1982) then shows the

strategy-proofness of solutions that make a selection from the core. Disallowing

indifference between different objects, Ma (1994) then shows that the core is

characterized by the properties of strategy-proofness, efficiency, and individual

rationality.

Our model with money has appeared in the fairness literature. Requiring con-

sumption of the divisible good to be non-negative, Svensson (1983) gives a set

of conditions on preferences guaranteeing, for a given allocation, the existence of

prices and an income distribution such that the allocation is part of a competitive

equilibrium. He also gives conditions for the existence of efficient, envy-free alloca-

tions, and of efficient, egalitarian-equivalent allocations. Maskin (1987) identifies

another set of conditions on preferences and on the amount of the divisible good

to be divided that guarantee the existence of efficient, envy-free allocations. Alkan

et al. (1991) and Tadenuma and Thomson (1995a) consider the problem of se-

lecting an efficient, envy-free allocation, as there typically exists a continuum of

them. In particular they show (for the 2-agent and n-agent cases, respectively)

that when there is exactly one indivisible object, no strategy-proof solution always

chooses an efficient, envy-free allocation. Aragones (1995) connects the work of
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Alkan et al. to the existence problem on the domain of quasi-linear preferences.

The reader is referred to these works and to Tadenuma and Thomson (1991,1995b)

for more detailed references.

1.3 General Notation

In this section we introduce some general notation that will apply to all three of

the following chapters. There is a set of agents, N = {1, 2, . . . , n}. Each agent is
to consume a bundle from his own consumption space, say Ai. For example, in

an exchange economy setting with � goods, an agent’s consumption space is R�
+.

Each agent i ∈ N has a preference relation on Ai, say Ri, that is an element of

a set of admissible preference relations, say Ri.
6 This set will depend on what

economic situation we are modeling. The notation argmaxS Ri refers to the set

of maximal elements of a set S ⊂ Ai according to Ri.
7 Finally, there is a set

of feasible allocations, say A. In economies with just private goods, we have

A ⊂ A1 × A2 × · · · × An, and in economies with just pure public goods, we have

A = Ai for all i ∈ N .

A class of economies is therefore a specification of these sets of agents,

allocations, and admissible preferences, say (N,A,R1, . . . ,Rn). The domain

of preferences for a given class is the cross product of the agents’ sets of ad-

missible preferences, R = R1 × R2 × · · · × Rn. An element of the domain,

R = (R1, R2, . . . , Rn) ∈ R, is a profile of preferences. An allocation rule, or

solution (for R), associates an allocation with any profile preferences, hence it

is a mapping ϕ : R → A. A typical solution will be denoted ϕ, throughout. For

the remainder of this section, a class of economies is assumed to be given.

For any profile R ∈ R and agent i ∈ N , the notation R−i refers to the list of

the preferences of each agent except i. Similar notation will be used replacing i

with a set of agents, C ⊂ N .

In a private goods setting, such as Chapters 2 and 4, the following notation

will be useful. For any profile R ∈ R and agent i ∈ N , ϕi(R) ∈ Ai is the bundle

in the allocation ϕ(R) that agent i consumes.

Our primary goal is to determine what type of solution, ϕ, satisfies the follow-

ing condition.

Strategy-proofness: for all (R1, . . . , Rn) ∈ R, all i ∈ N , and all R′
i ∈ Ri, we

6This is a set of weak orders. The implied strict preference relation is denoted Pi and
indifference relation is denoted Ii.

7There will be a non-empty set of maximal elements whenever we use this piece of notation.
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have

ϕi(R) Ri ϕi(R
′
i, R−i) (private good economy notation)

ϕ(R) Ri ϕ(R
′
i, R−i) (public good economy notation)

A useful notion throughout all three of the following chapters is one that is

closely related to what is known as strong positive association in the social choice

literature, and Maskin-monotonicity in the implementation literature. For any

agent i ∈ N , let Ri, R
′
i ∈ Ri and x ∈ Ai. Suppose that for all y ∈ Ai such that

y 	= x, we have x Ri y implies x P ′
i y. In that case, we will say that R′

i is a

strict monotonic transformation of Ri at x. That is, define the set of strict

monotonic transformations of Ri ∈ Ri at x ∈ Ai to be

SMT (Ri, (a,mi)) = {R′
i ∈ Ri : ∀y ∈ Ai \ {x}, x Ri y implies x P ′

i y}

The following lemma appears throughout the literature on strategy-proofness,

and is used throughout this work.

Lemma 1.1 Let ϕ be a strategy-proof solution on a domain R. Let i ∈ N ,

R ∈ R, and R′
i ∈ SMT (Ri, ϕi(R)). Then ϕi(R

′
i, R−i) = ϕi(R).

Proof: Let ϕ, i, R, and R′
i be defined as above. Strategy-proofness implies

ϕi(R) Ri ϕi(R
′
i, R−i) and ϕi(R

′
i, R−i) R′

i ϕi(R). By definition of R′
i, we have

ϕi(R) = ϕi(R
′
i, R−i). �

Note that in a public goods setting, the conclusion of the lemma is that

ϕ(R′
i, R−i) = ϕ(R), since agents share a common consumption space.
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Chapter 2

Exchange Economies

In this chapter1 we consider 2-agent exchange economies. First we show that

if agents are assumed to have only homothetic, strictly convex preferences over

their consumption space, then any strategy-proof and efficient solution is dicta-

torial. Second, we show that the same conclusion holds when agents have only

linear preferences. Finally, these results extend to any larger domain of monotonic

preferences for the agents.

2.1 The Model

We examine 2-agent exchange economies with a positive endowment Ω ∈ R�
++ of

� ≥ 2 infinitely divisible goods.2 So, the set of agents is N = {1, 2} and each
agent’s consumption space is R�

+. An allocation is a vector3 (z1, z2) ∈ R2�
+ such

that z1+ z2 = Ω. Here, zi represents agent i’s consumption bundle. Let Z be the

set of allocations.

Each agent has a continuous preference relation, Ri, on R�
+. We will make

assumptions about preferences from the following list.

Monotonic: x > y implies x Pi y.

Strictly monotonic: x ≥ y implies x Pi y.

Strictly convex (in the interior): xRiy, x 	= y > 0, and λ ∈ (0, 1) imply

(λx+ (1− λ)y) Pi yi.

1This chapter is a version of Schummer (1997a).
2See Section 1.3 for preliminary notation.
3Vector inequalities are denoted as follows: x � y means xk ≥ yk for each k; x ≥ y means

x � y and x 	= y; x > y means xk > yk for each k. In addition, 0 represents a list (0, 0, . . . , 0)
whose length can be inferred from the context.
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Homothetic: x Ri y implies λx Ri λy for all λ ∈ R+.

Linear: There exists λ ∈ R�
+ such that x Ri y if and only if

∑
λkx

k ≥ ∑λky
k,

where superscripts denote goods.

Let RH be the set of continuous preference relations over R�
+ that are monotonic,

strictly convex, and homothetic. Let RL be the class of preference relations over

R�
+ that are strictly monotonic and linear.

Note that SMT (Ri, x) is non-empty if either (1) Ri ∈ RH and xi > 0 or (2)

Ri ∈ RL, � = 2, and x is on the boundary of Z.

In Sections 2.2 and 2.3, we will consider the domains R2
H and R2

L, respectively.

To that end, the notation in the rest of this section is given with respect to an

arbitrary domain of preferences, R = R1 ×R2.

An allocation is in the Pareto set of an economy, P (R), if there exists no

other allocation that both agents weakly prefer and one agent strictly prefers:

∀R ∈ R, P (R) = {z ∈ Z : �z′ ∈ Z and i ∈ N such that z′i Pi zi and z′−i R−i z−i}

A solution ϕ : R → Z is efficient (for R) if for all R ∈ R, ϕ(R) ∈ P (R). It

is dictatorial (for R) if for some i ∈ N , for all R ∈ R, and all x ∈ Z, we have

ϕi(R) Ri xi. Note that dictatorial solutions defined on R2
H or R2

L always give the

entire endowment Ω to the dictator.

2.2 Homothetic Preferences

We turn our attention to the first domain. The next result states that when agents

have identical preferences, the Pareto set is the diagonal of the (�-dimensional)

Edgeworth box.

Lemma 2.1 For all R ∈ R2
H , if R1 = R2 then P (R) = D ≡ {(x1, x2) ∈ Z : x1 =

λΩ, λ ∈ [0, 1]}.

Proof: Let R1 = R2 ∈ RH . Clearly (0,Ω) ∈ P (R) and (Ω, 0) ∈ P (R). Let

x = (λΩ, (1 − λ)Ω) for some λ ∈ (0, 1). By homotheticity, there is a hyperplane
supporting agent 1’s indifference surface at x1 that is parallel to one supporting

his indifference surface at x2. Since R2 = R1, x ∈ P (R).

Let y 	∈ D. Let H1 be a hyperplane that (1) passes through y1 and (2) is

parallel to a hyperplane supporting the indifference surface of R1 = R2 passing

through Ω. Let H2 be parallel to H1 and pass through y2. Then there exist

δ ∈ (0, 1) and z ∈ Z such that z = (δΩ, (1 − δ)Ω), z1 is in H1, and z2 is in H2.
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By homotheticity, for all i ∈ N , Hi supports the indifference surface of Ri passing

through zi. By strict convexity, for all i ∈ N , zi Pi yi. Hence y 	∈ P (R). �

A lemma in Zhou (1991b) states that if an allocation is in the range of a

strategy-proof solution, then no other allocation in which one agent receives more

of all goods is also in the range. Due to the homotheticity of preferences, we can

at this point only show the following limited version of that result.

Lemma 2.2 Let ϕ : R2
H → Z be strategy-proof. For all R,R′ ∈ R2

H and all

i ∈ N , if ϕi(R) 	= ϕi(R
′) > 0, then for all λ ∈ [0,∞), ϕi(R) 	= λϕi(R

′).

Proof: Let x = ϕ(R), y = ϕ(R′), and suppose, by contradiction and without loss
of generality, that λ ∈ [0, 1) ∪ (1,∞), y1 > 0, and x1 = λy1.

Case 1: λ > 0.

Let R′′
1 ∈ RH be such that R′′

1 ∈ SMT (R1, x) ∩ SMT (R′
1, y). (Such pref-

erences can be found by approximating Leontieff preferences.) By Lemma 1.1,

x = ϕ(R′′
1, R2) and y = ϕ(R′′

1, R
′
2). However, monotonicity and strict convexity

imply (i) x2 P ′
2 y2 if λ < 1, and (ii) y2 P2 x2 if λ > 1. Either case contradicts

strategy-proofness.

Case 2: λ = 0.

We have x1 = 0 and y2 < x2 = Ω. Let z = ϕ(R1, R
′
2). By strategy-proofness,

z2 R′
2 x2. Hence by monotonicity and strict convexity, z2 = Ω and z1 = 0. By

strategy-proofness, z1 R1 y1, contradicting monotonicity. �

Lemmas 2.1 and 2.2 imply the following:

Corollary 2.1 Let ϕ : R2
H → Z be efficient and strategy-proof. There exists

d ∈ Z such that for all R ∈ R2
H , if R1 = R2 then ϕ(R) = d.

Proof: Let R1 = R2 ∈ RH and R′
1 = R′

2 ∈ RH . By Lemma 2.1, ϕ(R) ∈ D and

ϕ(R′) ∈ D. Therefore Lemma 2.2 implies ϕ(R) = ϕ(R′). �

The corollary implies that by “matching” the other agent’s preferences, an

agent can guarantee himself the bundle he receives at d. Thus we have the fol-

lowing.

Corollary 2.2 Let ϕ : R2
H → Z be efficient and strategy-proof, and let d be given

as in Corollary 2.1. Then there is no R ∈ R2
H and i ∈ N such that di Pi ϕi(R).

We have already done most of the work in proving the first main result.
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Theorem 2.1 If ϕ : R2
H → Z is efficient and strategy-proof, then it is dictato-

rial.

Proof: Suppose ϕ : R2
H → Z is efficient and strategy-proof. Let d be given as in

Corollary 2.1. According to Corollary 2.2, if di = Ω for some i ∈ N , then for all

R ∈ R2
H , ϕi(R) = Ω, implying ϕ is dictatorial. Therefore suppose by contradiction

that d > 0.

Let R′ ∈ R2
H be such that (1) P (R′) ∩ D = {(Ω, 0), (0,Ω)}, and (2) for all

z ∈ P (R′)\{(Ω, 0), (0,Ω)}, z > 0. For example, R′ may be any profile of two
different Cobb-Douglas preference relations. Let ϕ(R′) = x. By efficiency, we

have x 	= d. We know by Corollary 2.2 and the monotonicity and strict convexity

of preferences that x1 	≤ d1 and x2 	≤ d2. Hence by (2), we also have x > 0. Let

P = {z ∈ Z : z1 = λx1 or z2 = λx2, for λ ∈ [0, 1]}.
We can construct a preference profile R ∈ R2

H such that P (R) = P and d1 P1

x1. By efficiency, and Lemma 2.2, ϕ(R) = x. However d1 P1 x1, contradicting

Corollary 2.2. Hence d 	> 0, and ϕ is dictatorial.

We conclude the proof by describing a construction of R for the case � = 2.

Construction for � > 2 follows the same lines of reasoning. We assume without

loss of generality, that x1
1 > d1

1, where the superscript denotes the good.

Because R1 and R2 are homothetic and d > 0, it suffices to define the indif-

ference curve of Ri through di for each i ∈ N . In particular, we only need to

specify the slopes of lines supporting this indifference curve at points where it

intersects rays from agent i’s origin through bundles in P . (Slopes are in the form

of “change in good 2” over “change in good 1”.) The rest of the preference maps

can then be arbitrarily completed, within the bounds of admissibility.

Let r = |(d2
1 − x2

1)/(d
1
1 − x1

1)| be the (absolute value of the) slope of the line
segment from d1 to x1. Let fε : P → (0, r) be a continuous function such that

z1 ≥ z′1 implies fε(z) > fε(z
′), and f((Ω, 0)) − f((0,Ω)) = ε > 0. This function

evaluated at an allocation z ∈ P provides the absolute value of the slope of lines

supporting the agents’ indifference curves of R through their respective bundles

at z.

Note that (i) along a ray from agent 1’s origin through x1, the indifference

curves of R1 have a kink, and are supported by lines with slopes ranging from

fε((0,Ω)) through fε(x); (ii) along a ray from agent 2’s origin through x2, the

indifference curves of R2 have a kink, and are supported by lines with slopes

ranging from fε(x) through fε((Ω, 0)); and (iii) if ε is sufficiently small, R is

a strictly convex approximation of linear preferences. Therefore by choosing ε

sufficiently small, d1 P1 x1. �
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Figure 2.1: Constructing R1 and R2 in the proof of Theorem 2.1.

Remark 2.1 Let RHS ⊂ RH be the set of preference relations in RH that are

strictly convex.4 It is clear that a version of Theorem 2.1 corresponding to RHS

can be obtained. First, Lemma 2.2 can be modified by requiring ϕ to be efficient

but allowing ϕi(R) 	> 0. Second, the preference relation R, constructed in the

proof of Theorem 2.1, can be made to be strictly convex everywhere. Note also

that RHS is a subdomain of the one used in Zhou (1991b). These facts are of

interest in light of the Corollary to Theorem 2.1, stated in the next section (see

Remark 2.4).

2.3 Linear Preferences

We now examine the second domain. We first consider economies with only two

goods. The proof of the result for this case gives the intuition behind the proof

of the result for the general case.

Note that for linear preferences over two goods, the Pareto set is one of three

sets. The first set corresponds to the case in which agent 1 values the second good

relatively more than agent 2 does: P 1 = {x ∈ Z : x1
1 = 0 or x

2
2 = 0}. The second

set corresponds to the case in which agent 1 values the first good relatively more

than agent 2 does: P 2 = {x ∈ Z : x2
1 = 0 or x1

2 = 0}. The third set is, of course,
Z, corresponding to cases in which the agents have identical preferences.

4That is, strictly convex everywhere, including the boundary. It follows that each preference
relation in RHS is strictly monotonic.



EXCHANGE ECONOMIES 14

Theorem 2.2 If � = 2 and ϕ : R2
L → Z is efficient and strategy-proof, then it is

dictatorial.

Proof: Let ϕ : R2
L → Z be efficient and strategy-proof.

Step 1: There exist x, x′ ∈ Z such that P (R) = P 1 implies ϕ(R) = x, and

P (R) = P 2 implies ϕ(R) = x′.
Let R,R′ ∈ R2

L be such that P (R) = P (R′) = P 1. Let x = ϕ(R) and

y = ϕ(R′). We must show y = x. Note that since preferences are linear and

x is on the boundary of Z, we have for all i ∈ N either (1) for all z ∈ P 1,

R′
i ∈ SMT (Ri, zi), (2) for all z ∈ P 1, Ri ∈ SMT (R′

i, zi), or (3) Ri = R′
i. For

all i ∈ N , let R′′
i = R′

i if (1) holds, and let R
′′
i = Ri otherwise. By Lemma 1.1,

x = ϕ(R1, R
′′
2) = ϕ(R′′). Similarly y = ϕ(R′

1, R
′′
2) = ϕ(R′′) = x. Therefore for all

R ∈ R2
L, P (R) = P 1 implies ϕ(R) = x.

Likewise we can show the existence of x′.
Step 2: For all i ∈ N and all Ri ∈ RL, xi Ii x

′
i.

Let R1 ∈ RL. Let R2 = R1 and z = ϕ(R). Since preferences are strictly

monotonic, for all k ∈ {1, 2} there exists Rk
1 ∈ RL such that P (R

k
1 , R2) = P k.

Therefore strategy-proofness implies z1 R1 x1 and z1 R1 x′
1. Similarly, z2 R2 x2

and z2 R2 x′
2. However {x, x′} ⊂ P (R) = Z, so xi Ii zi Ii x

′
i for all i ∈ N .

Since R1 ∈ RL was arbitrary, either for all R1 = R2 ∈ RL, we have ϕ(R) =

x = x′ = (Ω, 0), or for all R1 = R2 ∈ RL, we have ϕ(R) = x = x′ = (0,Ω). Hence
ϕ is dictatorial. �

Remark 2.2 An even more striking fact is that this result holds on a domain

containing only four (or more) linear preferences. Step 2 of the proof must be

modified so that its claim holds only for each preference relation that has neither

the steepest nor the flattest indifference curves in the domain. For a domain

consisting of no more than three linear preference relations, efficient and strategy-

proof solutions that are not dictatorial do exist.5

Two difficulties arise in applying this proof to the case of more than two

goods. First, the number of possible Pareto sets increases quickly as the number

of goods increases. Second, many of these possible Pareto sets contain Pareto-

indifferent allocations. At such an allocation, there may be no strict monotonic

transformation of a preference relation. For these reasons, in the proof for � > 2

we first consider a subset of the admissible preferences that have a common rate of

substitution between any of the last �− 1 goods. For all pairs of preferences from
5Suppose Ω = (1, 1), and the three linear preference relations have indifference curves of slopes

−1/2, −1, and −2. One strategy-proof and efficient solution yields the allocation ((1, 0), (0, 1))
whenever it is in the Pareto set, and yields ((0, 1), (1, 0)) otherwise.
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that subset, the Pareto set is one of three sets. In the 2-good case, this subset

was the set of all admissible preferences. After showing that for this subset

of preferences, an efficient and strategy-proof solution always gives one of the

agents the entire endowment, we then use the strict monotonicity of preferences

to show that when we allow for any linear preference profile, the solution still

gives everything to that agent.

To do this, we temporarily transform the last � − 1 goods into a composite

commodity. Let R̃ ⊂ R be a maximal set of preferences with respect to the

following condition:6 for all Ri, R
′
i ∈ R̃, all x ∈ R+, and all y, y

′ ∈ R�−1
+ , we have

(x, y) Ii (x, y
′) if and only if (x, y) I ′i (x, y

′).
Note that for R ∈ R̃2, P (R) may be one of three sets. As we did for the case

of two goods, we will denote two of these sets as follows. Let P 1 = {x ∈ Z : x1
1 =

0 or (x2
2, . . . , x

�
2) = 0} and P 2 = {x ∈ Z : (x2

1, . . . , x
�
1) = 0 or x

1
2 = 0}. Again, the

third possible Pareto set is Z.

Theorem 2.3 If ϕ : R2
L → Z is efficient and strategy-proof, then it is dictato-

rial.

Proof: Let ϕ : R2
L → Z be efficient and strategy-proof.

Step 1a: There exists X ⊂ P 1 such that for all R ∈ R̃2, (1) P (R) = P 1 implies

ϕ(R) ∈ X, and (2) for all x, y ∈ X and all i ∈ N , xi Ii yi.

Let R,R′ ∈ R̃2 be such that P (R) = P (R′) = P 1. Let x = ϕ(R) and

y = ϕ(R′). We must show that for all i ∈ N , yi Ii xi.

For all i ∈ N , let R′′
i ∈ {Ri, R

′
i} be such that for all z ∈ Z and all z′ ∈ P 1, zi R

′′
i

z′i if and only if zi Ri z
′
i and zi R

′
i z

′
i. By strategy-proofness, ϕ1(R

′′
1, R2) R

′′
1 x1 and

x1 R1 ϕ1(R
′′
1, R2). Then by definition of R

′′
1, ϕ1(R

′′
1, R2) R1 x1, so ϕ1(R

′′
1, R2) I1 x1.

Note that P (R′′
1, R2) = P 1. Hence by efficiency, ϕ2(R

′′
1, R2) I2 x2. By strategy-

proofness, ϕ2(R
′′
1, R2) R2 ϕ2(R

′′) and ϕ2(R
′′) R′′

2 ϕ2(R
′′
1, R2). Then by definition

of R′′
2, ϕ2(R

′′) R2 ϕ2(R
′′
1, R2), so ϕ2(R

′′) I2 ϕ2(R
′′
1, R2), hence ϕ2(R

′′) I2 x2.

Noting that ϕ(R′′) ∈ P (R′′), x ∈ P 1, and P (R′′) = P 1, we then have ϕ1(R
′′) I1

x1.

Similarly, we can show that for all i ∈ N , ϕi(R
′′) I ′i yi. Hence by the construc-

tion of R̃, for all i ∈ N , xi Ii yi I
′
i xi. This demonstrates the existence of X as

described above. In the 2-good case, X is a singleton. In the 3-good case, X is a

subset of a line segment.

Step 1b: There exists X ′ ⊂ P 2 such that for all R ∈ R̃2, (1) P (R) = P 2 implies

ϕ(R) ∈ X ′, and (2) for all x, y ∈ X ′ and all i ∈ N , xi Ii yi.

6A set is maximal with respect to a condition if no superset of the set also satisfies the
condition.
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This follows from the argument in Step 1a.

Step 2: If i ∈ N , Ri ∈ R̃, x ∈ X, and x′ ∈ X ′, then xi Ii x
′
i.

Let R1 ∈ R̃. Let R2 = R1 and z = ϕ(R). As in the proof of Theorem 2.2, note

that for all k ∈ {1, 2} and all i ∈ N , there exists Rk
i ∈ R̃ such that P (Rk

i , R−i) =

P k. Therefore by strategy-proofness, for all i ∈ N and all x ∈ X ∪ X ′, zi Ri xi.

Since X ∪ X ′ ⊂ P (R) = Z, we have for all i ∈ N and all x ∈ X ∪ Y , zi Ii xi.

Since R1 ∈ R̃ was arbitrary, either for all R1 = R2 ∈ R̃, we have ϕ(R) ∈ X =

X ′ = {(Ω, 0)}, or for all R1 = R2 ∈ R̃, we have ϕ(R) ∈ X = X ′ = {(0,Ω)}.
Step 3: For all R ∈ R2

L, {ϕ(R)} = X.

Without loss of generality, suppose that X = {(Ω, 0)}, i.e. that for all R ∈ R̃2,

ϕ(R) = (Ω, 0). Let R1 ∈ RL and R2 ∈ R̃. Strategy-proofness implies ϕ1(R) R1 Ω.

Since R1 is strictly monotonic, ϕ(R) = (Ω, 0). Let R′
2 ∈ RL. Strategy-proofness

implies ϕ2(R) R2 ϕ2(R1, R
′
2). Strict monotonicity then implies ϕ(R1, R

′
2) = (Ω, 0).

We have shown that ϕ is dictatorial : for all R ∈ R2
L, ϕ(R) = (Ω, 0). �

Remark 2.3 As with Theorem 2.2, this result holds on any smaller domain for

which we can find a set R̃, as defined above, that contains at least four elements.

2.4 Extensions

Many properties of solutions, such as strategy-proofness or efficiency, are stronger

on larger domains; it is simply the case that the definitions of such properties

imply more conditions on larger domains. One way to formalize such a statement

is by showing that the results above apply to any domain of monotonic preferences

containing either RH or RL.
7

Corollary to Theorem 2.1 Let R̃ ⊃ RH be a class of preference relations over

R�
+ that are monotonic and strictly monotonic on the interior. If ϕ ∈ Φ(R̃) is

strategy-proof and efficient, then it is dictatorial.

Proof: For R̃ as defined above, let ϕ̃ ∈ Φ(R̃) be strategy-proof and efficient. Let
ϕ : R2

H → Z be such that for all R ∈ RH , ϕ(R) = ϕ̃(R). Then ϕ is strategy-proof

and efficient, and hence by Theorem 2.1 is dictatorial. Without loss of generality,

let agent 1 be that dictator.

Let R1 ∈ RH and R2 ∈ R̃. Let R′
2 ∈ RH satisfy strict monotonicity.

We’ve shown that ϕ̃2(R1, R
′
2) = ϕ2(R1, R

′
2) = 0. By strategy-proofness we have

ϕ̃2(R1, R
′
2) R

′
2 ϕ̃2(R1, R2), hence ϕ̃(R1, R2) = (Ω, 0).

7I thank Lin Zhou for noting this, with respect to the domain in his work.
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Let R1 ∈ R̃, R2 ∈ R̃, and R′
1 ∈ RH . We’ve shown that ϕ̃(R

′
1, R2) = (Ω, 0).

By strategy-proofness we have, ϕ̃1(R1, R2) R1 ϕ̃1(R
′
1, R2). Therefore agent 1 is a

dictator on R̃2. �

Remark 2.4 As noted in Remark 2.1, RHS is a subdomain of Zhou’s (1991b)

domain, and if ϕ ∈ Φ(RHS) is efficient and strategy-proof, then it is dictatorial.

By an argument identical to the one proving the Corollary to Theorem 2.1, Zhou’s

result is a corollary to that Remark.

We also have the following.

Corollary to Theorem 2.3 Let R̃ ⊃ RL be a class of preference relations over

R�
+ that are monotonic. If ϕ ∈ Φ(R̃) is strategy-proof and efficient, then it is

dictatorial.

2.5 Summary

We may have hoped that strategy-proofness would not be as strong on certain

“small” economic domains as it has been shown to be on more general ones.

Unfortunately we have shown that when combined with efficiency, it forces us

to use a dictatorial solution on these domains, at least in the 2-person case.

That the negative result for exchange economies holds on any class of monotonic

preferences containing the class of linear preferences is particularly discouraging,

as this domain is already substantially smaller than the usual domains of exchange

economies. It appears that no reasonable domain will allow strategy-proof and

efficient solutions that are not dictatorial.

Of interest, however, is whether similar results hold for economies with more

than two agents. Even though strategy-proof and efficient solutions for n-agent

exchange economies may not be dictatorial when n > 2,8 Zhou (1991b) conjectures

that they must be inversely dictatorial : some agent always receives nothing. The

methods used here may facilitate resolving this issue.

8For example, in a 3-agent exchange economy, define a solution to give the entire endowment
either to agent 1 or agent 2, depending only on the preferences of agent 3 (Satterthwaite and
Sonnenschein, 1981).
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Chapter 3

Economies with Public Goods

In this chapter, we consider economies with public goods. Our first, and strongest,

result for this type of environment is on our smallest domain of preferences. We

show that on the class of 2-agent economies in which agents have linear preferences

over one private good and one public good (produced according to a constant-

returns production function), a strategy-proof and efficient solution must be dic-

tatorial. This result is then extended to a class of economies with many public

goods. In turn, the result is finally extended to the class of economies with an

arbitrary number of agents with linear preferences over just public goods, coin-

ciding with the domain of von Neumann-Morgenstern preferences over lotteries.

We discuss the connection of this work to the literature on the Clarke-Groves

mechanisms in the Summary.

3.1 The Model

There is a set of agents, N = {1, 2, . . . , n}.1 In Sections 3.2 and 3.3.1, we consider
the case where n = 2, and in Section 3.3.2, the case where n ≥ 2. The set

of allocations is a k-dimensional simplex (k ≥ 3), denoted by � ≡ {δ ∈ Rk
+ :∑

δj = 1}. The points in this simplex can represent, for example, (1) allocations
of an aggregate endowment of a divisible good among two agents and the linear

production of k − 2 public goods, or (2) lotteries over k public alternatives.
An extreme point of � is an allocation δ ∈ � such that for some j ∈

{1, . . . , k}, we have δj = 1. Denote these points as E = {e,e, . . . ,ek} ≡
{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. Typical elements of E are denoted

a, a′, b, c, ej, . . . etc.

1See Section 1.3 for preliminary notation.
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The set of admissible preferences on � depends on our interpretation of �.
Considering interpretation (2) of � as a set of lotteries, to say that agents have

von Neumann-Morgenstern preferences over lotteries is the same as allowing to be

admissible only those preferences representable by a utility function of the form

u(δ) =
∑

λjδj for some λ ∈ Rk. Let RL denote that class of “linear” preference

relations.

Alternatively, consider interpretation (1) of �, above. For a given agent,

there should be an extreme point, interpreted as the allocation at which no public

goods are produced and the agent receives none of the private good, that should

be ranked as the worst allocation in � by any admissible preference relation for

that agent. In addition, we may choose to impose the usual monotonicity and

convexity assumptions. Given an extreme point ej ∈ E, a preference relation

Ri is monotonic with respect to ej if for all δ, δ′ ∈ � and all λ ∈ (0, 1),

δ = λa + (1 − λ)δ′ implies δ′ Pi δ (where Pi is the asymmetric part of Ri). Let

Rej ⊂ RL be the class of preference relations that are both linear and monotonic

with respect to ej. Finally, letRej

C be the class of preference relations that are only

convex2 and monotonic with respect to ej. For any of these preference relations,

Ri, the notation argmaxRi refers to the set of maximal elements of � under Ri.

For the remainder of this section, let R be an arbitrary domain. As in Chap-

ter 2, the Pareto set for a preference profile is defined as follows.

∀R ∈ R, P (R) = {δ ∈ � : �δ′ ∈, i ∈ N such that z′ Pi z and z′ Rj z, ∀j 	= i}

Elements of the Pareto set of R are Pareto-optimal allocations for R.

A solution ϕ : R → � is efficient if for all R ∈ R, we have ϕ(R) ∈ P (R).

A solution is dictatorial if there exists i ∈ N such that for all R ∈ R, ϕ(R) ∈
argmax� Ri.

3.2 Two Agent Mixed Economies

In this section, we interpret an allocation as the division of an aggregate endow-

ment of one unit of a divisible good among k uses: direct consumption of some of

the good by each of the two agents, and production of k−2 public goods according
to linear production functions.3 For an allocation δ = (x1, x2, y1, . . . , yk−2) ∈ �,
the first component, x1, is interpreted as agent 1’s consumption of the private

2Convex: for all δ, δ′ ∈ �, if δ′ Ri δ and λ ∈ [0, 1], then λδ′ + (1− λ)δ Ri δ.
3More accurately, the production is actually according to identity functions, due to our

definition of �. However we could have specified � to be any weighted simplex (i.e. �λ = {δ ∈
Rk

+ :
∑

λjδj = 1}) and all results in this paper would continue to hold.
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good, the second component, x2, as agent 2’s, and the remaining components,

(y1, . . . , yk−2), as levels of the public goods.
4

Therefore, the extreme point e2 is interpreted as the allocation at which agent 2

consumes all of the endowment as a private good. This allocation is always consid-

ered to be the unique worst allocation according to agent 1’s preferences. Similarly,

e1 is interpreted as the allocation at which agent 1 receives all of the endowment,

which is always worst according to agent 2’s preferences. We will first consider

the domain Re2 ×Re1
.

3.2.1 Linear Preferences

In Section 3.2.1, we simplify notation by denoting the domain R ≡ Re2 ×Re1
.

One Public Good

Given a preference relation Ri ∈ Rej
we denote by ri the amount of private good

an agent with preferences Ri is willing to give up in exchange for an additional

unit of the public good. For example, if ri = 1, then agent i is indifferent between

receiving one additional unit of the public good and receiving one additional unit

of the private good. If ri > 1, then agent i strictly prefers one additional unit of

the public good to one additional unit of the private good.

Note that the Pareto set for a preference profile R ∈ R is one of six possible

sets (see Figure 3.1).

Theorem 3.1 (One Public Good, One Private Good) Suppose k = 3. If

ϕ : R → � is strategy-proof and efficient, then it is dictatorial.

Proof: Let ϕ be strategy-proof and efficient. First we show that there exists

δ1 ∈ P 1 such that for all R ∈ R, P (R) = P 1 implies ϕ(R) = δ1.

Let R,R′ ∈ R be such that P (R) = P (R′) = P 1. By efficiency, ϕ(R) ∈ P 1

and ϕ(R′) ∈ P 1. For all i ∈ N , if ri ≥ r′i let R
′′
i = Ri, and R′′

i = R′
i otherwise.

By Lemma 1.1 and the construction of R′′, ϕ(R) = ϕ(R′′
1, R2) = ϕ(R′′) and

ϕ(R′) = ϕ(R′′
1, R

′
2) = ϕ(R′′). Hence ϕ(R) = ϕ(R′).

Similarly for all j ∈ {2, 4, 5, 6}, there exists δj ∈ P j such that for all R ∈ R,
P (R) = P j implies ϕ(R) = δj.

4S.-C. Kolm introduces a simple representation of the (non-wasteful) allocations in an econ-
omy of two agents, one private good, and one public good produced with a linear production
function and fixed endowment; these are the points in an equilateral triangle, where each corner
represents an allocation at which all of the endowment is devoted to either one agent’s con-
sumption, or production of the public good. See Schlesinger (1989) for a brief history of, and
justification for, Kolm’s representation.
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P 1

P 2

P 3

P 4 P 5

P 6

If (R1, R2) satisfies . . . then P (R) is . . .

r1 < 1, r2 < 1, r1 + r2 > 1 P 1 ≡ {(x1, x2, y) ∈ � : x1 = 0 or x2 = 0}
r1 < 1, r2 < 1, r1 + r2 < 1 P 2 ≡ {(x1, x2, y) ∈ � : y = 0}
r1 < 1, r2 < 1, r1 + r2 = 1 P 3 ≡ �

r1 ≥ 1, r2 < 1 P 4 ≡ {(x1, x2, y) ∈ � : x1 = 0}
r1 < 1, r2 ≥ 1 P 5 ≡ {(x1, x2, y) ∈ � : x2 = 0}
r1 ≥ 1, r2 ≥ 1 P 6 ≡ {(0, 0, 1)}

Figure 3.1: Pareto sets of the Kolm triangle for linear preferences.

It is simple to check that for all R ∈ R such that P (R) = P 1, there exists

R′ ∈ R such that for all i ∈ N , P (R′
i, R−i) = P 2. Strategy-proofness then implies

that for all R ∈ R such that P (R) = P 1 and all i ∈ N , δ1 Ri δ
2.

Similarly for all R ∈ R such that P (R) = P 2, there exists R′
i ∈ Rei

L such that

for all i ∈ N , P (R′
i, R−i) = P 1. Strategy-proofness then implies that for all R ∈ R

such that P (R) = P 2 and for all i ∈ N , δ2 Ri δ
1.

It follows that δ1 = δ2. Hence δ1 ∈ {e1, e2}. Without loss of generality, we will
assume δ1 = e1.

For all R ∈ R, the following hold:

P (R) = P 4 =⇒ ∃R′
1 ∈ Re2

such that P (R′
1, R2) = P 1

P (R) = P 3 =⇒ ∃R′
1, R

′′
1 ∈ Re2

such that P (R′
1, R2) = P 1, P (R′′

1, R2) = P 4

P (R) = P 1 =⇒ ∃R′
2 ∈ Re1

such that P (R1, R
′
2) = P 5
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Hence, strategy-proofness implies that for all R ∈ R,

P (R) = P 4 =⇒ δ4 R1 δ1 (3.1)

P (R) = P 3 =⇒ ϕ(R) R1 δ1 and ϕ(R) R1 δ4 (3.2)

P (R) = P 1 =⇒ δ1 R2 δ5 (3.3)

Since there exists R ∈ R such that P (R) = P 4 and r1 = 1, (3.1) implies δ
4 = e3.

Since preferences are linear, (3.2) implies that for all R ∈ R, we have P (R) = P 3

implies ϕ(R) ∈ argmaxR1. Finally, (3.3) implies δ
5 = e1.

We have shown that for all R ∈ R, we have ϕ(R) ∈ argmaxR1, that is, ϕ is

dictatorial. �

Multiple Public Goods

The result of the previous section can be extended to the case of more than one

public good in an intuitively simple way. We consider a subclass of the linear

preferences for which the public goods are “equivalent”. That is, for any two al-

locations (x1, x2, y1, . . . , yk−2) and (x
′
1, x

′
2, y

′
1, . . . , y

′
k−2), if

∑
yj =

∑
y′j, then the

agents are indifferent between the two allocations. This subdomain is essentially

the same as the domain of section 3.2.1. Hence there is a dictator on that subdo-

main. It is then simple to show that this agent must be a dictator on the entire

domain.

Corollary 3.1 (Many Public Goods, One Private Good) If ϕ : R2 → � is

strategy-proof and efficient, then it is dictatorial.

Proof: Let ϕ be strategy-proof and efficient. Define the subdomain of preference

relations for which agent one is indifferent among all the public goods as follows:

Re2

= {R1 ∈ Re2

: ∀(x1, x2, y1, . . . , yk−2), (x
′
1, x

′
2, y

′
1, . . . , y

′
k−2) ∈ �, if x1 = x′

1

and x2 = x′
2 then (x1, x2, y1, . . . , yk−2) I1 (x

′
1, x

′
2, y

′
1, . . . , y

′
k−2)}

Define Re1

similarly. From Theorem 3.1, we know that the restriction of ϕ to the

subdomainRe1×Re2

is dictatorial on that subdomain.5 Without loss of generality,

suppose ϕ chooses an allocation giving agent 1 one of his most preferred bundles

on that subdomain. We must show that one of agent 1’s most preferred allocations

is chosen for each profile in R2.

5We do not show this explicitly, though it can be done by allowing the δj ’s in the proof of
Theorem 3.1 to be sets of allocations, among which both agents are always indifferent when
preferences are in the subdomain, instead of requiring each δj to be a single allocation.
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Let R ∈ R be such that R1 ∈ Re2

. If argmaxR1 = {e1}, then by supposition,
for all R′

2 ∈ Re1

, ϕ(R1, R
′
2) = e1. Strategy-proofness implies ϕ(R) R2 ϕ(R1, R

′
2), so

ϕ(R) = e1. If, on the other hand, e1 	∈ argmaxR1, then note that e
3 ∈ argmaxR1.

By efficiency, for all R′
2 ∈ Re1

, ϕ(R1, R
′
2) is of the form (0, 0, y1, . . . , yk−2). Hence

by strategy-proofness, for all R′
2 ∈ Re1

, (0, 0, y1, . . . , yk−2) R
′
2 ϕ(R). It follows that

ϕ(R) I1 e3.

Now let R ∈ R. The previous arguments imply that there exists R′
1 ∈ Re2

such that ϕ(R′
1, R2) = e2. Therefore strategy-proofness implies ϕ(R) R1 e2. Let

a ∈ E\{e1}. Since preferences are linear, we can conclude that ϕ is dictatorial

by showing that ϕ(R) R1 a. Let R′′
1 ∈ Re2

satisfy a I ′′1 e1 P ′′
1 b for each b ∈

E\{δ, e1}. Again by strategy-proofness, ϕ(R′′
1, R2) R

′′
1 e2. Hence efficiency implies

ϕ(R′′
1, R2) = a. Finally, strategy-proofness implies ϕ(R) R1 a. �

3.2.2 Convex Preferences

The negative results above may be extended to broader domains of preferences.

We show how to extend Theorem 3.1, the case of one public good, to the domain

of convex, monotonic preferences. The domain in this section is RC ≡ Re2

C ×Re1

C .

Corollary 3.2 (One Public Good, One Private Good) Suppose k = 3. If

ϕ : RC → � is strategy-proof and efficient, then it is dictatorial.

Proof: Let ϕ be strategy-proof and efficient. Then the restriction of ϕ to the

subdomain Re2 × Re1
is strategy-proof and efficient on that subdomain. By

Theorem 3.1, then, there exists an agent i ∈ N such that for all R ∈ Re2 ×Re1

and all δ ∈ �, we have ϕ(R) Ri δ. Assume without loss of generality that this is

agent 1.

Let R ∈ RC . Let δ ∈ (argmaxR1) ∩ P (R) (see Figure 3.2). Note that of

agent 1’s favorite allocations in �, δ is the one providing the highest level of the
public good. We need to show that ϕ(R) = δ.

Let R′
2 ∈ Re1

, and let R′
1 ∈ Re2

C and R′′
1 ∈ Re2

satisfy the following (see

Figure 3.2):

argmaxR′
1 = {δ′ ∈ � : for some λ ∈ [0, 1], δ′ = λδ + (1− λ)e1}

argmaxR′′
1 = {e1}

Since agent 1 is the dictator on the subdomain of linear preferences, we have

ϕ(R′′
1, R

′
2) = e1. Strategy-proofness implies ϕ(R′) R′

1 ϕ(R′′
1, R

′
2) = e1, so by ef-

ficiency, ϕ(R′) = δ. Strategy-proofness implies ϕ(R1, R
′
2) R1 δ, so by efficiency,
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R′
2

R′′
1

R′
1

R2

R1

e2 e1

δ

Figure 3.2: (Proof of Corollary 3.2) The dictator on the linear subdomain must
be a dictator on the convex domain.

ϕ(R1, R
′
2) = δ. Strategy-proofness implies ϕ(R1, R

′
2) R′

2 ϕ(R), i.e. δ R′
2 ϕ(R).

However R′
2 was chosen as an arbitrary element of Re1

, so for some λ ∈ [0, 1],

ϕ(R) = λδ + (1− λ)e1. Efficiency then implies ϕ(R) = δ. �

3.3 Pure Public Good Economies and Lotteries

over Alternatives

3.3.1 Two Agents

We now extend the first result to the larger class of 2-agent economies in which

agents may have any linear preferences over �; i.e. the domain R2
L. The most

obvious interpretation of this domain is as the situations in which agents have

von Neumann-Morgenstern preferences over lotteries. We then extend the result

to the case of more than two agents.

Let a 	= b ∈ E be two distinct extreme points. Consider the class of economies

for which preference profiles are elements of Ra × Rb ⊂ R2
L. Such a class is

equivalent to the one described in the previous section. Hence an efficient and

strategy-proof solution on R2
L, which is efficient and strategy-proof on the subdo-

main Ra ×Rb, must choose one of a given agent’s favorite points in the simplex

for any preference profile in Ra × Rb. This fact is exploited in the proof of the

following result.

Corollary 3.3 (Many Public Goods, Two Agents) If k ≥ 3, n = 2, and

ϕ : R2
L → � is strategy-proof and efficient, then ϕ is dictatorial.
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Proof: Let ϕ be strategy-proof and efficient. Let a, b ∈ E be such that a 	= b.

Then the restriction of ϕ to the subdomainRa×Rb is a strategy-proof and efficient

solution for the domain of preferences in Section 3.2.1. Hence by Theorem 3.1 (or

Corollary 3.1), there must exist a “subdomain-dictator” for that subdomain, i.e.

there is an agent for whom ϕ always chooses one of his favorite allocations when

the preference profile is in that subdomain.

This is true for any subdomain defined in terms of two different extreme points

a, b ∈ E. We can show that each such subdomain-dictator must in fact be the

same agent; this is Step 1 of the proof. In Step 2 we show that this agent is a

dictator over the domain of profiles at which agents have unique (but possibly

identical) least favorite extreme points. In Step 3 we show that the agent is a

dictator for the entire domain.

Step 1: There is one agent who is the dictator of each subdomain Ra × Rb

(a 	= b).

Let a, b, c, d ∈ E be such that a 	= b and c 	= d. Without loss of generality,

assume that for any profile R ∈ Ra ×Rb, ϕ(R) is one of agent 1’s favorite alloca-

tions according to R1. We want to show that this is also the case for any profile

R′ ∈ Rc ×Rd.

Let a′ ∈ E be such that: if a 	= d then a′ = a; if a = d and b = c then

a 	= a′ 	= b; if a = d and b 	= c then a′ = c. Since a′ 	= b, note that the subdomain

Ra′ ×Rb is one for which we have shown that there exists a dictator. If a′ = a,

then agent 1 is, trivially, the dictator for that subdomain, by our assumption.

Otherwise, let R1 ∈ Ra and R′
1 ∈ Ra′

be such that argmaxR1 = argmaxR′
1 =

{b}. Let R2 ∈ Rb. By assumption, ϕ(R1, R2) = b. Strategy-proofness implies

that ϕ(R′
1, R2) R

′
1 ϕ(R) = b. Hence ϕ(R′

1, R2) = b is not one of agent 2’s favorite

allocations, so agent 1 must be the dictator on the subdomain Ra′ ×Rb.

Since a′ 	= d, note that the subdomain Ra′ × Rd is one for which we have

shown that there exists a dictator. Again, if b = d, agent 1 is, trivially, the

dictator for the subdomain. Otherwise, let R′
2 ∈ Rb and R′′

2 ∈ Rd be such

that argmaxR′
2 = argmaxR′′

2 = {a′} (since a′ 	= b). Strategy-proofness implies

that ϕ(R′
1, R

′
2) R

′
2 ϕ(R′

1, R
′′
2), and we have shown that ϕ(R

′
1, R

′
2) = b. Therefore

ϕ(R′
1, R

′′
2) = b, implying that agent 1 is the dictator on the subdomain Ra′ ×Rd.

If a′ = c then we are done with this step. Otherwise, since a′ 	= d, let R′′
1 ∈ Ra′

and R′′′
1 ∈ Rc be such that argmaxR′′

1 = argmaxR′′′
1 = {d}. Strategy-proofness

implies that ϕ(R′′′
1 , R

′′
2) R

′′′
1 ϕ(R′′

1, R
′′
2) = d. Hence ϕ(R′′′

1 , R
′′
2) = d is not one of

agent 2’s favorite allocations, so agent 1 must be the dictator on the subdomain

Rc ×Rd.

Step 2: The subdomain-dictator is a dictator when agents have a unique worst
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alternative.

In the previous step, we showed that for any two extreme points a 	= a′, and
any profile R ∈ Ra×Ra′

, ϕ(R) is one of agent 1’s favorite allocations according to

R1. Consider R ∈ Ra ×Ra. Let b, c ∈ E be such that b ∈ argmaxR1 and b 	= c.

Note that there exist R′
1 ∈ Rc such that argmaxR′

1 = {b}. Strategy-proofness
implies ϕ(R1, R2) R1 ϕ(R′

1, R2) = b, that is, ϕ(R) is one of agent 1’s favorite

allocations according to R1.

Similarly, for any extreme point d ∈ E and any profile R′ ∈ Rd ×Rd, ϕ(R′) is
one of agent 1’s favorite allocations according to R′

1. Let R = ∪a,b∈ERa ∪Rb. So

far we have shown that for any profile R′′ ∈ R2
, ϕ(R′′) is one of agent 1’s favorite

allocations according to R′′
1.

Step 3: The subdomain-dictator is a dictator on the whole domain.

Let R1, R
′
1 ∈ R, R2 ∈ RL\R, and a ∈ E be such that for all b ∈ E \ {a},

we have a P1 b, a R′
1 b, and b R2 a. Then for all R′

2 ∈ Ra, ϕ(R1, R
′
2) R′

2 a.

Also, strategy-proofness implies ϕ(R1, R
′
2) R′

2 ϕ(R1, R2). Therefore, ϕ(R) = a.

Strategy-proofness implies ϕ(R′
1, R2) R

′
1 ϕ(R), hence ϕ(R′

1, R2) is one of agent 1’s

favorite allocations according to R′
1.

Similarly, for any profile R ∈ R× (RL \ R), ϕ(R) is one of agent 1’s favorite
allocations according to R1.

Finally, let R ∈ RL×RL, R
′
1 ∈ R, and a ∈ E be such that a ∈ argmaxR1 and

{a} = argmaxR′
1. We have shown that ϕ(R

′
1, R2) = a. Hence strategy-proofness

implies ϕ(R1, R2) R1 a. Since R was arbitrary, ϕ is dictatorial. �

As stated in the Introduction, this 2-agent result is implied by Hylland (1980).

However, our geometric proof is more intuitive than the one in that work, and, by

using Theorem 3.1 in the proof, demonstrates that the essential incompatibility

between strategy-proofness and efficiency is deeper than Corollary 3.3 suggests.

3.3.2 Many Agents

We now use Corollary 3.3 to show the corresponding result for more than two

agents. The proof is by induction, and may remind the reader of proofs, such as

in Kalai and Muller (1977) and Aswad and Sen (1996), which show that results

like the Arrow Impossibility Theorem and the Gibbard-Satterthwaite Theorem

hold on certain 2-agent domains if and only if they hold on the corresponding

n-agent domains. Those results have no implications for our smaller domain of

preferences.

Corollary 3.4 (Many Public Goods, Many Agents) If k ≥ 3, n ≥ 3, and

ϕ : Rn → � is strategy-proof and efficient, then ϕ is dictatorial.
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Proof: Let ϕ be strategy-proof and efficient. Let M = {n − 1, n}. Define an
(n− 1)-agent solution ϕ : Rn−1

L → � as follows: for all (R1, R2, . . . , Rn−2) ∈ Rn−2
L

and all Rm ∈ RL, where R
′
1 = R1, R

′
2 = R2, . . . , R

′
n−2 = Rn−2, and R′

n−1 = R′
n =

Rm, let ϕ(R1, . . . , Rn−2, Rm) = ϕ(R′). When agents (n− 1) and n have the same

preferences, we are joining them into one “agent”, whom we call m.

Step 1: ϕ is a strategy-proof and efficient (n− 1)-agent solution.
Efficiency is obvious, and since ϕ is strategy-proof, agents 1 through n − 2

cannot manipulate ϕ. Let Rm, R′
m ∈ RL. Let R,R′ ∈ Rn

L be such that both

Rn−1 = Rn = Rm and R′
n−1 = R′

n = R′
m, and denote R−M = (R1, . . . , Rn−2).

Strategy-proofness implies that ϕ(R−M , Rn−1, Rn) Rn−1 ϕ(R−M , R′
n−1, Rn) and

ϕ(R−M , R′
n−1, Rn) Rn ϕ(R−M , R′

n−1, R
′
n). Hence ϕ(R−M , Rm) Rm ϕ(R−M , R′

m, ),

so ϕ is strategy-proof.

Step 2: If ϕ is dictatorial and agent i 	= m is the dictator for ϕ, then ϕ is

dictatorial, and agent i is the dictator for ϕ.

Suppose that ϕ is dictatorial and, without loss of generality, that agent 1 is

the dictator. Let R ∈ Rn
L. Let R

′
2, . . . , R

′
n−1, Rm be such that R′

2 = · · · = R′
n−1 =

Rm = Rn. Strategy-proofness implies the following:

ϕ(R1, . . . , Rn−3, Rn−2, R
′
n−1, Rn) R

′
n−1 ϕ(R1, . . . , Rn−1, Rn)

ϕ(R1, . . . , Rn−3, R
′
n−2, R

′
n−1, Rn) R

′
n−2 ϕ(R1, . . . , Rn−2, R

′
n−1, Rn)

...

ϕ(R1, R
′
2, . . . , R

′
n−1, Rn) R′

2 ϕ(R1, R2, R
′
3, . . . , R

′
n−1, Rn)

Letting δn = ϕ(R1, R
′
2, . . . , R

′
n−1, Rn), we have δn Rn ϕ(R). By construction,

δn = ϕ(R1, R
′
2, . . . , R

′
n−2, Rm) ∈ argmaxR1.

Similarly, for all j 	= 1, there exists δj ∈ argmaxR1 such that δ
j Rj ϕ(R).

Suppose that δn is the only element of argmaxR1, that is, for all j 	= 1, δj = δn.

Then for all j 	= 1, δn Rj ϕ(R), hence efficiency implies ϕ(R) R1 δn, i.e. ϕ(R) =

δn.

Suppose that δn is not the only element of argmaxR1. Then using the above

argument, for any R′
1 ∈ RL such that {δn} = argmaxR′

1, ϕ(R
′
1, R−1) = δn.

Strategy-proofness implies ϕ(R) R1 ϕ(R′
1, R−1). Hence ϕ is dictatorial, and agent 1

is the dictator.

Step 3: Define similar (n − 1)-agent solutions with respect to other pairs of

agents.

Let M ⊂ N be such that |M | = 2. Define ϕM : Rn−1
L → � as follows: for all

R−M ∈ Rn−2
L and all Rm ∈ RL, ϕ

M(R−M , Rm) = ϕ(R′), where for all i 	∈ M we

have R′
i = Ri, and for all j ∈ M we have R′

j = Rm. Again, we are joining the
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agents in M into one “agent”, m.

As above, if for any M ⊂ N with |M | = 2, there is an agent i 	∈ M who is

a dictator for ϕM , then ϕ is dictatorial. Hence either (1) ϕ is dictatorial, or (2)

for all M ⊂ N such that |M | = 2, there is no agent i 	∈ M that is a dictator for

ϕM . The proof concludes with an induction argument on the number of agents,

showing that (2) cannot hold.

Step 4a: For n = 3, the existence of a certain Condorcet triple implies there

must be a dictator.

Suppose n = 3. According to Corollary 3.3, a 2-agent solution that is strategy-

proof and efficient must be dictatorial.

Therefore, for all M ⊂ N with |M | = 2, ϕM is dictatorial. Furthermore, if (2)

holds, “agent m” must be the dictator for ϕM .

LetM = {2, 3},M ′ = {1, 3}, andM ′′ = {1, 2}. Let a, b, c ∈ E be three distinct

extreme points. Without loss of generality, let a = (1, 0, . . . , 0), b = (0, 1, 0 . . . , 0),

and c = (0, 0, 1, 0, . . . , 0). Let R ∈ R3
L be such that for all d ∈ E \ {a, b, c},

a P1 b P1 c P1 d and b I1 (2/3, 0, 1/3, 0, . . . , 0)

c P2 a P2 b P2 d and a I2 (0, 1/3, 2/3, 0, . . . , 0)

b P3 c P3 a P3 d and c I3 (1/3, 2/3, 0, . . . , 0)

Let R′
1 = Rm′ = R3, R

′
2 = Rm′′ = R1, and R′

3 = Rm = R2. Supposing that m,

m′, and m′′ are the respective dictators for ϕM , ϕM ′
, and ϕM ′′

, strategy-proofness

implies:

ϕ(R) R1 ϕ(R′
1, R2, R3) = ϕM ′

(R2, Rm′) = b

ϕ(R) R2 ϕ(R1, R
′
2, R3) = ϕM ′′

(R3, Rm′′) = a

ϕ(R) R3 ϕ(R1, R2, R
′
3) = ϕM(R1, Rm) = c

It is simple to check (see Figure 3.3) that there exists no such ϕ(R). Hence

there must be a dictator for ϕ.

Step 4b: For n ≥ 4, a certain profile puts two pairs of agents in opposition.

Suppose n ≥ 4. Furthermore, suppose that for all n′ < n, any strategy-proof

and efficient n′-agent solution must be dictatorial. Therefore if (2) holds above,
it must be the case that for each ϕM , “agent m” is the dictator.

Let R ∈ Rn
L and a, f ∈ E satisfy a 	= b, R1 = R2, R3 = R4 = · · · = Rn,

argmaxR1 = {a}, and argmaxR3 = {b}. Let M = {1, 2} and M ′ = {3, 4}, and
let Rm = R1 and Rm′ = R3.
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a

b c

R1

R2

R3

Figure 3.3: (Proof of Corollary 3.4) If n = 3, the existence of a Condorcet triple
implies that there is a dictator.

If (2) holds, then ϕM(Rm, R−M) = a and ϕM ′
(Rm′ , R−M ′) = b. However by

definition, ϕM(Rm, R−M) = ϕ(R) = ϕM ′
(Rm′ , R−M ′), which is a contradiction. �

3.4 Summary

We have shown for various 2-agent economic models that a severe restriction of the

class of admissible preferences does not weaken strategy-proofness in the presence

of efficiency. In fact the incompatibility shown for the model of Hylland (1980)

stems from the incompatibility on a much smaller domain of preferences over

a simplex — those corresponding to mixed economies with one public and one

private good, and two agents with linear preferences.

This result may seem to be tied to the literature on Clarke-Groves mechanisms

(see Clarke (1971) and Groves (1973)) for domains of quasi-linear preferences. It

is not, for the following reasons. Inherent in that literature is the assumption that

agents can transfer arbitrary amounts of the divisible good among themselves,

hence efficiency implies that a chosen level of the public good must maximize

the sum of the agents’ valuations. This notion of efficiency is stronger than our

concept of Pareto-optimality, which was subject to our assumption that agents

consume non-negative quantities of the divisible good. For the same reasons, the

results of Walker (1980) and Hurwicz and Walker (1990), which show the “failure”

of Clarke-Groves mechanisms at almost all preference profiles in certain domains,

have no connection with ours.
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This is not the first work to consider a restriction to the domain of linear

preferences. Bossert and Weymark (1993) consider linear monotonic preferences

over the non-negative 2-dimensional orthant. There, they search for social welfare

functions satisfying anonymity and Arrow’s independence of irrelevant alterna-

tives, in turn characterizing median-voter-type solutions; the social preferences

are the same as those of the agent whose indifference curves have the mth steepest

slope, for some pre-specified m.

In a very recent work, Duggan (1996) provides a “geometric proof” of another

result of Gibbard (1977), stating that a strategy-proof and sovereign6 solution

that depends only on the agents’ preferences over the extreme points must be a

random-dictator solution.

Given the negative results mentioned in the Introduction and contained herein,

and given the appeal of the efficiency condition, it may be fruitful to search for

efficient solutions that “almost” satisfy strategy-proofness. That is, while it is

desirable to have allocation mechanisms for which it is always in each agent’s best

interest to truthfully reveal his preferences, a reasonable compromise would be a

solution for which this is usually the case, particularly in situations where agents

have little information regarding the preferences of the other agents; without mak-

ing formal specifications about uncertainty, it is of interest to find efficient solu-

tions for which only a “few” preference profiles are manipulable. Unfortunately,

on the domain of quasi-linear preferences for the model of Section 3.2, Beviá and

Corchón (1995) have shown that efficient and individually-rational solutions are

almost always manipulable. Perhaps this is not the case, however, on a smaller

domain of preferences.

6Sovereign: each extreme point is chosen for some preference profile.
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Chapter 4

Economies with Indivisibilities

In this chapter, we consider the problem of allocating a set of indivisible objects

and a fixed amount of a divisible good (e.g., money) to a set of agents with the

restriction that each agent consumes precisely one object.1

For the case of two agents and two objects, we characterize the entire class of

strategy-proof solutions. For the case of more than two agents, we show that if

a solution is strategy-proof and non-bossy, or is coalitionally strategy-proof, then

despite the existence of a continuum of allocations, its range contains at most

one allocation per assignment of the indivisible objects to the agents. We also

show that if a solution is not manipulable by agents who bribe each other to

misrepresent their preferences, then it is constant.

These results extend to the model in which there may be more than one copy

of a single object (e.g., identical offices) between which agents do not differentiate

in terms of preferences.

Finally we show a general incompatibility between strategy-proofness and ef-

ficiency.

4.1 The Model

There is a set of agents, N = {1, 2, . . . , n}.2 In Section 4.2 we consider the case
where n = 2, and in Section 4.3, the case where n ≥ 2. Each agent consumes

one indivisible object from a set Ω = {α, β, . . . , ω}, plus an amount of a divisible
good. Arbitrary objects are denoted by a, b ∈ Ω; arbitrary amounts of the divisible
good are denoted by mi,m

′
j ∈ R.

1See the Introduction for more information on this model.
2See Section 1.3 for preliminary notation.
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An allocation has two components: (1) an assignment of objects to the

agents, σ̄ ∈ Ωn, such that σ̄i = σ̄j implies i = j (agents consume different objects),

and (2) a list of amounts of the divisible good, m̄ ∈ Rn, such that
∑

m̄i = M ,

where M is interpreted as the total endowment of the divisible good. Let A de-

note the set of allocations. Arbitrary allocations are denoted (σ̄, m̄), (σa,ma),

(σb,mb), etc.

Note that for the sake of generality, we allow negative consumption of the

divisible good. However, it is important to note that none of the results in Sec-

tions 4.2 and 4.3 would be changed by requiring non-negative consumption of the

divisible good, and the effect of such a requirement on one result of Section 4.4,

though trivial, will be given. Denote the set of allocations giving each agent a

non-negative amount of the divisible good by A+ = {(σ̄, m̄) ∈ A : m̄ ∈ Rn
+}.

For notational convenience, we will assume that |Ω| ≥ n. To consider the case

in which |Ω| < n, we may create enough “null” objects to reverse the inequality,

and all of the results in this paper continue to hold — a more formal discussion

of this and more general situations is given in Section 4.3.4.3

Each agent has a preference relation on Ω×R, Ri, that satisfies the following

assumptions:

Strict Monotonicity: for all a ∈ Ω and all mi,m
′
i ∈ R, mi > m′

i implies

(a,mi) Pi (a,m
′
i).

Compensability: for all a, b ∈ Ω and all mi ∈ R, there exists m′
i ∈ R such that

(a,mi) Ii (b,m
′
i).

Quasi-linearity: for all a, b ∈ Ω and all mi,m
′
i, x ∈ R, (a,mi) Ii (b,m

′
i) implies

(a,mi + x) Ii (b,m
′
i + x).

LetQ denote the set of preferences satisfying these three conditions. An arbitrary

subset of these preferences is denoted R ⊆ Q, and a domain is a set of profiles

Rn.4 For a convenient graphical representation of an agent’s consumption space

and preferences, see Figure 4.1.

For an arbitrary domainRn, a solution ϕ : Rn → A is defined by two functions,

(1) σ : Rn → Ωn and (2) m : Rn → Rn, such that for all R ∈ Rn, (σ(R),m(R)) ∈
A. At times it will be convenient to denote a solution by ϕ(·) ≡ (σ(·),m(·)). In
such a case, for any i ∈ N , let ϕi(R) = (σi(R),mi(R)). The range of ϕ over a

(sub)domain D ⊆ Rn is denoted ϕ(D).

3See also Remark 4.5.
4Note that the notation in this chapter differs slightly from the previous chapter in that the

symbol R now represents a set of preferences for one agent instead of representing a domain.
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α

β

γ

Ri R′
i

0
mi increasing

ϕi(R)

(γ,m′
i)

Figure 4.1: A consumption bundle is a point on one of the horizontal lines. The
line determines the object; horizontal distance measures the amount of the divis-
ible good. An “indifference curve” connects bundles between which a preference
relation expresses indifference, e.g., ϕi(R) Ii (γ,m

′
i) and ϕi(R) P

′
i (γ,m

′
i). Here,

R′
i ∈ SMT (Ri, ϕi(R)).

4.2 Two Agents, Two Objects

We begin with the simple case where n = |Ω| = 2, which contains some intuition
for the more general cases. Note for this case that if preferences change and one

agent’s bundle stays constant, then the other agent’s bundle must also remain

constant by feasibility. We can use this fact with Lemma 1.1 to show that in

the particular 2-agent, 2-object case, strategy-proofness restricts the range of a

solution to contain at most two allocations.

Lemma 4.1 Suppose n = |Ω| = 2. Let ϕ = (σ,m) be a strategy-proof solution on
any domain Rn, and let R,R′ ∈ Rn. Then σ(R) = σ(R′) implies m(R) = m(R′).
Hence ϕ(Rn) contains at most two allocations.

Proof: Let R,R′ ∈ Rn and let ϕ = (σ,m) be strategy-proof. Suppose σ(R) =

σ(R′).
Since preferences are quasi-linear and |Ω| = 2, there are three possibilities for

all i ∈ N :

Ri ∈ SMT (R′
i, ϕi(R

′)) (4.1)

R′
i ∈ SMT (Ri, ϕi(R))

Ri = R′
i

If (4.1) holds, then let R̃i = Ri, otherwise let R̃i = R′
i.

By Lemma 1.1, we have ϕ(R) = ϕ(R̃1, R2) = ϕ(R̃) and ϕ(R′) = ϕ(R̃1, R
′
2) =

ϕ(R̃). Hence m(R) = m(R′). �
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Lemma 4.1 makes it easy to describe all of the strategy-proof solutions for the

simple case of two agents and two objects. The only solutions that are strategy-

proof are (1) constant solutions, (2) solutions that let one agent choose his favorite

of two pre-specified allocations, and (3) solutions that choose one allocation only

if both agents prefer it to a second pre-specified allocation. Formally, we show

that if ϕ = (σ,m) is a strategy-proof solution, then it is one of these types:

Constant: σ(·) and m(·) are constant.
Dictatorial on k allocations: there exists i ∈ N such that for all R ∈ Rn and

all (σ̄, m̄) ∈ ϕ(Rn), we have ϕi(R) Ri (σ̄i, m̄i); furthermore, |ϕ(Rn)| = k.

Status-quo-preserving: there exist (σ̄, m̄), (σ̄′, m̄′) ∈ A such that ϕ(Rn) =

{(σ̄, m̄), (σ̄′, m̄′)}, and for all i ∈ N and all Ri ∈ R, if (σ̄i, m̄i) Pi (σ̄
′
i, m̄

′
i),

then ϕi(R) = (σ̄, m̄).

The following minor technical condition for 2-agent domains will complete our

characterization. Essentially, it is strategy-proofness applied only to one agent

when the other agent is indifferent between the allocations in the range of the

solution.

Tie-breaking condition: For all R ∈ R2, all i, j ∈ N with i 	= j, if for

all (σ̄, m̄), (σ̄′, m̄′) ∈ ϕ(Rn), we have (σ̄j, m̄j) Ij (σ̄
′
j, m̄

′
j), then ϕi(R) Ri

ϕi(R
′
i, Rj) for all R

′
i ∈ R,

Now we have our characterization.

Theorem 4.1 Suppose n = |Ω| = 2, and let ϕ be a solution for any domain R2.

Then the following are equivalent:

(a) ϕ is strategy-proof;

(b) ϕ is either constant, dictatorial on two allocations, or status-quo-preserving;

furthermore ϕ satisfies the tie-breaking condition.

Proof: We show that (a) implies (b). Let ϕ be a strategy-proof solution on R2

that is not constant. Lemma 4.1 implies that ϕ(Rn) contains two allocations,

(σa,ma), (σb,mb) ∈ A, such that σa 	= σb. For all i ∈ N = {1, 2}, partition R as

follows:

Ra
i ≡ {Ri ∈ R : (σa

i ,m
a
i ) Pi (σ

b
i ,m

b
i)} (4.2)

Rb
i ≡ {Ri ∈ R : (σb

i ,m
b
i) Pi (σ

a
i ,m

a
i )} (4.3)

{Ri} ≡ {Ri ∈ R : (σa
i ,m

a
i ) Ii (σ

b
i ,m

b
i)}
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(σa,ma) (σa,ma)

(σ
a
,m

a
)

(σb,mb)

(σa,ma)

(σa,ma)

(σb,mb)

(σ
b ,
m

b )

Ra
1

{R1}

Rb
1

Ra
2 {R2} Rb

2

Figure 4.2: (Proof of Theorem 4.1) The arrows show directions of implication,
e.g., if ϕ(Rb

1 ×Ra
2) = {(σa,ma)}, then ϕ({R1}×Ra

2) = {(σa,ma)}, implying that
ϕ is status-quo-preserving.

Some of these sets may be empty, depending on the domain R. It is without loss
of generality that we assume not.5

We first show that ϕ is constant on any cross-product of the sets defined

in (4.2) and (4.3). Let R ∈ Ra
1 ×Ra

2. Let R
′ ∈ R2 be such that ϕ(R′) = (σa,ma).

Strategy-proofness implies that ϕ1(R) R1 ϕ1(R
′
1, R2) and ϕ2(R

′
1, R2) R2 ϕ(R′).

Hence ϕ(R) = (σa,ma). Similarly, for all R ∈ Rb
1 ×Rb

2, we have ϕ(R) = (σ
b,mb).

See the shaded regions of Figure 4.2.

We now show that ϕ is also constant on the subdomain Ra
1 × Rb

2. Let

R,R′ ∈ Ra
1 × Rb

2 and suppose without loss of generality that ϕ(R) = (σa,ma).

Strategy-proofness implies ϕ1(R
′
1, R2) R

′
1 ϕ1(R), therefore ϕ(R′

1, R2) = (σa,ma).

Strategy-proofness also implies ϕ2(R
′
1, R2) R2 ϕ2(R

′), therefore ϕ(R′) = (σa,ma).

Similarly, ϕ is constant on Rb
1 ×Ra

2.

Assuming for the remainder that ϕ(Ra
1 × Rb

2) = {(σa,ma)}, we now handle

the cases when one agent’s preference relation is Ri.

Let R ∈ Ra
1 ×Rb

2. Strategy-proofness implies that ϕ2(R) R2 ϕ(R1, R2). There-

fore ϕ(Ra
1 ×R) = {(σa,ma)}. What we have just shown is demonstrated by the

arrow in the upper-right corner of Figure 4.2.

Similarly we can show that if ϕ(Rb
1 × Ra

2) = {(σb,mb)}, then ϕ(R × Ra
2) =

{(σb,mb)}, implying that ϕ is dictatorial (see Figure 4.2).
If, instead, ϕ(Rb

1 × Ra
2) = {(σa,ma)}, then strategy-proofness implies that

for all R′
2 ∈ Ra

2, we have ϕ(R1, R
′
2) = (σa,ma), in which case ϕ is status-quo-

5This becomes apparent after one reads the proof.
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preserving.

It is obvious that if ϕ does not satisfy the tie-breaking condition, then it is not

strategy-proof.

Showing that (b) implies (a) is left to the reader. �

4.3 Many agents

A characterization like the one of Theorem 4.1 does not hold for the case of more

than two agents. As is the case for many models with private goods, there exist

strategy-proof solutions that give one agent a fixed bundle, and vary the other

agents’ bundles arbitrarily according only to the fixed agent’s preferences.6 In

fact, we can give an even more interesting example.

Example 4.1 Let N = {1, 2, 3, 4}, Ω = {α, β, γ, δ}, and M = 0. Let Rn be an

arbitrary domain. For all i ∈ N , let f i : R → R be an arbitrary function. Let

g1 : R → {γ, δ} and g3 : R → {α, β} also be chosen arbitrarily. Define the solution
ϕ to satisfy for all R ∈ Rn,

ϕ1(R) = ( g3(R3) , f 2(R2)− f 3(R3))

ϕ2(R) = ({α, β} \ {g3(R3)}, f 3(R3)− f 4(R4))

ϕ3(R) = ( g1(R1) , f 4(R4)− f 1(R1))

ϕ4(R) = ({γ, δ} \ {g1(R1)} , f 1(R1)− f 2(R2))

Such a solution is obviously strategy-proof since no agent can ever vary his own

bundle. However it is clear that solutions like these use the information of agents’

preferences in an extremely arbitrary way.

4.3.1 Non-bossiness

To be able to describe the more interesting strategy-proof solutions, it will be

helpful to introduce a condition eliminating the solutions as in Example 4.1. We

begin this avenue of search by using the concept of non-bossiness, introduced

in Satterthwaite and Sonnenschein (1981).

Non-bossiness: for all R ∈ Rn, all i ∈ N , and all R′
i ∈ R, if ϕi(R

′
i, R−i) = ϕi(R)

then ϕ(R′
i, R−i) = ϕ(R).

6See, for example, Satterthwaite and Sonnenschein (1981).
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The first question that arises is whether or not the addition of non-bossiness

narrows the class of strategy-proof solutions as severely as strategy-proofness did

by itself for the case of two agents. The answer is yes, as the next result shows

by generalizing Lemma 4.1.

Theorem 4.2 Let ϕ = (σ,m) be a strategy-proof and non-bossy solution on the

domain Qn, and let R,R′ ∈ Rn. Then σ(R) = σ(R′) implies m(R) = m(R′).
Hence ϕ(Qn) contains at most n!/(n− k)! allocations, where k = |Ω|.

Proof: Let R,R′ ∈ Qn and let ϕ be as above. Suppose σ(R) = σ(R′).
Note that for all i ∈ N , there exists R′′

i ∈ SMT (Ri, ϕi(R))∩SMT (R′
i, ϕi(R

′)).
By Lemma 1.1, ϕ1(R

′′
1, R−1) = ϕ1(R). Hence non-bossiness implies ϕ(R

′′
1, R−1) =

ϕ(R). Similarly, ϕ(R′′
1, R

′′
2, R3, . . . , Rn) = ϕ(R). Repeating this argument for each

agent, ϕ(R′′) = ϕ(R). Similarly, ϕ(R′′) = ϕ(R′), so m(R) = m(R′). �

It is intuitive that if a solution is strategy-proof and non-bossy, then on the sub-

domain of preferences for which agents have strict preferences over the (bundles

in the) allocations in the range of the solution, the solution should only use infor-

mation concerning the agents’ preferences over the (bundles in the) allocations in

the range, and no other preference information. This is a type of independence

condition, which suggests the usual notion that strategy-proof solutions are never

“too sensitive” to preference information.

Lemma 4.2 Let ϕ be a strategy-proof and non-bossy solution on Qn, and de-

note its range by ϕ(Qn) � A. Let R,R′ ∈ Qn be such that for all distinct

(σ̄a, m̄a), (σ̄b, m̄b) ∈ ϕ(Qn) and all i ∈ N , the following two conditions hold:

(σ̄a
i , m̄

a
i ) Pi (σ̄

b
i , m̄

b
i)⇔ (σ̄a

i , m̄
a
i ) P

′
i (σ̄

b
i , m̄

b
i)

(σ̄a
i , m̄

a
i ) Pi (σ̄

b
i , m̄

b
i) or (σ̄

b
i , m̄

b
i) Pi (σ̄

a
i , m̄

a
i )

Then ϕ(R) = ϕ(R′).

Proof: Let ϕ, R and R′ be as above. By strategy-proofness ϕ1(R
′
1, R−1) R′

1

ϕ1(R) and ϕ1(R) R1 ϕ1(R
′
1, R−1). By our assumptions on R and R′, we have

ϕ(R′
1, R−1) = ϕ(R).

Similarly for j = 2, 3, . . . , n,

ϕ(R′
1, . . . , R

′
j, Rj+1, . . . , Rn) = ϕ(R′

1, . . . , R
′
j−1, Rj, . . . , Rn) = · · · = ϕ(R)

Hence ϕ(R′) = ϕ(R). �
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This result brings us back around to the Gibbard-Satterthwaite Theorem7 in

the following way. Suppose the range of a strategy-proof and non-bossy solution

contains between three and n allocations, and no agent receives the same ob-

ject at any two of those allocations. These allocations represent the alternatives

of the Gibbard-Satterthwaite domain. Since all quasi-linear preferences are ad-

missible and no agent receives the same object at two of those allocations, no

preference ordering over the allocations is ruled out a priori. Lemma 4.2 implies

that essentially, only the agents preferences over the allocations matter, so these

preferences correspond to those of the Gibbard-Satterthwaite domain. Hence the

solution must allow one agent to always choose his best allocation, i.e. it must be

a dictatorial solution.

Proposition 4.1 Let ϕ = (σ,m) be a strategy-proof and non-bossy solution

on Qn. Suppose the range of ϕ contains at least three allocations. In addition,

suppose that for all i ∈ N and all R,R′ ∈ Qn we have σi(R) = σi(R
′) implies

ϕ(R) = ϕ(R′). Then ϕ is dictatorial.

Sketch of Proof: For all i ∈ N , and all R,R′ ∈ Qn, define a partial preference

ordering over allocations, �Ri
, as follows: ϕ(R) �Ri

ϕ(R′) if and only if ϕi(R) Ri

ϕi(R
′). Note by the hypotheses of the Proposition that for all i ∈ N , the set

Pi ≡
⋃

Ri∈Q �Ri
is the set of all possible preference orderings over the allocations

in the range of ϕ.

Define the function f : P1×· · ·×Pn → A as follows: f(�R1 , . . . ,�Rn) = (σ̄, m̄)

if and only if ϕ(R1, . . . , Rn) = (σ̄, m̄). It is simple to check that since ϕ is strategy-

proof, f is a strategy-proof decision rule in the Gibbard-Satterthwaite framework

(see also Lemma 4.2). By our hypothesis of there being at least three allocations

in the (finite) range of ϕ, f must be dictatorial, at least on the subdomain of pref-

erences that are strict over those allocations. It then follows that ϕ is dictatorial

on that subdomain, and it can be shown that ϕ is in fact dictatorial (on the whole

domain). �

If, on the other hand, two different allocations in the range of a strategy-proof

and non-bossy solution give an agent the same object, we can not derive unre-

stricted preference orderings over the allocations. Hence we can not just invoke

the Gibbard-Satterthwaite result. We can show, however, that no strategy-proof

and non-bossy solution always treats agents with the same preferences equally.

Equal treatment of equals: for all R ∈ Rn and all i, j ∈ N , if Ri = Rj then

we have ϕi(R) Ii ϕj(R).

7See Gibbard (1973), Satterthwaite (1975).
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Proposition 4.2 If ϕ is a strategy-proof and non-bossy solution on Qn, then ϕ

does not satisfy equal treatment of equals.

Proof: Suppose by contradiction that ϕ does satisfy the three properties. For all

ε ∈ R and all i ∈ N , let Rε
i ∈ Qn satisfy for all m ∈ R and all a ∈ Ω \ {α},

(α,m) Ii
ε (a,m+ ε) (4.4)

Equal treatment of equals implies that for all i, j ∈ N and all ε ∈ R,

ϕi(R
ε
1, . . . , R

ε
n) I

ε
i ϕj(R

ε, . . . , Rε
n) (4.5)

Let (εk)
n!+1
k=1 be a strictly increasing list of numbers. By equations (4.4) and

(4.5), the list (ϕ(Rεk))n!+1
k=1 consists of n!+1 different allocations, which contradicts

Theorem 4.2. �

Remark 4.1 Some authors consider a technically weaker version of equal treat-

ment of equals for which a solution must treat agents equally only when all agents

have the same preferences. Note that the impossibility in Proposition 4.2 still

holds if we so weaken our condition.

Finally, on a more positive note, one method for constructing a non-trivial

strategy-proof and non-bossy solution is to transform the problem into one resem-

bling the housing market of Shapley and Scarf (1974). As we mentioned earlier,

Roth (1982) constructs ways to choose core allocations of the housing market (with

respect to an endowment) that are strategy-proof. We can use that result here by

fixing one allocation as our “endowment”, and considering the bundles of that

allocation (an indivisible object plus an amount of money) to be the “houses”. A

solution choosing “core” allocations of this resulting housing market is strategy-

proof as Roth showed. It can also be shown to be non-bossy. Of course it should

be noted that the resulting allocation is not any type of core allocation for our

model due to the presence of the (transferable) divisible good, which is absent

in the housing market model. However this method does define a somewhat rich

strategy-proof solution.

4.3.2 Coalitional Strategy-proofness

The property of non-bossiness is a controversial one. It has what is in some

circumstances a desirable normative implication in that an agent cannot influence

the other agents’ consumption without affecting the physical bundle he receives
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(though his well-being may be unaffected.) On the other hand, the following

requirement makes the condition look more technical and less prescriptive: when

a change in one agent’s preferences does not affect his bundle, the other agents’

bundles must not change, even if such a change would keep the other agents’

welfare levels constant.

To loosen this technical condition, but still maintain the flavor of the require-

ment that an agent should not be able to inflict a loss (or gain) for any other

agent(s) at no cost to himself, we will consider instead the condition of coalitional

strategy-proofness.

Coalitional strategy-proofness: for all R ∈ Rn, and all C ⊆ N , there exists

no R′
C ∈ R|C| such that for all i ∈ C, ϕi(R

′
C , R−C) Ri ϕi(R), and for some

j ∈ C, ϕj(R
′
C , R−C) Pi ϕj(R).

It turns out that the conclusion of Theorem 4.2 remains valid after we make this

change.

Theorem 4.3 Let ϕ = (σ,m) be a coalitionally strategy-proof solution on the

domain Qn, and let R,R′ ∈ Qn. Then σ(R) = σ(R′) implies m(R) = m(R′).
Hence ϕ(Qn) contains at most n!/(n− k)! allocations, where k = |Ω|.
Proof: Let ϕ satisfy coalitional strategy-proofness. The bulk of the proof involves

showing the following claim to be true for any coalition C ⊆ N .

Claim: For all R ∈ Qn, and all R′
C ∈ Q|C|, if for all i ∈ C, we have R′

i ∈
SMT (Ri, ϕi(R)), then ϕC(R

′
C , R−C) = ϕC(R).

The proof of this claim is by induction on |C|. If C is a singleton, the claim

is proven by Lemma 1.1. Let C ⊆ N , and suppose that the claim is true for any

coalition B ⊂ N such that |B| < |C|. Let R and R′
C be given as above. We must

show that for all i ∈ C, ϕi(R
′
C , R−C) = ϕi(R).

Let a coalition B ⊂ N be such that |B| < |C|. By our induction hypothesis,
ϕB(R

′
B, R−B) = ϕB(R). Therefore, for all i 	∈ B, coalitional strategy-proofness

implies ϕi(R
′
B, R−B) Ri ϕi(R) (via the coalition B ∪ {i}). Similarly, for all i 	∈ B,

we have ϕi(R) Ri ϕi(R
′
B, R−B). Hence, for any such coalition B,

for all i ∈ N , ϕi(R) Ii ϕi(R
′
B, R−B) (4.6)

Let i ∈ C. By strategy-proofness, ϕi(Ri, R
′
C\i, R−C) Ri ϕi(R

′
C , R−C). Letting

C \ i play the role of B in (4.6), this implies the following (see Figure 4.3):

ϕi(R) Ri ϕi(R
′
C , R−C), implying (4.7)

ϕi(R) R
′
i ϕi(R

′
C , R−C) (4.8)
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0

α

β

γ

Ri R′
i

ϕi(R)

Figure 4.3: (Proof of Theorem 4.3) By equation (4.7), ϕi(R
′
C , R−C) must lie in

one of the shaded areas.

Since (4.8) holds for all members of C, coalitional strategy-proofness implies

that there exists no j ∈ C such that ϕj(R) P
′
j ϕj(R

′
C , R−C), i.e. for all j ∈ C,

we have ϕj(R
′
C , R−C) R

′
j ϕj(R). With (4.7) and the definition of R

′
C , this implies

ϕC(R
′
C , R−C) = ϕC(R), proving the claim.

To finish the proof of the theorem, let R,R′ ∈ Qn and suppose σ(R) = σ(R′).
Then for each i ∈ N , there exists R′′

i ∈ SMT (Ri, ϕi(R))∩SMT (R′
i, ϕi(R

′)). Two
applications of the claim to the coalition C = N imply both ϕ(R) = ϕ(R′′) and
ϕ(R′) = ϕ(R′′). Hence m(R) = m(R′). �

Remark 4.2 Note that this result holds on any domain, R, of quasi-linear prefer-
ences that satisfies the following richness condition: for any allocation (σ̄, m̄) ∈ A,

any agent i ∈ N , and any two preference relations, Ri, R
′
i ∈ R, there exists R′′

i ∈ R
such that R′′

i ∈ SMT (Ri, (σ̄i, m̄i)) ∩ SMT (R′
i, (σ̄i, m̄i)). An interesting such do-

main (see Tadenuma and Thomson, 1991) is one for which there exists a fixed

ordering on the set of objects such that for any admissible preference relation,

objects that come earlier in the order are “better” than those that come later in

the order, in the following sense: two bundles are considered indifferent only if

there is a greater amount of the divisible good with the object that comes later

in the order.

Remark 4.3 With the same reasoning we used with Proposition 4.1, we can see

that many coalitionally strategy-proof rules with “very small” ranges are dictato-

rial.

Finally, note that with more than two agents, even dictatorial rules need not

satisfy our strong version of coalitional strategy-proofness. To see this, consider a

solution choosing among two allocations, depending on which of the two makes

agent 1 better off. Suppose preferences are such that agent 1 is indifferent between

the bundles he receives at the two allocations, agent 2 strictly prefers the bundle
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he receives from the first allocation, and agent 3 strictly prefers the bundle he

receives from the second allocation. Depending on which allocation is chosen at

that profile, agent 1 can either make agent 2 better off, or make agent 3 better

off, at no loss to himself.

This problem, arising when agents may not care which allocation in the range

of a solution is chosen, also has implications for the adaptation of Roth’s method

discussed in Section 4.3.1. However, non-trivial examples of coalitionally strategy-

proof solutions exist. Consider a status-quo-preserving solution that chooses one

of two allocations only when all agents strictly prefer it to the “status-quo” al-

location. This solution is coalitionally strategy-proof. More generally, consider

dividing the agents, objects, and divisible good into two “sub-economies”, and

operating two different such status-quo-preserving solutions on each. This also

defines a coalitionally strategy-proof solution for the original economy.

4.3.3 Bribe-proofness

While coalitional strategy-proofness is a desirable property, it may be unreasonable

in some situations to suspect that large coalitions can coordinate enough to jointly

misrepresent their preferences in order to gain.

It may also be unreasonable to suspect that an agent will misrepresent his

preferences in order for another agent to gain, at no gain to himself. This second

criticism may be countered by the argument that an agent that does gain with

his misrepresentation could offer a small “bribe” to the agent who neither gains

nor loses from his his misrepresentation. If this is the case, however, it is not

unreasonable to suspect that one agent may bribe another agent to misrepresent

his preferences even in situations where the bribed agent would be strictly worse

off without the bribe, but better off with it.

We address these two points simultaneously by introducing the condition of

bribe-proofness. A solution is bribe-proof if it is never the case that one agent can

bribe another to misrepresent his preferences, making both agents strictly better

off. Formally, letting ϕ = (σ,m) be a solution,

Bribe-proofness: there exist no R ∈ Rn, i, j ∈ N , R′
i, and τ ∈ R+ such that

(σi(R
′
i, R−i),m(R

′
i, R−i) + τ) Pi ϕi(R), and

(σj(R
′
i, R−i),m(R

′
i, R−i)− τ) Pj ϕj(R).

If the definition were violated, agent j would bribe agent i to misrepresent his

preferences with τ units of the divisible good. Note that bribe-proofness implies
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strategy-proofness (let τ = 0 and i = j).

It may appear at first that this condition neither implies nor is implied by

coalitional strategy-proofness. It turns out, however, that bribe-proofness is an

extremely strong property; the only solutions to satisfy it are essentially constant

solutions. The proof is completed by two lemmata. First, it will be convenient to

introduce some extra notation as in Barberà and Peleg (1990).

Agent i’s option set, or attainable set, is defined as follows: for all R−i ∈
Rn−1,

Oi(R−i) = {(a,mi) ∈ Ω× R : ∃Ri ∈ R such that ϕi(Ri, R−i) = (a,mi)}

The first lemma already shows the strength of bribe-proofness. It says that an

agent’s well-being cannot be affected when other agents change their preferences.

Lemma 4.3 Let ϕ = (σ,m) be a bribe-proof solution on Qn. For all i ∈ N , all

Ri ∈ R, and all R−i, R
′
−i ∈ Rn−1, we have ϕi(Ri, R−i) Ii ϕi(Ri, R

′
−i).

Proof: Let ϕ be bribe-proof and let Rj, R
′
j ∈ Q and i, j ∈ N be such that j 	= i. It

will suffice to show that ϕi(Rj, R−j) Ii ϕi(R
′
j, R−j), because repeated application

of this statement proves the lemma.

Suppose this is not the case, that is, suppose without loss of generality that

ϕi(Rj, R−j) Pi ϕi(R
′
j, R−j). Let δ > 0 be such that

(σi(Rj, R−j),m(Rj, R−j)− 3δ) Ii ϕi(R
′
j, R−j) (4.9)

That is, when Rj changes to R′
j, agent i is made “3δ worse off.” Bribe-proofness

implies ϕj(R
′
j, R−j) P ′

j ϕj(Rj, R−j). Let (a,mj) = ϕj(Rj, R−j) and (a
′,m′

j) =

ϕj(R
′
j, R−j).

Note that strategy-proofness implies that for all (b, m̃j) ∈ Oj(R−j), if b =

a then m̃j = mj. Hence a 	= a′. Therefore, there exists Rj ∈ R such that

argmaxOj(R−j)
Rj = {(a′,m′

j)} and (a,mj + δ) Ij (a
′,m′

j) (see Figure 4.4).

Strategy-proofness clearly implies ϕj(Rj, R−j) = (a′,m′
j). Therefore bribe-

proofness implies ϕi(Rj, R−j) Ri ϕi(R
′
j, R−j) and ϕi(R

′
j, R−j) Ri ϕi(Rj, R−j).

Hence ϕi(Rj, R−j) Ii ϕi(R
′
j, R−j). With (4.9), this implies

ϕi(Rj, R−j) Ii (σi(Rj, R−j),mi(Rj, R−j)− 3δ)
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Rj

α

β

γ
0

Oj(R−j)

(a′,m′
j)

(a,mj)

δ

Figure 4.4: (Proof of Lemma 4.3) The construction of Rj.

But then

(σj(Rj, R−j),mj(Rj, R−j) + 2δ) P j ϕj(Rj, R−j), and

(σi(Rj, R−j),mi(Rj, R−j)− 2δ) Pi ϕi(Rj, R−j)

violating bribe-proofness. �

The next theorem follows intuitively from Lemma 4.3.

Theorem 4.4 Let ϕ be a bribe-proof solution on Qn. Then for all i ∈ N , Oi(·)
is constant.

Proof: Let R−i, R
′
−i ∈ Rn−1 and (a,mi) ∈ Oi(R−i). We must show that (a,mi) ∈

Oi(R
′
−i).

If there exists m′
i ∈ R such that (a,m′

i) ∈ Oi(R
′
−i), assume without loss of

generality thatm′
i ≤ mi. Recall that if (a,m

′
i) ∈ Oi(R−i) thenmi = m′

i. Therefore

there exists Ri ∈ R such that argmaxOi(R−i)∪Oi(R′
−i)

Ri = {(a,mi)}.
Strategy-proofness therefore implies ϕ(Ri, R−i) = (a,mi). Lemma 4.3 then

implies ϕ(Ri, R
′
−i) Ii ϕ(Ri, R−i). Therefore by choice of Ri, ϕ(Ri, R

′
−i) = (a,mi),

hence (a,mi) ∈ Oi(R
′
−i). �

Corollary 4.1 If ϕ = (σ,m) is a bribe-proof solution on Qn, then an agent

always receives the same amount of the divisible good, and receives his favorite

object from a pre-specified set. That is, m is constant, and for all R,R′ ∈ Qn and

all i, j ∈ N , σi(R) 	= σj(R
′). Hence if |Ω| = n, ϕ is constant.

Proof: Letting ϕ = (σ,m) be bribe-proof, Theorem 4.4 implies m is constant.

Suppose by contradiction that there exist i, j ∈ N , a ∈ Ω, and R,R′ ∈ Qn such

that σi(R) = a = σj(R
′).
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Let Ri and Rj be such that argmaxOi
Ri = {ϕi(R)} and argmaxOj

Rj =

{ϕj(R
′)}. By Theorem 4.4 and strategy-proofness, agents i and j receive object a,

at the allocation ϕ(Ri, Rj, R−{i,j}), which is a contradiction. �

So if there are more objects than agents and a solution is bribe-proof, then the

set of objects is partitioned into n + 1 subsets, so that each agent receives his

favorite object from his own subset in the partition, and objects in the (n + 1)th

subset are never assigned. When |Ω| = n, this implies that a bribe-proof solution

is constant.

4.3.4 Restricted Domains of Preferences

Consider a situation in which the set of indivisible objects to be assigned to

the agents contains objects that are identical. For instance, some offices in a

department may be so similar as to be indistinguishable in terms of preferences.

Such a situation is described by our model above with one added requirement:

for any domain of preferences, R, and any preference relation Ri ∈ R, if α and
α′ are to be considered identical objects, then for all mi,m

′
i ∈ R, we must have

(α,mi) Ii (α
′,m′

i) if and only if mi = m′
i. That is, we must impose a restriction

on the domain of preferences so that copies of the same type of object are

always considered equivalent in terms of preferences.

One application of this domain restriction is to the case in which there are

fewer “real” objects than agents. Agents that do not receive a real object instead

consume a “null” object, and all null objects are equivalent in terms of preferences.

A second application of this domain restriction is to the case in which a number

of agents (but perhaps not all) may share an office, or other indivisible public good,

as long as they are indifferent about sharing it (i.e. there are no externalities). If

an office can hold no more than � occupants, then � copies of this office belong to

the set of objects to be assigned.

Theorems 4.2, 4.3, and 4.4 hold on such domains of preferences. However, the

following should be noted:

• The non-bossiness condition should require that if a change in an agent’s
preferences affects neither his consumption of the divisible good nor the type

of object he receives, then it affects neither the consumption of the divisible

good of another agent nor the type of object another agent consumes, i.e.

in the example above, consuming α is the same as consuming α′.

• The wording of Theorems 4.2 and 4.3 should be slightly strengthened, stating
that if at two allocations any agent receives the same type of object, then
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at the two allocations, each agent receives the same amount of the divisible

good.

• The wording of Theorem 4.4 does not need to be adjusted, but Corollary 4.1

does not apply. However a similar corollary can be obtained.

Finally, note that to obtain proofs of these results, the definition of a strict

monotonic transformation must be slightly modified. Given a domain R, re-
stricted as above, for any preference relation Ri ∈ R and any bundle (a,mi), a

preference relation R′
i ∈ R is a strict monotonic transformation of Ri at

(a, mi) with respect to the domain R when for any other bundle (a′,m′
i),

if both (1) (a,mi) Ri (a
′,m′

i) and (2) a and a′ are not the same type of object
according to our domain restriction, then (a,mi) P

′
i (a

′,m′
i).

4.4 Efficiency

Much of the work on other economic models (e.g., Hurwicz and Walker (1990),

Schummer (1996,1997a), and Zhou (1991a,b)) has shown a general incompatibility

between strategy-proofness and efficiency, e.g., a solution satisfying those proper-

ties must allow a given agent to choose his favorite feasible allocation. This model

provides no exception. There are two ways of defining efficiency in this model,

depending on whether agents may consume negative quantities of the divisible

good. The choice results either in the conclusion that no strategy-proof and ef-

ficient solution exists, or in the conclusion that only certain dictatorial solutions

are strategy-proof and efficient — a trivial difference.

First we address the case in which agents’ consumption of the divisible good is

not bounded. The corresponding definition of efficiency is the usual one used in the

context of quasi-linear preferences (e.g., the literature on the Groves mechanism).

Assignment-Efficiency : for all R ∈ Rn, there exists no (σ̄, m̄) ∈ A such that

for all i ∈ N , (σ̄i, m̄i) Pi ϕi(R).

One may check that this condition only requires that the surplus-maximizing

assignment of objects be chosen, where surplus is measured in terms of the di-

visible good; the condition is independent of m(·), but only because we require∑
mi(R) =M .

4.4.1 Two Agents, Two Objects

Beginning again with the 2-agent, 2-object case, we show that even on domains

of extremely small size, assignment-efficiency is completely incompatible with
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Figure 4.5: (Proof of Theorem 4.5) When agent 1 likes object α relatively more
than agent 2 does, efficiency implies that ϕ gives α to agent 1.

strategy-proofness. Before showing that result, we introduce the following notation

to be used only for the case of two agents and two objects. When n = |Ω| = 2,

for any number x ∈ R, define the preference relation Rx as follows:

for all mi ∈ R, (α,mi) I
x (β,mi + x) (4.10)

A higher value of x implies a relatively greater worth of the object β in comparison

to α.

Theorem 4.5 Suppose n = |Ω| = 2. Further, suppose that |R| ≥ 4, that is, R
contains at least four preference relations. Let ϕ be a strategy-proof solution on

R2. Then ϕ violates assignment-efficiency.

Proof: Let Ω = {α, β}. Let {Rw, Rx, Ry, Rz} ⊂ R be defined as in (4.10), where

w < x < y < z. Hence an agent with the preference relation Ry cares more

for good α (compared to good β) than does an agent with either the preference

relation Rw or Rx.

Suppose by contradiction that there exists a strategy-proof and assignment-

efficient solution, ϕ = (σ,m). Note that assignment-efficiency implies both

σ1(R
x
1 , R

w
2 )) = α and σ1(R

w
1 , R

x
2) = β. Therefore denote (σa,ma) = ϕ(Rx

1 , R
w
2 ))

and (σb,mb) = ϕ(Rw
1 , R

x
2).

Lemma 4.1 and assignment-efficiency imply (see Figure 4.5):

ϕ(Rx
1 , R

w
2 ) = ϕ(Ry

1, R
w
2 ) = ϕ(Rz

1, R
w
2 ) = ϕ(Ry

1, R
x
2) =

ϕ(Rz
1, R

x
2) = ϕ(Rz

1, R
y
2) = (σ

a,ma)

ϕ(Rw
1 , R

x
2) = ϕ(Rw

1 , R
y
2) = ϕ(Rw

1 , R
z
2) = ϕ(Rx

1 , R
y
2) =

ϕ(Rx
1 , R

z
2) = ϕ(Ry

1, R
z
2) = (σ

b,mb)
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Therefore strategy-proofness implies that for all i ∈ N , ϕi(R
x
1 , R

x
2) R

x
i (σ

a
i ,m

a
i )

and ϕi(R
x
1 , R

x
2) Rx

i (σb
i ,m

b
i). Note that both assignments are efficient for the

profile (Rx
1 , R

x
2). Therefore (σ

a
i ,m

a
i ) I

x
i ϕi(R

x
1 , R

x
2) I

x
i (σ

b
i ,m

b
i).

Similarly, we can show that (σa
i ,m

a
i ) I

y
i (σ

b
i ,m

b
i). However this is a contradic-

tion since Rx
1 	= Ry

1, and σa
1 	= σb

1. �

Remark 4.4 A similar result holds for the case |Ω| > n = 2. The proof uses the

existence of four admissible preference relations and two objects such that: (1)

the restrictions of those preferences to those two objects (×R) correspond to Rw

through Rz in the proof of Theorem 4.5, and (2) for any profile made up of only

those preference relations, efficiency implies that each agent receives one of those

two objects.

Notice that in our model, there is no favorite feasible allocation for an agent

because the consumption of the divisible good is unbounded. Therefore a solution

which gives to one agent M units of the divisible good plus his favorite object is

not efficient ; if the other agent likes his favorite object relatively more than this

dictator, both agents can be made better off by switching objects and making a

transfer of money. It is this sort of reason that causes the impossibility of Theo-

rem 4.5. However, the transfer in this example results in negative consumption of

the divisible good for one of the agents, which may not be reasonable. At least, un-

bounded consumption (from below) is not reasonable. If we require non-negative

consumption, though, it makes no sense to consider the transfer in our above ex-

ample as a way for the agents to jointly improve upon the allocation prescribed by

the dictatorial solution. More precisely, we should only require that an allocation

(with non-negative consumption of the divisible good) not be Pareto-dominated

by any allocation that also prescribes non-negative consumption of the divisible

good, hence weakening our previous notion of efficiency in an appropriate way.

Formally, consider the following conditions:

Non-negativity : for all R ∈ Rn, ϕ(R) ∈ A+.

Pareto-optimality : for all R ∈ Rn, there exists no (σ̄, m̄) ∈ A+, such that for

all i ∈ N , (σ̄i, m̄i) Pi ϕi(R).

While Theorem 4.5 tells us that none of the solutions characterized in Theo-

rem 4.1 is assignment-efficient, it is simple to check that the particular dictatorial

solution just described above satisfies both non-negativity and Pareto-optimality.

It turns out that for the domain Q2, such dictatorial solutions are the only ones

that are strategy-proof, non-negative, and Pareto-optimal. We again use the nota-

tion defined with (4.10).
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Theorem 4.6 Suppose n = |Ω| = 2 and M > 0. Let ϕ be a solution on the

domain Q2. Then the following are equivalent:

(a) ϕ is strategy-proof, non-negative, and Pareto-optimal;

(b) ϕ is dictatorial on two allocations that give all of the divisible good to the

dictator; furthermore ϕ satisfies the tie-breaking condition.

Proof: Let ϕ be a strategy-proof, non-negative, and Pareto-optimal solution.

Clearly by Pareto-optimality, ϕ cannot be constant, so by Lemma 4.1, it is either

dictatorial on two allocations or status-quo-preserving. Denote the two allocations

in its range by (σa,ma) and (σb,mb), where σa
1 = α and, therefore, σb

1 = β.

Step 1: ma = mb.

Let Rx
1 , R

y
1 ∈ Q be such that x > 0 and y < 0 (see the notation of (4.10)). By

Pareto-optimality, ϕ(Rx
1 , R

0
2) = (σa,ma) and ϕ(Ry

1, R
0
2) = (σb,mb). By strategy-

proofness, (σa
1 ,m

a
1) Rx

1 (σ
b
1,m

b
1) and (σ

b
1,m

b
1) Ry

1 (σ
a
1 ,m

a
1). Since x and y were

arbitrary positive and negative numbers, respectively, it follows that ma
1 = mb

1,

hence ma = mb.

Step 2: Either ma
1 = 0 or m

a
1 =M .

Let Ra
i and Rb

i be defined as in the proof of Theorem 4.1 and let R ∈ Ra
1×Rb

2.

Suppose that ϕ(R) = (σa,ma). Let ε = ma
2, and suppose ε > 0. Since ϕ is

either dictatorial or status-quo-preserving, ϕ(R
ε/2
1 , R−2ε

2 ) = ϕ(R). However the

allocation at which agent 1 receives the bundle (β,M) Pareto-dominates (σa,ma),

violating Pareto-optimality. Therefore ε = 0, i.e. ma = mb = (M, 0). Similarly,

ϕ(R) = (σb,mb) implies ma = mb = (0,M).

Let R′ ∈ Rb
1×Ra

2. As above, ϕ(R
′) = (σb,mb) implies ma = mb = (M, 0), and

ϕ(R′) = (σb,mb) implies ma = mb = (0,M).

Step 3: ϕ is dictatorial.

Since either ma
1 = 0 or ma

1 = M but not both, it follows that either (1)

ϕ(R) = (σa,ma) and ϕ(R′) = (σb,mb), or (2) ϕ(R) = (σb,mb) and ϕ(R′) =
(σa,ma). Therefore, ϕ is dictatorial and the dictator always receives M units of

the divisible good.

Strategy-proofness clearly implies the tie-breaking condition. Showing that (b)

implies (a) is left to the reader. �

4.4.2 Many Agents

The issue of efficiency for agents with quasi-linear preferences over public goods

and a divisible good has been thoroughly addressed in the literature. For such a
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domain, the only strategy-proof solutions that satisfy assignment-efficiency (ap-

propriately defined for that domain) are the Groves mechanisms8 as shown by

Green and Laffont (1977). However these mechanisms fail to always allocate the

exact endowment of the divisible good.

While this particular result has no direct implication on our model, one may

ask the question of whether such a characterization also holds here. If it does hold,

the second question would concern whether any such mechanisms always com-

pletely allocate all of the divisible good (“budget balance”). If none do, we would

conclude that no strategy-proof solutions satisfy assignment-efficiency (since our

definition requires budget balance).

The first of these two questions is answered by a strong, clean result of Holm-

ström (1979). He shows that the Green-Laffont characterization holds not only on

the domain of quasi-linear preferences over a set of public decisions plus a divisible

good, but that it holds on any convex subdomain of such preferences.9 To give

this result, we will need the following notation.

Fix an arbitrary assignment σv (e.g., σv
1 = α, σv

2 = β, σv
3 = γ, etc.). For

any agent i ∈ N and preference relation Ri ∈ Q, define the valuation function

for Ri, vi( · ;Ri), which maps assignments into real numbers, to satisfy for any

assignment σa, we have vi(σ
a;Ri) = m if and only if (σa

i , 0) Ii (σ
v
i ,m). It is

the “value” of the assignment σa to agent i with preferences Ri, normalized with

respect to σv. This normalization shall remain fixed throughout.

One may check that assignment-efficiency is merely the requirement that for

any profile R ∈ Qn, the chosen assignment maximizes
∑

vi( · , Ri).

Lemma 4.4 Let ϕ = (σ,m) be a strategy-proof and assignment-efficient solution

defined on Qn. Then for all i ∈ N , there exists hi : Qn−1 → R such that for all

R ∈ Qn,

mi(R) =
∑
j �=i

vj(σ(R);Rj)− hi(R−i)

Proof: Follows directly from Holmström (1979). �

As we mentioned above, solutions of this form do not always balance for the

domain of quasi-linear preferences over public goods. Though that result implies

nothing for our model, the same conclusion does in fact hold for our model.

Theorem 4.7 Let ϕ be a strategy-proof solution defined on Qn. Then ϕ violates

assignment-efficiency.

8See Clarke (1971), Groves (1973), and Green and Laffont (1977).
9In fact his result is even stronger — the term convex can be replaced with the weaker term

connected. See Holmström (1979) for a more precise statement.
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Proof:10 Suppose ϕ = (σ,m) satisfies both properties. We will show that for some

R ∈ Qn,
∑

mi(R) 	=M , violating our definition of a solution (balancedness). We

will assume without loss of generality thatM = 0. Clearly if no strategy-proof and

assignment-efficient solution exists for this case, then none exists for the general

case.

Recall the assignment σv, from the definition of the valuation functions. Let

the assignment σa satisfy σa
n = σv

1 , and for all i 	= n, σa
i = σv

i+1. Now define

R,R′ ∈ Qn as follows:

∀i ∈ N,∀a ∈ Ω \ {σv
i }, (σv

i , 0) Ii (a, n)

∀i ∈ N,∀a ∈ Ω \ {σv
i , σ

a
i }, (σv

i , 0) I
′
i (σ

a
i ,−1) I ′i (a, n)

Hence for all i ∈ N , we have vi(σ
v, Ri) = 0 and vi(σ

a, R′
i) = 1.

Finally, for any (possibly empty) coalition C ⊆ N , define RC
i ∈ Qn as follows:

for all i ∈ N , if i ∈ C then RC
i = R′

i; R
C
i = Ri otherwise. Starting from the profile

R, C is the coalition of agents whose preferences have changed to R′
C . Therefore

R∅ = R and RN = R′.
It is easy to verify that assignment-efficiency implies that σ(R) = σv and

σ(R′) = σa. Furthermore, for any subcoalition C � N ,

σ(RC) = σv. (4.11)

Since M = 0, the definition of a solution requires that for any C ⊆ N , we

have
∑

mi(R
C) = 0. With Lemma 4.4, this implies the existence of n functions

hi : Qn−1 → R such that for each coalition C ⊆ N ,∑
i∈N

hi(R
C
−i) =

∑
i∈N

∑
j �=i

vj(σ(R
C);RC

j ) (4.12)

Let i ∈ N , and let B ⊂ N be such that i 	∈ B. Then RB∪i
−i = RB

−i follows by

definition. Hence we can write for each i ∈ N ,

0 =
∑
C �i

(−1)|C|+1hi(R
C∪i
−i ) +

∑
C �i

(−1)|C|hi(R
C
−i)

=
∑
Ci

(−1)|C|hi(R
C
−i) +

∑
C �i

(−1)|C|hi(R
C
−i)

=
∑
C⊆N

(−1)|C|hi(R
C
−i)

10This proof is based on one in Moulin (1988) for the case of unrestricted quasi-linear prefer-
ences over public goods.
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Therefore

0 =
∑
i∈N

∑
C⊆N

(−1)|C|hi(R
C
−i) =

∑
C⊆N

(−1)|C|∑
i∈N

hi(R
C
−i)

With (4.12), we have∑
C⊆N

(−1)|C|∑
i∈N

∑
j �=i

vj(σ(R
C);RC

j ) = 0 (4.13)

By definition of the valuation functions and our earlier remarks (4.11) about

assignment-efficiency,

∑
C⊆N

(−1)|C|∑
i∈N

∑
j �=i

vj(σ(R
C);RC

j ) =

(∑
C�N

(−1)|C|∑
i∈N

∑
j �=i

0

)
+ (−1)n

∑
i∈N

∑
j �=i

1

= (−1)nn(n− 1) 	= 0

which contradicts (4.13). �

Remark 4.5 It should be noted that Theorem 4.7 also holds for the case in

which there are fewer objects than agents. The necessary modifications to the

above proof are given in Section 4.6. Note that in such a case, if a solution

always chooses an envy-free allocation (i.e., no agent should prefer another agent’s

bundle), then the solution is assignment-efficient (see Svensson, 1983). Therefore

this result implies a result of Tadenuma and Thomson (1995a), stating that there

is no strategy-proof solution that always chooses an envy-free allocation, when

|Ω| = 1.
Following this general negative result but still desiring strategy-proofness, it

is natural to weaken assignment-efficiency to Pareto-optimality in an attempt

to find possibility.11 At this point, we provide no general theorem but make an

observation for the special case M = 0. Requiring non-negativity when M =

0, we obtain the model of Roth (1982).12 One can see that by applying his

solutions to our model (with respect to some arbitrarily chosen “endowments” —

see Section 4.3.1) we obtain a class of strategy-proof, Pareto-optimal, non-negative

11It is interesting to note that in a model (of quasi-linear preferences) for which (1) arbitrary
consumption of the divisible good is permitted, and (2) the definition of a solution allows disposal
of some of the divisible good, the concept of Pareto-optimality is actually stronger than the
concept of assignment-efficiency.

12We also have cardinal preference information over Roth’s “houses”; however, this type of
preference information is, irrelevant in the presence of strategy-proofness for our model, as it is
in most models.
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solutions. Whether possibility other than dictatorship obtains when M > 0 is an

open question at this time.

4.5 Summary

For a model with n ≥ 4 agents and n indivisible goods of which agents consume ex-

actly one (and no divisible good), Bordes and Le Breton (1990) prove an Arrovian

impossibility result. In contrast, Roth (1982) shows that reasonable strategy-proof

solutions exist for that same model. We extend the search to a similar model —

one with a transferable divisible good.

For the simple case of two agents and two objects, the strategy-proof solutions

are quite basic. However with the addition of agents and objects, many strategy-

proof solutions exist that use preference information in an arbitrary way. In an

effort to eliminate such solutions from our search, we considered in turn three

additions to the condition of strategy-proofness. The first two of these additions

(non-bossiness and coalitional strategy-proofness) restrict the range of a strategy-

proof solution to a very small size — at most one allocation per assignment of

the indivisibles to the agents. The last addition (bribe-proofness) requires that a

solution be, essentially, constant.

Finally we addressed the issue of efficiency. Adapting arguments from work

on public goods models, we showed that no strategy-proof solution always chooses

the efficient assignment of the objects to the agents. Weakening this requirement

to Pareto-optimality while requiring non-negative consumption of the divisible

good gives us a previously known possibility when M = 0, i.e. when there is no

divisible good; the answer for the general case (M ≥ 0) is unknown at this point.

4.6 Supplement: Efficiency with Few Objects

We provide an outline of the proof of Theorem 4.7 for the case of fewer objects

than agents by providing the substitutions that must be made in to the proof for

the original case.

Suppose there are m “real” objects, and therefore n−m null objects. Without

loss of generality, suppose that σv is the assignment giving the “real” objects to

the agents in the set M ≡ {1, . . . ,m}.
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Let N ′ ≡ {m+ 1, . . . , n}. Define R,R′ so that:

∀i ∈ N,∀a 	= σv
i , (σ

v, 0) Ii (a, n)

∀i ∈ M,∀a 	= σv
i , σ

v
i+1, (σ

v, 0) I ′i (σ
v
i+1,−1)I ′i(a, n)

∀i ∈ N ′,∀a 	= σv
i , α (σv, 0) I ′i (α,−1) I ′i (a, n)

Define RC as in the original proof.

Assignment-efficiency implies that if either C 	⊃ M or C ∩ N ′ = ∅, then the
assignment chosen is σv, or is equivalent to σv in terms of the valuation functions.

Hence
∑

vj(σ(R
C);RC

j ) = 0.

Assignment-efficiency also implies that if either C ⊃ M or C ∩ N ′ 	= ∅, then
each agent i ∈ M receives object σv

i+1, and one agent j ∈ N ′ ∩ C receives α. In

this case,
∑

vj(σ(R
C);RC

j ) = m+ 1.

Now, the equation immediately following equation (4.13) becomes:∑
C⊆N

(−1)|C|∑
i∈N

∑
j �=i

vj(σ(R
C);RC

j )

=
∑

C∩N ′=∅
(−1)|C| · 0 +

∑
C �⊃M

(−1)|C| · 0 +
∑

C⊃M,C∩N ′ �=∅
(−1)|C|(m+ 1)(n− 1)

=
n′∑

k=1

(−1)k+m

(
n′
k

)
(m+ 1)(n− 1) = (−1)m+1(m+ 1)(n− 1) 	= 0

where n′ = |N ′|, m = |M |, and the last equality follows from that fact that for

any integer n̄,
n̄∑

k=1

(−1k)

(
n̄
k

)
= −1

concluding the proof.
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