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1 Introduction

We examine the problem of choosing a location on a network (i.e. graph)

based on agents’ preferences over such locations. For example, consider the

problem of locating a public facility, such as a post office or library, on a

given road network. The choice of location is to be based on the preferences

of the local citizens (or of members of a government committee). While some

citizens may prefer that the facility be located near their homes, others may

prefer that it be located near a workplace or some other location. In any

case, the preferences are to be solicited as “votes,” and a location is to be

determined as a result.

The above example involves a physical road network. A virtual example

involves choosing a time of day for, say, a meeting for a group of people. In

this case, the network is a cycle, around the face of a clock.1 Some people

may prefer to hold meetings in the morning, while others may prefer other

times of day.

A choice rule is a systematic way (i.e. function) to map (elicited) pref-

erences into locations. One could imagine many desirable properties for a

choice rule to satisfy. In this paper, our objective is to characterize the class

of rules that satisfy the well-known incentives property of strategy-proofness:

an agent should never be able to manipulate the choice rule by misreporting

his preferences to it. We successfully characterize the class of (onto) choice

rules that satisfy this condition when agents’ preferences over points on a

graph are “quadratic” (i.e. symmetric, single-peaked).2

The significance of the results is as follows. First, the most important

part of the contribution is clearly that we provide a description of the non-

1We thank Michael Schwarz for suggesting this example.
2In other words, preferences over points are inversely related to distance from a most

preferred point). Our results are technically stronger using this domain, being robust to
the choice of domain of single-peaked preferences, as we discuss in the Conclusion.
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manipulable choice rules (or “voting rules”) for situations in which a loca-

tion must be chosen. Second, our characterization result provides a class

of rules that is surprisingly related to a class of strategy-proof rules in ex-

change economies described by Barberà and Jackson [4]. This connection is

discussed in the Conclusion.

The seminal paper in the related literature is by Moulin [17], who char-

acterizes the class of generalized median voter schemes (g.m.v.s.) as the

only strategy-proof rules (satisfying a “peaks-only” condition) when agents

have single-peaked preferences over an interval. Ching [10] shows that the

peaks-only requirement is redundant. This characterization has been gen-

eralized to multi-dimensional frameworks by various authors. Border and

Jordan [9] restrict multi-dimensional preferences over Euclidean space to be

separable and quadratic, and show that a strategy-proof rule must behave

like a g.m.v.s. on each dimension. Barberà, Massó, and Serizawa [6] extend

that result to full-dimensional subsets of Euclidean space, and show the same

conclusion; furthermore, they describe which g.m.v.s.’s are actually feasible

for a given subset.3 For a much larger class of preferences, Zhou [24] provides

an impossibility result for full-dimensional outcome spaces.4

In this paper, the range of a rule is the set of points on a graph. Therefore,

while we are expanding upon the notion of an interval, we are not analyzing

full-dimensional, convex subsets of Euclidean space. When travel is restricted

to a road network, convex combinations of locations are typically not feasible.

In a sense, our setting can be seen as a combinatorial generalization of the

1-dimensional case.

In a related paper, Danilov [12] considers a similar setting of tree net-

works, with single-peaked preferences that are not necessarily symmetric (i.e.

defined by distance from a peak). Imposing a “peaks-only” condition, he

3Barberà, Gul, and Stacchetti [2] offer a similar result for a discrete setting. Also, see
Peremans, et al. [19].

4Also see Barberà and Jackson [3]. See Thomson [22] for a more comprehensive survey.
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shows that strategy-proof rules can be recursively decomposed into medians

of constant and dictatorial rules. This result is related to the first half of

this paper, in which we provide a closed-form characterization of such rules

as described below.

Other work has been done regarding single-peaked preferences on graphs.

Hansen and Thisse [15] and Demange [13] restrict attention to graphs that

are trees, and derive existence results for that model concerning Condorcet

winners and the core, respectively. Moulin [18] discusses welfarism on more

general graphs. Ching and Thomson [11] and Vohra [23] examine fairness

criteria for graphs that are trees, while Gordon and Péqueux [14] do so when

the graph consists of exactly one cycle.

Our results arrive with two distinct flavors. In particular, the flavor of

the result depends on whether or not the given graph contains a cycle. First,

in Section 3, we discuss the case in which the graph does not contain a cy-

cle (i.e. is a tree). We provide a complete characterization of the class of

strategy-proof, onto rules. Naturally, since an interval is a special case of a

tree, the result is an extension of the results of Moulin’s [17] and Border and

Jordan [9], characterizing generalized median voter schemes. Our character-

ization describes each strategy-proof, onto rule as a family of g.m.v.s.’s that

together satisfy a feasibility condition we call consistency. We call such a

rule an extended median voter scheme.

Second, in Section 4, we examine the case in which the graph consists of

exactly one cycle (e.g. a circle). In complete contrast to the characterization

for trees, we show that in this case, only dictatorial rules are both strategy-

proof and onto.

Finally, in Section 5, we analyze general graphs that contain at least one

cycle. For such graphs, we again provide a complete characterization. A

strategy-proof, onto rule for this case is described by a blend of the previous

two characterizations. First, there exists an agent who has dictatorial power
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on or between any cycles on the graph. However, when this agent’s peak is

not on or between any cycles on the graph, the rule behaves like a g.m.v.s.,

with the restriction that it choose a point that is closer to this agent’s peak

than any other point on or between cycles.

We also discuss how the rules in this last characterization can be alter-

natively described as a certain subclass of the set of extended median voter

schemes. Therefore, the class of strategy-proof, onto rules for graphs with

cycles can be thought of as a subclass of such rules for trees.

2 The Model

There is a set of agents, N = {1, 2, . . . , n}, with arbitrary agents denoted i, j,

etc. There is a “road network” represented by a graph, G, formalized below.

A point (location) is to be chosen on G, based on the agents’ preferences over

points on G.

A (finite) graph is a closed, connected subset of Euclidean space, G ⊂ Rk,

that is composed of the union of a finite number of (closed) curves of finite

length.5 Each such curve is called an edge. Each of the two extremities of

an edge is called a vertex. A vertex that lies on only one edge is called a leaf

(or extreme point); the set of leaves is denoted L ⊂ G.

A path between two points on the graph, x, y ∈ G, is a minimal connected

subset ofG that contains x and y. Since a path is a curve, it has a well-defined

length. The distance between any two points x, y ∈ G, denoted d(x, y), is the

minimum path-length between the two points. Denote the set of minimal-

length paths between x and y by [x, y] ≡ {z ∈ G : d(x, z)+d(y, z) = d(x, y)}.
Typically, [x, y] is a single path.6

5For a more complete formalization of graphs and the lengths of curves, see Berge [8],
especially p. 102.

6One exception would be if G is a circle with a circumference of 2, and d(x, y) = 1.
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A cycle in G is the union of two paths in G whose intersection is equal to

the set of both of their endpoints. As a distance normalization, we assume

that for any graph with cycles, the distance around each cycle is at least 1,

i.e. for any cycle C ⊂ G, there exist x, y ∈ C such that d(x, y) ≥ 1/2. Our

analysis does not involve comparisons of different graphs with cycles, so this

assumption is a normalization made without loss of generality.

An important class of graphs are those that contain no cycle. A graph is

a tree if it contains no cycle.

Each agent has a quadratic preference relation over G: there exists a

point, pi ∈ G, called the peak of the preference relation, such that the agent’s

preferences are represented by the utility function u(x) = −d(pi, x).

Note that preference relations are uniquely defined by their peaks. Arbi-

trary peaks are denoted pi, p
′
j, etc. In standard fashion, for a list of peaks

p ∈ Gn for n agents, the list obtained by replacing agent i’s peak pi with p′i
is written (p′i, p−i).

A (social choice) rule is a function f :Gn → G mapping lists of agents’

peaks into points on the graph. We often have reason to discuss the re-

striction of such a function to a subdomain. For any subgraph G′ ⊂ G, the

restriction of f to G′ is the function f |G′ :G′n → G such that for all p ∈ G′n,

f |G′(p) = f(p).

We are interested in onto rules that are also non-manipulable in the sense

of being strategy-proof :

∀p ∈ Gn, i ∈ N, p′i ∈ G, d(pi, f(p)) ≤ d(pi, f(p
′
i, p−i)) (1)

A standard result in the strategy-proofness literature states that any

strategy-proof, onto rule satisfies what is known as unanimity : for all p ∈ Gn

and i ∈ N , if for all j ∈ N , pj = pi, then f(p) = pi. The proof is straightfor-

ward, and left to the reader (e.g., see Barberà and Peleg [7]).
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We conclude this section by providing a few more preliminary results

regarding strategy-proof rules on graphs. If the graph is assumed to be a

tree, stronger versions of these lemmas can be obtained. Since such results

follow from the main results of Section 3, we do not state them here.

The first such result is similar to one by Border and Jordan [9] stating

that strategy-proofness implies what they call uncompromisingness—moving

an agent’s peak closer to the chosen location should not change the choice of

location. At this point we can show that on graphs in general, this conclusion

is true in a neighborhood of the originally chosen location.

Lemma 1 (limited uncompromisingness) Let f be a strategy-proof rule

for a graph G. For all i ∈ N and all x, pi ∈ G, there exists ε(x, pi) > 0 such

that for all p−i ∈ Gn−1 and all p′i ∈ [pi, x], if f(p) = x and d(p′i, x) < ε(x, pi),

then f(p′i, p−i) = f(p).

Proof: Let p′i ∈ [pi, f(p)], x = f(p), and y = f(p′i, p−i). By eqn. (1) above,

we have both d(pi, x) ≤ d(pi, y) and d(p′i, y) ≤ d(p′i, x). If p′i is sufficiently

close to f(p), it follows from strategy-proofness that x = f(p), regardless of

the values of p−i. �

Since a strategy-proof, onto rule must satisfy unanimity, this result can

be used to show our second result: The point chosen by the rule must lie

“between” the agents’ peaks, in the sense that the shortest paths from the

agents’ peaks to the chosen point must jointly intersect only at the chosen

point.

Lemma 2 (no intersecting shortest paths) Let f be a strategy-proof

rule for a graph G. For all p ∈ Gn, we have
⋂

i∈N [pi, f(p)] = {f(p)}.

Proof: Suppose for a contradiction that
⋂

i∈N [pi, f(p)] �= {f(p)}. Hence there
exists x ∈ ⋂

i∈N [pi, f(p)] \ {f(p)} such that for all i ∈ N , x ∈ [pi, f(p)]. This

implies that for all i ∈ N , [x, f(p)] ⊂ [pi, f(p)].
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For all i ∈ N , let ε(f(p), pi) be defined as in Lemma 1. Let p̃ ∈ [x, f(p)]

satisfy 0 < d(p̃, f(p)) < mini ε(f(p), pi). For all i ∈ N , let p′i = p̃. By

repeated application of Lemma 1, f(p′) = f(p), contradicting unanimity. �

The next lemma states that when all agents’ peaks lie in a sufficiently

small neighborhood, a strategy-proof, onto rule chooses an efficient point—a

point lying in the union of the shortest paths between peaks. Recall that

distance has been normalized so that the length of each cycle (if one exists)

is at least 1.

Lemma 3 (limited efficiency) Let f be a strategy-proof rule for a graph

G. Let p ∈ Gn be such that for all i, j ∈ N , d(pi, pj) ≤ 1/8. Then f(p) ∈
⋃

i,j∈N [pi, pj].

Proof: Suppose in contradiction to the Lemma that f(p) �∈ ⋃
i,j∈N [pi, pj].

Claim: For all i, j ∈ N , if [pi, f(p)]∩ [pj, f(p)] = {f(p)}, then, where p′j = pi,

f(p′j, p−j) �∈
⋃

�,m∈N [p�, pm].

Suppose i, j ∈ N are such that [pi, f(p)] ∩ [pj, f(p)] = {f(p)}. Since

f(p) �∈ [pi, pj] by assumption, [pi, f(p)] ∪ [pj, f(p)] ∪ [pi, pj] contains a cycle.

Let di = d(pi, f(p)), d
j = d(pj, f(p)), and dij = d(pi, pj). As the minimum

length of a cycle is 1, we have di + dj + dij ≥ 1. Since dij ≤ 1/8, we have

either di ≥ 7/16 or dj ≥ 7/16 (or both). In the former case, the triangle

inequality implies dj + dij ≥ di, hence dj ≥ 5/16 in all cases.

Letting p′j = pi and x = f(p′j, p−j), strategy-proofness implies d(pj, x) ≥
5/16. For any other agent k ∈ N , d(pj, pk)+d(pk, x) ≥ d(pj, x), so d(pk, x) ≥
3/16. Therefore x �∈ ⋃

�,m∈N [p�, pm], and the Claim is proven.

By Lemma 2, let i, j ∈ N be such that [pi, f(p)]∩ [pj, f(p)] = {f(p)}. For
all k ∈ N , let p′k = pi. By the Claim, we have f(p′j, p−j) �∈

⋃
�,m∈N [p�, pm].

Repeating the argument, by Lemma 2, there must exist k ∈ N such

that [pi, f(p
′
j, p−j)] ∩ [pk, f(p

′
j, p−j)] = {f(p′j, p−j)}. By the Claim, we have

f(p′k, p
′
j, p−jk) �∈

⋃
�,m∈N [p�, pm].
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This argument can be repeated until we have f(p′) �∈ ⋃
�,m∈N [p�, pm],

which contradicts unanimity. �

3 Rules for Trees

In this section, we characterize the class of strategy-proof, onto rules for trees.

This characterization is, naturally, a generalization of Border and Jordan’s [9]

characterization of such rules on lines. A technical detail is the fact that

when talking about one dimension, Border and Jordan deal with the real

line, while we deal with finite intervals. It can be shown, though, that their

results also hold on intervals.7 In terms of our model, Border and Jordan

show that if a graph G consists of a single edge (i.e., is a single curve), then

each strategy-proof, onto rule is a generalized median voter scheme (g.m.v.s.)

as introduced by Moulin [17] and defined below.

For any x, y ∈ G, consider the restriction of a strategy-proof, onto rule f

to [x, y], denoted f |xy: [x, y]
n → G. Note that by Lemma 2, since G is a tree,

if f is strategy-proof and onto, we must have f |xy(p) ∈ [x, y]. Therefore we

actually have f |xy: [x, y]
n → [x, y].

Such a function f |xy is called a generalized median voter scheme on [x, y]

(g.m.v.s.) if there exist 2|N | points in [x, y], {αxy
S }S⊆N , such that

1. S ⊂ T ⊂ N implies d(αxy
S , x) ≤ d(αxy

T , x),8

2. αxy
∅ = x and αxy

N = y,

7To sketch the proof, let f be a strategy-proof, onto rule on [0, 1]. Define a strategy-proof,
onto rule on the real line, g, where (i) if all agents’ peaks are less than 0, g chooses the
maximum peak, (ii) if all agents’ peaks are greater than 1, g chooses the minimum peak,
and (iii) otherwise, the rule coincides with f (restricting agents’ preferences to [0, 1]). If f
is not one of the rules characterized by Border and Jordan (defined below), then neither
is g, which is a contradiction.

8This condition is not necessary in the definition, but imposing it rules out redundant
parameterizations of certain generalized median voter schemes.
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3. for all p ∈ [x, y]n, f |xy(p) is the unique point satisfying

d(f |xy(p), x) = max
S⊂N

min{(d(pi, x))i∈S, d(α
xy
S , x)}

Proposition 1 (Border and Jordan [9]) Suppose G contains exactly

two vertices, so G = [x, y], and let f be a strategy-proof, onto rule for

G. Then f is a generalized median voter scheme on G.

Condition (2) in the definition of a g.m.v.s. is a consequence of the onto

requirement. Dropping this condition yields well-defined g.m.v.s.’s that fail

to be onto.

An observation which is important in our results is the following. The

definition of a g.m.v.s. on a line involves arbitrarily picking a direction (i.e.,

a “left” and a “right”). For example, in the definition, the roles of x and y

could be reversed to yield

there exist 2|N | points in [x, y], {αyx
S }S⊆N , such that

1. S ⊂ T ⊂ N implies d(αyx
S , y) ≤ d(αyx

T , y),

2. αyx
∅ = y and αyx

N = x,

3. for all p ∈ [x, y]n, f(p) is the unique point satisfying

d(f(p), y) = max
S⊂N

min{(d(pi, y))i∈S, d(α
yx
S , y)}

In other words, in the original statement of the Proposition, x is “left” and

y is “right.” However, this choice was arbitrary. The important observation

for our purposes is that there is a relationship between these two sets of

parameters.

Suppose the two sets of parameters {αxy
S } and {αyx

S } each describe a given
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g.m.v.s. Then it is easy to see that for all S ⊆ N ,

αxy
S = αyx

N\S

This follows from the definition of a g.m.v.s.

Proposition 1 can be shown to have implications for strategy-proof, onto

rules for trees. In particular, for the situations in which agents’ peaks are

restricted to being on a given path on a tree, a strategy-proof, onto rule

must behave like a g.m.v.s. along that path. In other words, for any interval

[x, y] ∈ G, the restriction of a strategy-proof, onto rule to the domain [x, y]n

is a g.m.v.s.

Proposition 2 (g.m.v.s.’s on any path) Let f be a strategy-proof, onto

rule for a tree G. For all x, y ∈ G, f |xy is a g.m.v.s. on [x, y] with parameters

{αxy
S }S⊆N .

Proof: Fix x, y ∈ G and let p ∈ [x, y]n. By Lemma 2, we have f(p) ∈
[x, y]. Therefore the range of f |[x,y] is contained in [x, y]. Furthermore, by

unanimity, f |[x,y] is onto [x, y]. In other words, f |[x,y] is a strategy-proof, onto

rule from the domain [x, y]n onto [x, y]. Therefore by Proposition 1, f |[x,y] is

a g.m.v.s. �

Proposition 2 shows that we can describe the behavior of strategy-proof,

onto rules on any single path of a tree. For the remainder of this section,

for a given tree G, rule f , and points x, y ∈ G, the parameters {αxy
S }S⊂N are

understood to be those described in Proposition 2.

Even though strategy-proof, onto rules behave like g.m.v.s.’s when re-

stricted to paths, one cannot begin to construct a strategy-proof, onto rule

for trees by arbitrarily choosing a g.m.v.s. for each path on the tree. The

critical issue is that for any two paths that intersect on an interval, the two

corresponding g.m.v.s.’s on those two paths must not contradict each other
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Figure 1: The consistency condition among generalized median voter
schemes along different paths of a tree. The condition is satisfied in (a)
and (b), but not in (c).

on that intersection. This implies that if a strategy-proof, onto rule f must

coincide with a family of g.m.v.s.’s corresponding to various paths on the

tree, then those g.m.v.s.’s must be “self-consistent” in some way—they must

agree on the intersection of their domains. We formalize this consistency

notion next.

Let {αxy
S }S⊆N and {αwz

S }S⊆N parameterize two g.m.v.s.’s defined on two

paths, [x, y] and [w, z], on a tree G. Call these two g.m.v.s.’s (or these two

sets of parameters) consistent if for all S ⊆ N ,

if [x, y] ∩ [w, z] ∩ [x,w] contains at most one point (2)

then [x, y] ∩ [w, z] ∩ [αxy
S , αwz

S ] contains at most one point (3)

As an example, see Figure 1. Since [x, y] ∩ [w, z] ∩ [x,w] is a single

point, the hypothesis of the consistency condition, eqn. (2), is satisfied. Note

that if the positions of points w and z were exchanged, eqn. (2) would not

be satisfied. In Figures 1a and 1b, consistency—in particular, eqn. (3)—is

satisfied. In Figure 1c, it is not.
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3.1 A Characterization

With this consistency notion we have just defined, we can describe the class

of rules for trees that are strategy-proof and onto. Underlying the structure

of such rules is, associated with each path on the tree, a g.m.v.s. that is

consistent with any other such g.m.v.s. associated with any other path. With

respect to these g.m.v.s.’s, a strategy-proof, onto rule chooses, for any profile

of peaks, the unique point a ∈ G on the tree such that, for any path which

includes a, given the restriction of agents’ preferences to that path, that point

would be chosen by the g.m.v.s. associated with that path.

A formal definition is given below. First, in order to demonstrate that

such rules are well-defined, we show that for any family of consistent g.m.v.s.’s

and any profile of peaks, such a unique point a exists. Recall that L is the

set of leaves (extreme points) for G. For all x, y ∈ L and pi ∈ G, let the

unique point in [x, y] closest to pi be denoted pxy
i = argminz∈[x,y] d(z, pi).

Proposition 3 For all distinct x, y ∈ L, let gxy: [x, y]n → [x, y] be a g.m.v.s.

on [x, y]. Furthermore, for all w, x, y, z,∈ L, let gxy and gwz be consistent.

Then for all p ∈ Gn, there exists a unique point, a, such that for all x, y ∈ L,

[x, y] � a implies gxy(pxy) = a.

Proof: Within this proof, we shall call any point, a, that satisfies the con-

ditions of the proposition a critical point. First we show the existence of a

critical point for a given family of consistent g.m.v.s.’s, {gxy}x,y∈L.

Let x, y ∈ L, and let a1 = gxy(pxy). If a1 is critical, we are done. Other-

wise there exist w, z ∈ L such that (i) a1 ∈ [w, z], (ii) a2 ≡ gwz(pwz) �= a1,

and, without loss of generality, (iii) [x, y]∩ [w, z]∩ [x,w] contains at most one

point (choosing the orientation of w and z to satisfy the hypothesis of the

consistency condition; otherwise, reverse the labels of w and z). See Figure 2.

We show that [a1, a2]∩ [x, y] = {a1}. Suppose not. Then there exists b ∈
[x, y] such that b �= a1 and [b, a1] ⊂ [a1, a2]. Note that [b, a1] ⊂ [x, y] ∩ [w, z].
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b

x ya1

a2

a3 a4

w (or z)

(a) (b)

Figure 2: Proof of Proposition 3. In (a), a contradiction is reached. In
(b), we have [a1, a2] � [a1, a3], etc., so the construction of a finite sequence
of points ak ends with a critical point.

Therefore by the uncompromisingness of a g.m.v.s. (in the sense of Border and

Jordan [9]), both gxy(pba1
) = a1 and gwz(pba1

) = b, which violates consistency.

If a2 is critical, we are done. Otherwise there exist w′, z′ ∈ L such that

(i) a2 ∈ [w′, z′] and (ii) a3 ≡ gw′z′(pw′z′) �= a2. We can similarly show that

[a2, a3] ∩ [w, z] = {a2}. Since [a1, a2] ⊂ [w, z] and G is a tree, this implies

[a1, a2] � [a1, a3].

Similarly, if a3 is not critical, there exists a4 = gw′′z′′(pw′′z′′) such that

[a1, a3] � [a1, a4]. Since there is a finite number of leaves, there are a finite

number of candidate critical points ak. Since at each step [a1, ak] � [a1, ak+1],

the process must end with a critical point.

To show uniqueness, let a and a′ be critical points. There exist x, y ∈ L

such that a, a′ ∈ [x, y]. Then by definition, gxy(pxy) = a = a′. �

Given this uniqueness result, we can now define the class of rules we char-

acterize. A rule f is an extended generalized median voter scheme (e.m.v.s.)

if

(i) for all w, x, y, z ∈ G, f |xy and f |wz are consistent g.m.v.s.’s, and

(ii) for all p ∈ G, f(p) is the unique point a such that for all x, y ∈ L,
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Figure 3: Extended median voter scheme of Example 1.

a ∈ [x, y] implies f |xy(p
xy) = a.

Proposition 3 implies that any consistent family of g.m.v.s.’s defines an

e.m.v.s.

Example 1 We provide an example of an e.m.v.s. for a simple tree with

three leaves. Consider the graph given in Figure 3a. We define an e.m.v.s.

for N = {1, 2, 3} by specifying the parameters of its consistent g.m.v.s.’s.

Let αxy
1 = αxy

2 = a, αxy
1,2 = b, αxy

3 = c, and αxy
1,3 = αxy

2,3 = d. Let αxz
3 = e,

and αxz
1,3 = αxz

2,3 = f . By consistency, this choice of parameters implies the

locations of the remaining parameters {αzy
S }, etc.

For all p ∈ G3, if all three peaks lie on a single path, it is as straightforward

to find f(p) as it is to calculate the outcome of a g.m.v.s. If the peaks do

not lie on a common path, f(p) is calculated by finding the unique point to

satisfy condition (ii) in the definition of an e.m.v.s. Figures 3b and 3c provide

two examples of such profiles, p, and the corresponding outcome f(p). �

Our characterization result for trees is the following result.

Theorem 1 For any tree G, a rule f is strategy-proof and onto if and only

if it is an e.m.v.s.

15
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Figure 4: Proof of Theorem 1.

Proof: Let f be a strategy-proof, onto rule for a tree G. By Proposition 2,

for each x, y ∈ L, f |xy is a g.m.v.s. on [x, y] with parameters {αxy
S }S⊆N .

Step 1. We show that for each w, x, y, z ∈ L, f |xy and f |wz are consistent.

Suppose not, i.e., that [x, y]∩[w, z]∩[x,w] contains at most one point, but

for some S ⊆ N , [x, y] ∩ [w, z] ∩ [αxy
S , αwz

S ] = [a, b], where a �= b. Choose the

labels a and b so that d(a, x) < d(b, x). Without loss of generality, suppose

that a ∈ [αxy
S , b] (otherwise reverse the labels of the pairs (x, y) and (w, z)).

See Figure 4a.

Let p ∈ Gn be such that i ∈ S implies pi = b, and i �∈ S implies pi = a.

Since [a, b] ⊂ [x, y] ∩ [w, z], we have f(p) = f |xy(p
xy) = f |wz(p

wz).

By the definition of an onto g.m.v.s., we have f |wz(p
wz) = b. Similarly,

we have f |xy(p
xy) = a, which is a contradiction.

Step 2. We show that f is an e.m.v.s.

Since {f |xy}x,y∈L is a consistent family of g.m.v.s.’s, Proposition 3 implies

that for all p ∈ Gn, there exists a unique point, g(p), such that for all x, y ∈ L,

g(p) ∈ [x, y] implies f |xy(p
xy) = g(p). We need to show that f = g.

Suppose not. Then, for some p ∈ Gn and some x, y ∈ L, we have f(p) ∈
[x, y] and f(p) �= a ≡ f |xy(p

xy).

Let M = {i ∈ N : a ∈ [pi, f(p)]}. See Figure 4b. Let ε be sufficiently

small so as to satisfy the conditions of Lemma 1 (i.e., in the notation of that

lemma, ε < ε(f(p)) for all i ∈ N). For all i ∈ M , Let p′i ∈ [f(p), a] satisfy

16



0 < d(p′i, f(p)) < ε. For all i �∈ M , Let p′i = f(p).

By Lemma 1 (or simply by strategy-proofness), f(p′i, p−i) = f(p). Thus

by repeating this argument, f(p′) = f(p). Since p′ ∈ [x, y]n, f |xy(p
′) is

well-defined. Furthermore, we have shown

f |xy(p
′) = f(p) (4)

Note that i ∈ M implies a ∈ [pxy
i , f(p)]. Therefore, by the definition of

a g.m.v.s. (in particular, the uncompromisingness property, in the sense of

Border and Jordan [9]), f |xy(p
xy
M , p′N\M) = f |xy(p

xy). Since for all i ∈ M ,

p′i ∈ [pxy
i , f(p)], we similarly have f |xy(p

′) = f |xy(p
xy), contradicting eqn. (4).

Therefore a strategy-proof, onto rule must be an e.m.v.s.

Proving that an e.m.v.s. is both strategy-proof and onto is straightfor-

ward, and is left to the reader. �

4 Rules for a Single Cycle

In this section, we consider the case in which the graph G consists of a

single cycle. More generally, for graphs that contain a cycle, we describe the

behavior of the restriction of a strategy-proof, onto rule to a single cycle. We

show that the restriction of such a rule to a cycle is dictatorial.

The reasoning behind the proof is as follows. First, along “short” paths

on G, a strategy-proof, onto rule must behave like a generalized median voter

scheme. This is completely analogous to Proposition 2 above, and is stated

below as Proposition 4.

Consider a cycle C ⊂ G. This cycle is composed of the union of many

overlapping, “short” paths. Each pair of g.m.v.s.’s for these paths must be

consistent. As we show in the proof of Theorem 2, the cyclic structure implies

that each such g.m.v.s. must be dictatorial. In fact, this notion is used to
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prove a stronger statement in Theorem 2, concluding this section: there must

be a dictator on the entire cycle.

The following result is analogous to Proposition 2 for trees, so we omit

the proof.

Proposition 4 (generalized median voter schemes) For any graph

G, let f be a strategy-proof, onto rule. For all x, y ∈ G such that d(x, y) ≤
1/8, f |xy is a g.m.v.s. on [x, y] with parameters {αxy

S }S⊆N .

To present the next set of results, we refer to the parameters, {αxy
S }S⊆N ,

described in Proposition 4. The following lemma states that whenever [x, y]

lies within a cycle, these parameters lie at the extreme points of the interval.

Furthermore, for each coalition, and for any pair of intervals, [x, y] and [w, z],

that lie on the same cycle, the direction in which its parameter lies (i.e., the

“right” or “left” of the interval) is consistent across the two intervals. In

essence, this implies that on intervals of length less than 1/8 within a given

cycle, a strategy-proof, onto rule can be described in terms of right- and

left-coalitions.9

To be precise, we need to introduce notation to refer to direction around

a cycle (e.g. clockwise vs. counter-clockwise). For any cycle C ⊂ G, we call

� the “clockwise” operator. To avoid a tedious description of an intuitively

simple operator, we informally define it as follows. Imagine fixing a (clock-

wise) direction on the cycle; there are two choices of direction, and the choice

is arbitrary. For all x, y ∈ C such that d(x, y) ≤ 1/8, we say x � y if x lies

beyond y in a clockwise direction. For example, on a clock, 4: 00 � 3: 00;

1: 00 � 12: 00; 3: 00 and 9: 00 are not comparable because the distance be-

tween them is greater than 1/8 (since the distance around a cycle is at least

1).

9This terminology should not be confused with the literature’s standard description of
generalized median voter schemes in terms of “right/left coalition systems.”
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Lemma 4 (right-/left-coalitions) Suppose G contains a cycle C ⊂ G,

and let f be a strategy-proof, onto rule for G. There exists a family of

right-coalitions, S ⊂ 2N , such that for all S ⊂ N ,

(i) if S ∈ S, then for all x, y ∈ C such that d(x, y) ≤ 1/8 and x � y, we

have αxy
S = x

(ii) if S �∈ S, then for all x, y ∈ C such that d(x, y) ≤ 1/8 and x � y, we

have αxy
S = y

Proof: Let S ⊂ N and let x, y ∈ C be such that x � y and d(x, y) ≤ 1/16.

Let α = αxy
S . We will show that if α �= y, then for all v, w ∈ C such that

v � w and d(v, w) ≤ 1/8, we have αvw
S = v, i.e., we will show that if α �= y,

then S is a “right-coalition.”

Let z ∈ C be such that y � z and d(x, z) ≤ 1/8. For all i ∈ N , let pi = x

if i ∈ S and pi = y otherwise. By definition of the α-parameters, we have

f(p) = α. Since f(p) �= y, we also have

αxz
S = α (5)

For all i ∈ N , let p′i = y if i ∈ S and p′i = z otherwise. By Proposition 4,

f(p) � min{(pi)i∈S, α
xz
S } = y. Therefore Lemma 3 implies f(p) = y. Hence,

αyz
S = y (6)

Repeating the arguments that lead to eqns. (5) and (6), we can show

that for all w ∈ C such that w � z and d(w, y) ≤ 1/8, we have αyw
S = y and

αzw
S = z.

Therefore, by choosing an appropriate sequence of points around C, the

same arguments show that for all v, w ∈ C such that v � w and d(v, w) ≤
1/8, we have αvw

S = v.
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If instead we had α = y, then we would have shown that S is a “left-

coalition.” �

The next lemma states that the restriction of a strategy-proof, onto rule

to a cycle always selects an agent’s peak.

Lemma 5 (peak selection) Suppose G contains a cycle C ⊂ G, and let f

be a strategy-proof, onto rule for G. For all p ∈ Cn, f(p) ∈ {p1, p2, . . . , pn}.

Proof: Let p ∈ Cn. Suppose in contradiction that f(p) �∈ {p1, p2, . . . , pn}.
By Lemma 1, there exists p′1 ∈ [p1, f(p)] such that 0 < d(p′1, f(p)) ≤ 1/16

and f(p′1, p−1) = f(p).

Similarly, there exists p′2 ∈ [p2, f(p)] such that 0 < d(p′2, f(p)) ≤ 1/16

and f(p′1, p
′
2, p−1,2) = f(p).

Repeating the construction for the other agents, we have f(p′) = f(p),

d(p′i, p
′
j) ≤ 1/8 for all i, j ∈ N , and p′i �= f(p′) for all i ∈ N , contradicting

Lemma 4. �

Now we have our main result for the case of three agents.

Proposition 5 Suppose G contains a cycle C ⊂ G, and let f be a strategy-

proof, onto rule for G. If |N | = 3, then there exists i ∈ N such that for all

p ∈ C3, f(p) = pi.

Proof: Let p ∈ C3 be such that d(pi, pj) = 1/3 for all i, j ∈ {1, 2, 3}, i �= j.

Assume without loss of generality (and by Lemma 5) that f(p) = p1. We

will show that for all p ∈ C3, f(p) = p1.

Let S be the set of coalitions described in Lemma 4. Note that by Propo-

sition 4, it is sufficient to show that both (i) {1} ∈ S and (ii) if S ∈ S and

|S| = 1, then S = {1}.10 Notice also that if S ∈ S, then S ⊂ S ′ ⊂ N implies

S ′ ∈ S.
10These two conditions are what define a dictator for our class of median voter schemes.
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Figure 5: Proof of Proposition 5.

For i ∈ {2, 3}, let p′i ∈ [pi, p1] be such that 0 < d(p′i, p1) ≤ 1/16 and

f(p1, p
′
2, p

′
3) = f(p) (see Figure 5a). By Proposition 4, we have {3} �∈ S.

Let p′1, p
′′
1, p

′′′
1 ∈ [p1, p3] satisfy d(p′1, p1) = 1/12, d(p′′1, p1) = 1/6, and

d(p′′′1 , p3) = 1/8 (see Figure 5b). Since f satisfies peak selection, strategy-

proofness implies f(p′1, p2, p3) = p′1. Similarly, we have f(p′′1, p2, p3) = p′′1
and f(p′′′1 , p2, p3). Strategy-proofness and peak selection also imply that for

any p′′2 ∈ [p′′′1 , p3], f(p
′′′
1 , p

′′
2, p3) = p′′′1 . Therefore, {2, 3} �∈ S, which implies

{2, } �∈ S.
The symmetric argument, with p̃1 ∈ [p1, p2] satisfying d(p̃1, p2) = 1/8 and

p′′3 ∈ [p′′′1 , p2], demonstrates that f(p̃1, p2, p
′′
3) = p̃1. Therefore, {1} ∈ S. �

Now we prove the general result. The proof works by showing that if a

strategy-proof, onto rule is non-dictatorial for the general case, then there

must be such a rule for the 3-agent case, contradicting Proposition 5. The

method of proof is similar to that found in Kalai and Muller [16], Aswal et

al. [1], and Schummer [21].

Theorem 2 (cycle dictator) Suppose G contains a cycle C ⊂ G, and

let f be a strategy-proof, onto rule for G. There exists an agent i ∈ N

(“cycle dictator”) such that for all p ∈ Cn, f(p) = pi.

Proof: The proof is by induction on n = |N |. Our method of proof requires

having shown the result for the case n = 3, which was done in Proposition 5.
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Proving the result for the case n = 2 is similar to the proof of Proposition 5,

and is left to the reader.

Suppose that the result is true for n agents. We show that the result

holds for n+ 1 agents.

Let f :Cn+1 → C be a strategy-proof, onto rule. Define two n-agent rules,

g and g′, as follows:

∀p ∈ Cn, g(p1, p2, . . . , pn) = f(p1, p2, . . . , pn, pn)

∀p ∈ Cn, g′(p1, p2, . . . , pn) = f(p1, p1, p2, . . . , pn)

That is, g is defined by creating a “copy” of agent n, placing that copy in

the n + 1st position, and applying the rule f . Similarly, g′ is defined by

duplicating agent 1.

Step 1: g and g′ are both strategy-proof and onto.

Since a strategy-proof, onto rule must satisfy unanimity, it follows that g

is onto. It is also clear that agents 1 through n − 1 cannot manipulate the

rule g. Thus, to demonstrate the strategy-proofness of g it suffices to prove

that for all p ∈ Cn and all p′n ∈ C, d(g(p), pn) ≤ d(g(p′n, p−n), pn).

By the strategy-proofness of f , for all p ∈ Cn and all p′n ∈ C,

d(f(p1, . . . , pn, pn), pn) ≤ d(f(p1, . . . , pn, p
′
n), pn) ≤ d(f(p1, . . . , p

′
n, p

′
n), pn)

Hence g is strategy-proof.

Similarly, g′ is strategy-proof and onto.

Step 2: if i < n is a cycle-dictator for g, then i is a cycle-dictator for f .

By the induction hypothesis above, there exists i ∈ {1, 2, . . . , n} such that

for all p ∈ Cn, g(p) = pi. Suppose i �= n. We show that for all p ∈ Cn+1,

f(p) = pi.

Let p ∈ Cn+1. For all j ∈ {1, 2, . . . , n} with j �= i, let p′j = f(p), and let
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Figure 6: A simple graph with a cycle, admitting a non-dictatorial,
strategy-proof, onto rule.

p′i = pi. Then by repeated application of Lemma 1, f(p′) = f(p). By the

definitions of g and i, we also have f(p′) = g(p′1, . . . , p
′
n) = p′i = pi.

Step 3: if i > 1 is a cycle-dictator for g′, then i+ 1 is a cycle-dictator for f .

This follows as in Step 2.

Step 4: either i < n is a g-dictator or i > 1 is a g′-dictator.

Let p ∈ Cn+1 satisfy p1 = p2 �= pn = pn+1. Then g(p1, . . . , pn) = f(p) =

g′(p1, p3, . . . , pn+1). Therefore it cannot be that both g(p1, . . . , pn) = pn and

g′(p1, p3, . . . , pn+1) = p1.

Therefore either Step 2 or Step 3 applies, and f is dictatorial on C. �

5 Rules for Graphs with Cycles

Consider the case in which G consists of a cycle and a line segment intersect-

ing the cycle at one of its endpoints (as in Figure 6). Clearly a dictatorial

rule on G is both strategy-proof and onto. A non-dictatorial, strategy-proof,

onto rule also exists for this graph. One such rule can be constructed as

follows: for each profile of preferences, if at least one agent’s peak lies on

the cycle, choose the point on the cycle closest to agent 1’s peak; otherwise,

choose the peak of the agent closest to the cycle.

For this rule, agent 1 plays the role of “cycle dictator” from Theorem 2.

On the line segment, the rule behaves just like a (non-dictatorial) generalized

median voter scheme. However, this generalized median voter scheme has the

23



additional feature that from the perspective of agent 1, the chosen location

(on the line segment) is at least as good as any location on the cycle. In

fact, this notion—that the cycle dictator likes the chosen location as much

as any location on a cycle—is what helps to characterize the strategy-proof,

onto rules for graphs.

Before we complete this characterization, we generalize Theorem 2 to

more general cyclic subsets of graphs. We have shown that on any given

cycle, a strategy-proof, onto rule must be dictatorial. This result extends to

certain connected sets of cycles.

The following lemma says that each of the “cycle dictators” described by

Theorem 2 (for each of the different cycles on the graph) are the same agent,

i.e. there is one agent such that whenever all peaks are on the same cycle,

that agent’s peak is chosen.

Lemma 6 (unique cycle dictator) Suppose C,C ′ ⊂ G are two cycles,

and let f be a strategy-proof, onto rule for G. There exists an agent i ∈ N

such that for all p ∈ Cn ∪ C ′n, f(p) = pi.

Proof: Without loss of generality, we will assume that C and C ′ can be

connected by a path whose interior intersects no cycles. If the conclusion of

the Lemma holds for this case, then the conclusion holds in the general case

by repeating the argument.

Therefore, describe a path connecting C and C ′ by letting x ∈ C, x′ ∈ C ′

be such that for any cycle C ′′, C ′′ ∩ [x, x′] ⊂ {x, x′}. (If C and C ′ intersect,

let x = x′.) See Figure 7.

By Theorem 2, there exist i, j ∈ N such that for all p ∈ Cn and all

p′ ∈ (C ′)n, we have f(p) = pi and f(p′) = pj. Let x
1, x2, . . . , x� ∈ G be such

that x1 ∈ C \ {x}, xk ∈ C ′ \ {x′}, for k ∈ {1, 2, . . . , !− 1}, d(xk, xk+1) ≤ 1/8,

and if ! ≥ 2, x2, . . . , x�−1 ∈ [x, x′].

By Proposition 4, the restriction of f to [xk, xk+1]n must be a generalized
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Figure 7: Proof of Lemma 6. Drawn with thick lines are two cycles, and
a path between them that intersects no other cycle on its interior.

median voter scheme for each k. For each k, let (αxkxk+1

S )S⊆N be the param-

eters for the rule in which we (arbitrarily) set the partial order � to satisfy

xk � xk+1.

Let pi = x1 and for all k �= i, pk = x. Since p ∈ Cn, we have f(p) = p1,

which implies that for all S ⊂ N such that i �∈ S, αx1,x2

S = x1. As in the proof

of Lemma 4, this implies that for all m ∈ {1, 2, . . . , !− 1}, αxm,xm−1

S = xm.

A symmetric argument shows that for allm ∈ {1, 2, . . . , !−1}, αxm,xm−1

{j} =

xm+1. Therefore i = j. In fact this also shows that when peaks lie within

the same interval of length less than 1/8, agent i’s peak is chosen. �

The following lemma states that the unique cycle dictator described in

Lemma 6 is a dictator over the minimal connected subgraph containing all

cycles in the graph. We will refer to this (unique) minimal subgraph as the

cycles neighborhood. In Figure 7, the cycles neighborhood consists of the

part of the graph drawn with thick lines plus everything lying to the right of

C ′.

Lemma 7 (cycles neighborhood dictator) Suppose that G contains

at least one cycle. Let C ⊆ G be the minimal connected subgraph of G con-

taining all of the cycles in G (i.e., the cycles neighborhood of G). There
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exists an agent i ∈ N such that for all p ∈ Cn, f(p) = pi.

Proof: Let p ∈ C. Let i ∈ N be the cycles dictator described in Lemma 6.

Note that Lemma 2 implies that f(p) ∈ C. If f(p) = pi, we are done.

Otherwise, for all j �= i, let p′j = f(p). By repeated application of strategy-

proofness, f(pi, p
′
−j) = f(p).

By Lemma 1, for all p′i sufficiently close to f(p), we have f(p′) = f(p).

Suppose there exists such a p′i not equal to f(p) which lies on a cycle also con-

taining f(p). Then by Lemma 6, we have f(p′) = p′i, contradicting Lemma 1.

Otherwise, since f(p) ∈ C, there exists such a p′i not equal to f(p) such

that p′i and f(p) lie on the same path between two cycles, and d(p′i, f(p)) ≤
1/8. As shown at the end of the proof of Lemma 6, in this situation we must

have f(p′) = p′i, contradicting Lemma 1. �

Our first main result of this section is that a strategy-proof, onto rule must

choose a location along the unique path between the cycle dictator’s peak

and the cycles neighborhood. Therefore, whenever the cycle-dictator’s peak

lies in the cycle-neighborhood, (and, hence, when this path is a point,) that

agent’s peak is chosen. All of our characterizations for graphs with cycles

are based upon this result.

Theorem 3 (cycle dictator’s rationality) Suppose that G contains

at least one cycle. Let C ⊆ G be the cycles neighborhood of G. There exists

an agent i ∈ N such that for all p ∈ Gn, f(p) ∈ ⋂
x∈C[pi, x].

Proof: Let i ∈ N be the cycle dictator described in Lemma 7. Without

loss of generality, assume that for all j �= i, pj = f(p) (as in the proof of

Lemma 7). By Lemma 1, for p′i ∈ [pi, f(p)] sufficiently close to f(p), we

have f(p′i, p−i) = f(p). Therefore if f(p) ∈ C, then with Lemma 7, we must

have f(p) ∈ ⋂
x∈C[pi, x] (otherwise, there exists such a p′i ∈ C such that

f(p′i, p−i) �= p′i).
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If f(p) �∈ C, then an argument similar to the one in the proof of Lemma 6

can be used, along a path from f(p) to C, to show that if d(p′i, f(p)) ≤ 1/8,

we must have f(p) = f(p′i, p−i) ∈ [p′i, x] for all x ∈ C. �

5.1 A Characterization

Reconsider the example of a graph given in Figure 6. According to Theo-

rem 3, under any strategy-proof, onto rule, there exists an agent, say agent 1,

such that for any profile of preferences, (i) if agent 1’s peak is on the cycle,

his peak is chosen, and (ii) otherwise, the chosen location must lie on the

interval between his peak and the cycle.

Conversely, the following method will always produce a strategy-proof,

onto rule for this graph: (i) if agent 1’s peak is on the cycle, choose his peak,

and (ii) otherwise, on the line segment, use an onto generalized median voter

scheme that always chooses a point between agent 1’s peak and the point

on the line segment intersecting the cycle.11 Given Border and Jordan’s [9]

characterization of generalized median voter schemes as the only strategy-

proof rules for symmetric, single peaked preferences on a line segment, this

method can be shown to provide the only way to construct strategy-proof,

onto rules for this particular graph.

For more general graphs with cycles, a similar characterization holds,

as we formalize below. That is, for any such graph, each strategy-proof,

onto rule can be constructed by choosing an agent, say agent 1, such that

(i) if agent 1’s peak lies on the cycles neighborhood, choose his peak, and

(ii) otherwise, if agent 1’s peak lies on some “subtree,” use any strategy-

proof, onto rule for trees, specific to that subtree, that always chooses a point

between agent 1’s peak and the unique intersection of that subtree with the

cycles neighborhood. In the second case (ii), we rely on the characterization

11The arguments of the generalized median voter scheme are the points on the line
segments closest to the agents’ peaks on the graph—their “peaks” on the line segment.
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Figure 8: A graph with two maximal trees. The cycles neighborhood is
the dumbbell shape drawn with thick lines.

results for trees from Section 3.1.

Our description of strategy-proof rules therefore depends on labeling the

“subtrees” which, together with the cycles neighborhood, make up G. Let

C ⊂ G be the cycles neighborhood of G. A tree T ⊂ G is a maximal tree

of G if (i) T contains more than one point, (ii) T ∩ C contains at most one

point, and (iii) there exists no tree T ′ ⊂ G such that T � T ′ and T ′ ∩ C
contains at most one point. See Figure 8.

Our main characterization result for graphs with cycles is based on the

ideas and results mentioned above, and can be roughly described as fol-

lows. First, by Theorem 3, the chosen location must lie between a prespec-

ified agent’s peak and the cycles neighborhood. Second, the restriction of

a strategy-proof rule to a maximal tree of G must itself be a strategy-proof

rule defined on that maximal tree. Therefore, by Theorem 1,12 the rule must

behave like an e.m.v.s. on that maximal tree.

Theorem 4 Let C ⊂ G be the cycles neighborhood of G and let T1, T2, . . . , Tk

be the maximal trees of G. A rule f :Gn → G is strategy-proof and onto if

and only if there exists i ∈ N such that

12To invoke Theorem 1, we need to prove that the restricted rule is onto the maximal
tree. This can be done with the aid of Lemma 3.
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1. for all p ∈ Gn, pi ∈ C implies f(p) = pi,

2. for each Tj, 1 ≤ j ≤ k, there exists an e.m.v.s. (on Tj), fj:T
n
j → Tj,

such that for all p ∈ Gn, pi ∈ Tj implies

(a) f(p) = fj(p̃), where for all k ∈ N , p̃k = argminz∈Tj
d(z, pk), and

(b) where {xj} = C ∩ Tj, we have f(p) ∈ [pi, xj].

Proof: Follows from Theorems 1 and 3. �

It is interesting to observe that the class of rules described in Theorem 4

can be thought of as a subclass of e.m.v.s.’s in the following sense. The re-

striction of a strategy-proof, onto rule on a cyclic graph to the points not in

the cycles neighborhood—in other words, f |G\C—is, by Theorem 4, a collec-

tion of k e.m.v.s.’s, one for each maximal tree. However, due to condition 2b

of the Theorem, it can be shown that these e.m.v.s.’s together form a single

e.m.v.s. for the tree obtained from G by contracting each edge in the cycles

neighborhood of G to a single point.

6 Conclusion

6.1 Summary

We have derived a characterization of the class of strategy-proof, onto rules

that choose locations on networks (graphs), when agents’ preferences over

points on the graph are inversely related to distance from a most-preferred

point on the graph (i.e., symmetric, single-peaked preferences). The flavor of

the results depend on whether the graph contains a cycle. When the graph

is a tree (no cycles), we describe the class of strategy-proof, onto rules as

extended median voter schemes. This class of rules is, necessarily, a gener-

alization of the class of generalized median voter schemes for an interval,
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described by Moulin [17]. However, the generalization is not straightforward

in the sense that (i) it relies on a type of consistency as described in Section 3,

and (ii) given consistent g.m.v.s.’s, when peaks do not lie on a single path,

there is only one way to choose a location in a strategy-proof way.

When the graph contains at least one cycle, the class of strategy-proof,

onto rules is more restricted. On the part of the graph containing cycles

(i.e., the “cycles neighborhood”), one agent must exercise dictatorial power.

On the other parts of the graph, though, this agent’s power is diminished:

there is some flexibility in the choice of a point between this agent’s most

preferred location and the cycles neighborhood. We in fact show that the

class of rules for cyclic graphs is in a sense isomorphic to a subclass of the

extended median voter schemes.

The results for cyclic graphs are partially negative and partially positive;

one agent acts as a dictator on or between all cycles on the network, but

exercises more limited power on other parts of the network. If the network is

thought of as representing a highway network, with cycles around an urban

center, and subtrees branching out into the suburbs, the rules can be, very

roughly, described as follows: A given agent either chooses an exact location

within the urban area or chooses a suburb in which the location should lie;

then if a suburb was chosen, the remaining agents choose the exact location

within the suburb (according to a generalized median voter scheme particular

to that suburb).

6.2 Comments

There are two important issues upon which we comment: the choice of do-

main, and a connection to strategy-proofness results on other domains.

The results in this paper are based on the domain of single-peaked prefer-

ences that are quadratic. That is, preferences depend only on distance from
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the peak. Our result for trees can be used to show that the characterization of

e.m.v.s.’s also holds on the (larger) domain of non-symmetric, single-peaked

preferences, i.e., preferences that merely satisfy the condition that if p is an

agent’s most preferred point, then a ∈ [b, p] implies that a is preferred to

b.13 This is the domain of preferences used, for example, by Danilov [12]

and Moulin [17]. Therefore, Danilov’s result provides a recursive definition

of e.m.v.s.’s.

For any significantly larger class of preferences (that are not single-peaked

for all agents), we are confident that an impossibility result would obtain.

This finding would be consistent with the recent work on maximal domains,

showing that on an interval, no interesting, significant superset of single-

peaked preferences can allow reasonable strategy-proof rules (e.g. see Bar-

berà, Massó, and Neme [5], and the papers they cite).

Our rules can, however, be extended to certain domains in which only

one agents’ preferences are always single-peaked.14 An interesting example

is the domain of exchange economies. In particular, Barberà and Jackson [4]

characterize the class of strategy-proof rules for 2-agent, !-good exchange

economies as those that, essentially, allow trade only along ! directions from

an endowment point.15

The directions must be such that one of the agents has single-peaked

preferences over the entire range of the rule. The other agent then has

single-peaked preferences over any one of the ! directions, but not necessarily

single-peaked over the entire graph. Therefore, the range can be thought of

as a tree with the endowment point representing a central node, and each

direction of trade representing an edge from that node. Surprisingly, the

13The proof has a standard style of extending strategy-proofness characterizations to
larger domains (see Schummer [20]). The extension does not require a peaks-only condition
to be imposed; the condition is implied.

14We thank an anonymous referee for this observation.
15See their Theorem 5 for a more precise description.
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strategy-proof rules characterized by Barberà and Jackson [4] are a subclass

of e.m.v.s.’s.
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