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Abstract

We consider allocation rules that choose both an outcome and
transfers, based on the agents’ reported valuations of the outcomes.
Under a given allocation rule, a bribing situation exists when agent j

could pay agent i to misreport his valuations, resulting in a net gain
to both agents. A rule is bribe-proof if such opportunities never arise.

The central result is that when a bribe-proof rule is used, the re-
sulting payoff to any one agent is a continuous function of any other
agent’s reported valuations. We then show that on connected domains
of valuation functions, if either the set of outcomes is finite or each
agent’s set of admissible valuations is smoothly connected, then an
agent’s payoff is a constant function of other agents’ reported valua-
tions. Finally, under the additional assumption of a standard domain-
richness condition, we show that a bribe-proof rule must be a constant
function. The results apply to a very broad class of economies.
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1 Introduction

Consider the problem of choosing an outcome (e.g., a level of public goods,

an allocation of private goods, an assignment of jobs, etc.) and transfers of

a private good among agents, based on the way the involved agents value

the outcomes (or on other characteristics). Without knowing the agents’

valuations, it may not be reasonable for the decision maker to assume that

they would truthfully reveal them if doing so is not in their best interest.

For example, this is a concern in the literature on strategy-proof allocation

rules for public goods economies (Clarke, 1971; Groves, 1973; Green and

Laffont, 1977; Moulin, 1980), exchange economies (Hurwicz, 1972; Barberà

and Jackson, 1995), and many other domains. Most of this work addresses

this incentives problem at the individual level in combination with standard

distributional requirements (e.g., efficiency). Our concern here is to address

a group incentives problem in the absence of any distributional requirements.

One compelling group incentive-compatibility requirement is coalitional

strategy-proofness: no coalition of agents should be able to jointly misrep-

resent their valuations (or other characteristics) in a way that results in a

direct gain to each of those agents. The desirability of this condition is clear.

In many environments, however, this condition is too strong, ruling out all

but a few, unreasonable decision rules.2

One way that coalitional strategy-proofness is too strong is that even very

large coalitions are prevented from manipulating. The execution of a joint

misrepresentation by a large number of agents requires not only that they

know each others’ valuations, but also that they are able to coordinate their

actions. In many situations, it is not practical to worry about such types of

manipulation.

On the other hand, if we suspect that a small coalition could manage to

coordinate their actions in a profitable, joint misrepresentation of valuations,

then they could manage to, additionally, arrange transfers to each other, i.e.

they could bribe each other to misrepresent.

To address these two concerns, we formulate the weakest intuitive con-

dition that rules out this type of misrepresentation by coalitions of size two

(or one): Only one agent is bribed by one other agent to solely misrepresent

2Consider, for example, the well-established coalitional manipulability of Clarke–Groves
mechanisms.
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his valuations. There are only two agents involved in the transfer, and only

one of them misrepresents his type. Decision rules that eliminate the possi-

bility of this type of manipulation—and that are strategy-proof—are called

bribe-proof.3

The results apply generally to settings in which the outcomes may rep-

resent levels of public goods, allocations of private goods, matching assign-

ments, etc., as long as the agents have a transferable, divisible good with

which to bribe each other, and they have continuous preferences that are

additive in the transferable good.

The central result is that in a very general setting, if an allocation rule

is bribe-proof, then it satisfies a continuity property: The payoff that an

agent receives varies continuously with respect to changes in the reported

valuations of any other agent.

From this we show that if the set of outcomes is finite, then a bribe-

proof allocation rule is “essentially” constant, in the sense that an agent’s

payoff is never affected by a change in any other agent’s reported valuations.

This result applies not only when all possible valuations of the outcomes

are admissible, but also when each agent’s set of admissible valuations is a

connected set. For the case of an infinite set of outcomes, we derive the same

conclusion as long as each agent’s set of admissible valuations is “smoothly

connected” in the sense of Holmström (1979), who generalizes the classic

characterization of Clarke–Groves mechanisms to such domains.

Finally, we show that if the domain of valuation functions is sufficiently

“rich”, then a bribe-proof allocation rule must actually be a constant func-

tion. In the Conclusion, we discuss the relation between these results and

those of Crémer (1996), who works explicitly in an imperfect information

environment. We also discuss broader possible interpretations of our results.

For the case of exactly two public good outcomes (and the unrestricted

domain of valuation functions), Green and Laffont (1979) consider manip-

ulations by coalitions of a fixed size in which members make joint misrep-

resentations, along with transfers among themselves. They show that no

Clarke–Groves mechanism is immune to such manipulation by coalitions of

3It may be more natural to attempt to rule out situations in which two agents jointly
misrepresent. Since our results concern the effects of imposing bribe-proofness, they are
technically stronger by using the weaker version of the condition. Serizawa (1998) exam-
ines the consequences of disallowing pairs of agents to jointly misrepresent types with no
transfers.
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any fixed size less than the total number of agents. Our result for finite sets

of outcomes and connected domains of valuations is a substantial strength-

ening of their result for the particular case of manipulation by coalitions with

a size of two.

2 Model

There is a finite set of agents, N = {1, 2, . . . , n}, n ≥ 2, with arbitrary

elements i and j. There is a compact set of outcomes, Y ⊆ R
�, with

arbitrary elements y and y′. In addition to the outcome, each agent i ∈
N consumes some amount mi ∈ R of a divisible good, say money. An

allocation consists of an outcome y ∈ Y and the specification of an amount

of money for each agent, m = (m1,m2, . . . ,mn).

Each agent i ∈ N has a quasi-linear (i.e. linear additively separable)

preference ordering over Y × R. We will assume that these preferences can

be parameterized in a continuous way by a set, Θi ⊆ R
k, of admissible

types. That is, for each i ∈ N , there is a continuous valuation function,

vi:Y × Θi → R, representing the preferences of an agent, depending on his

type. An agent of type θi ∈ Θi (weakly) prefers a bundle (y,mi) ∈ Y ×R to

another bundle (y′,m′
i) if and only if vi(y; θi) +mi ≥ vi(y′; θi) +m′

i.

When Y is finite, one could imagine the set of types being R
|Y |−1, and that

a type represents an agent’s normalized valuations of the public outcomes.

More generally, the set may also describe other characteristics of an agent.

When modeling a certain class of economies, such a parameterization may

not be unique. All that is required for our results to hold is that such

a continuous parameterization exists. The assumption that Y and Θi are

subsets of Euclidean spaces was made to avoid the distraction of topological

generality.

A domain is a cross-product of type sets Θ ≡ Θ1 × · · · × Θn. For any

i ∈ N , we use the standard notation θ−i ∈ Θ−i to refer to a list of types for

agents other than i.

Some of the results apply to domains that are connected: The domain Θ is

connected if for all i ∈ N , Θi is a path-connected set, i.e., for all θi, θ
′
i ∈ Θi,

there exists a continuous function f : [0, 1] → Θi such that f(0) = θi and

f(1) = θ′i.

Our general allocation problem then is a specification of N , Y , Θ, and
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{vi}i∈N . A solution (to this problem) is a function ϕ: Θ→ Y ×R
n, choosing

an allocation for any profile of admissible types. It will be convenient to

decompose the solution into two functions, ȳ: Θ → Y and m̄: Θ → R
n, in

which case we write ϕ ≡ (ȳ, m̄). It will also be convenient to write, for any

agent i ∈ N , ϕi(θ) ≡ (ȳ(θ), m̄i(θ)) to refer to agent i’s consumption bundle.

Depending on the interpretation of the model, one may wish to addition-

ally impose certain feasibility conditions on a solution, such as weak budget

balance (for all θ ∈ Θ, ∑ m̄i(θ) ≤M , whereM is some aggregate endowment

of money), or strong budget balance (
∑
m̄i(θ) =M). Such requirements have

no effect on our results, so we will not address them.

2.1 The Bribing Condition

If the agents are reporting their types to a planner who is using a given solu-

tion, it is of interest to know whether the solution satisfies certain incentive

compatibility properties. For instance, it is desirable for a solution to be such

that an agent of type θi can do no better for himself than by reporting his

true type θi to the planner, regardless of the other agents’ types. That is, a

solution should satisfy the following condition.

Strategy-proof: The solution ϕ = (ȳ, m̄) is strategy-proof if for all θ ∈ Θ

and all i ∈ N , there exists no θ′i ∈ Θi such that

vi(ȳ(θ
′
i, θ−i); θi) + m̄i(θ

′
i, θ−i) > vi(ȳ(θ); θi) + m̄i(θ)

Holmström (1979) shows that on most connected domains, the only strategy-

proof solutions that maximize
∑

i vi(y; θi) for every profile θ are Clarke–

Groves mechanisms.

As discussed in the Introduction, we also wish to rule out the possibility

that an agent could bribe another to misrepresent his type. We formulate a

condition that rules out this type of situation.

Bribe-proof: The solution ϕ = (ȳ, m̄) is bribe-proof if for all θ ∈ Θ and all

i, j ∈ N , there exists no b ∈ R and θ′i ∈ Θi such that

vi(ȳ(θ
′
i, θ−i); θi) + m̄i(θ

′
i, θ−i) + b > vi(ȳ(θ); θi) + m̄i(θ)

vj(ȳ(θ
′
i, θ−i); θj) + m̄j(θ

′
i, θ−i)− b > vj(ȳ(θ); θj) + m̄j(θ)
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The interpretation is that j bribes i with b units of money to misrepresent

his type. Notice that by choosing i = j and b = 0, bribe-proofness implies

strategy-proofness.4

At this point, a few points are worth mentioning. First, we are implicitly

assuming that the two agents would trust each other in arranging this mis-

representation; that is, j would not break his promise to pay i, and i would

not renege on his promise to misrepresent. Therefore, the results of this pa-

per should be seen as a comment on the planner’s “worst-case scenario” in

which agents completely trust each other. See Tirole (1992) for a discussion

of the assumption. We will discuss a departure from this assumption in the

Conclusion.

Second, note that we do not allow j to also misrepresent his type. Since we

are determining the consequences of our condition (which in some instances

are strong), the results are stronger using our weaker definition.

Third, we are implicitly assuming that the divisible good is perfectly

transferable among agents. Perhaps instead, when j sends b units of money,

i only receives λb < b of it (e.g. due to some transaction cost). All of our

results continue to hold as long as λ > 0.

3 Results

Consider the following example of a domain for which there exist non-trivial

bribe-proof solutions.

Example 1 (Symmetric, single-peaked preferences.) Let Y =

[a, b] ⊂ R be an interval of public outcomes. For all i ∈ N , let Θi = R,

and for all y ∈ Y and all θi ∈ Θi, let vi(y, θi) = −|y − θi|. Note that each
vi( · , θi) is a single-peaked function on Y and that Θ is a connected domain.

A bribe-proof solution ϕ = (ȳ, m̄) can be constructed by letting m̄ be

constant and letting ȳ be defined as a median voter rule (Moulin, 1980), e.g.,

if |N | is odd, let ȳ(θ) be the median of θ1, . . . , θn.
4One might argue that the bribe-proofness condition should be defined without implying

strategy-proofness (i.e. disallowing i = j). It would be unreasonable, however, to attempt
to rule out bribing situations while allowing the possibility that an agent could gain by
simply misrepresenting his own type.
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We will point out particular attributes of this example in Sections 3.2–

3.3 that have allowed us to construct non-trivial bribe-proof solutions. First,

however, note that under any of these solutions, an agent’s payoff varies

continuously as any other agent varies his reported type. We first show that

this is a general property of bribe-proof solutions.

3.1 Continuity

Our analysis concerns the effect of a change in the report of an agent’s type on

a given bribe-proof solution. Therefore, for the remainder of the paper,

we fix the following.

• an agent i ∈ N (potentially the bribee),

• types θ−i ∈ Θ−i of the other agents,

• an agent j ∈ N \ {i} (potentially the briber), and

• a bribe-proof solution ϕ ≡ (ȳ, m̄).

The set of bundles that agent i can obtain by varying his type is his

option set:

Ōi = {(y,mi) ∈ Y × R : ∃θi ∈ Θi such that (y,mi) = ϕi(θi, θ−i)}

With respect to any θi ∈ Θi, define the maximum payoff that i may receive,

and his set of best obtainable bundles, as follows.

u∗i (θi) = max
(y,mi)∈Ōi

vi(y; θi) +mi

O∗
i (θi) = {(y,mi) ∈ Ōi : vi(y; θi) +mi = u

∗
i (θi)}

Since ϕ is strategy-proof, u∗i is well-defined; in fact, for all θi ∈ Θi we have

u∗i (θi) = vi(ȳ(θi, θ−i); θi) + m̄i(θi, θ−i)

We first show that since ϕ is strategy-proof, u∗i must be a continuous

function.5 If Y is finite, this follows from a direct application of the Maxi-

5This general notion that strategy-proofness implies some sort of continuity has been
accepted by some as “folk knowledge”; however it usually requires an assumption on
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mum Theorem. In the general case, however, the option set Ōi may not be

compact, and the Maximum Theorem can not be directly applied.

The following lemma shows that on any compact set of types, an agent’s

option set—in particular, the amount of the divisible good that he receives—

is bounded.

Lemma 1 Suppose that Y is compact, Θi is compact, and ϕ is strategy-

proof. Then m̄i( · , θ−i) is a bounded function of Θi.

Proof: Let v = supθi
vi(ȳ(θi, θ−i); θi) and v

′ = infθi
vi(ȳ(θi, θ−i); θi). Since

Y and Θi are compact, v < inf and v
′ > − inf.

Furthermore, for all θi, θ
′
i ∈ Θi, strategy-proofness implies

v− v′ ≥ vi(ȳ(θi, θ−i); θi)− vi(ȳ(θ′i, θ−i); θi) ≥ m̄i(theta
′
i, θ−i)− m̄i(thetai, θ−i)

Hence m̄i( · , θ−i) is bounded. �

Therefore, agent i’s option set on a compact domain is a bounded set. It

may not, however, be closed. To deal with that technical difficulty, define

the following analogs of u∗i and O
∗
i .

6

u∗∗(θi) = max
(y,mi)∈cl(Ōi)

vi(y; θi) +mi

O∗∗(θi) = {(y,mi) ∈ cl(Ōi) : vi(y; θi) +mi = u
∗∗(θi)}

Proposition 1 Suppose that Y is compact, Θi is compact, and ϕ is

strategy-proof. Then u∗i is continuous in Θi.

Proof: Lemma 1 implies that cl(Ōi) is compact. Therefore the Maximum

Theorem implies that u∗∗ is continuous and O∗∗ is upper semi-continuous

(u.s.c.).7 Note that by the definition of strategy-proofness, u∗i is in fact well-

defined. Therefore, since vi is continuous on cl(Ōi), we have u
∗
i ≡ u∗∗. Hence

u∗i is continuous. �

the consumption space, such as our compactness assumption on Y ; see Example 2. See
Chichilnisky and Heal (1997) for a solution-continuity result on single-peaked preferences.

6The closure of a set S is denoted cl(S).
7See Berge (1963) for a definition of u.s.c.. The notation follows Sundaram (1996).

8



It should be noted that this proposition is more of a technical result than

an applied one. The function u∗i measures the payoff to agent i from reporting

type θi when his true type is θi. The proposition states that when this report

and true type are varied together, the resulting payoff is continuous. The

proposition does not imply general continuity resulting from varying a report

with respect to a fixed true type.

Secondly, note that since u∗i is continuous on any compact (sub)domain,

it is continuous on any domain (see the proof of Corollary 1).

For all θi ∈ Θi, define the payoff that j receives as follows.

u∗j(θi) = vj(ȳ(θi, θ−i); θj) + m̄j(θi, θ−i)

The central result is that u∗j is a continuous function of agent i’s reported

type. One way to demonstrate this fact is as follows.8 Bribe-proofness re-

quires agent i to maximize the sum u∗i+u
∗
j through his reported type. Viewing

this sum as a pseudo-payoff for agent i, bribe-proofness implies a strategy-

proofness with respect to this pseudo-payoff. Hence it follows from Proposi-

tion 1 that this sum is continuous, and hence so is u∗j . Below we provide an

alternate formal proof.

Theorem 1 Suppose that Y is compact, Θi is compact, and ϕ is bribe-

proof. Then u∗j is continuous in Θi.

Proof: Suppose by contradiction that u∗j is not continuous at some θ̄i ∈
Θi.

Case 1: There exists a sequence {θk
i }∞k=1 converging to θ̄i, and ε̄ > 0, such

that for all k, u∗j(θ̄i)− u∗j(θk
i ) > ε̄.

Let (y,mi) = ϕi(θ̄i, θ−i). Bribe-proofness implies that for all k, u
∗
i (θ

k
i ) −

vi(y; θ
k) −mi ≥ ε̄. Proposition 1 implies, however, that u∗i (θk

i ) converges to

u∗i (θ̄i), and the continuity of v implies that vi(y; θ
k) converges to vi(y; θ̄i).

Hence u∗i (θ
k
i )− vi(y; θk)−mi converges to 0, which is a contradiction.

Case 2: There exists a sequence {θk
i }∞k=1 converging to θ̄i, and ε̄ > 0, such

that for all k, u∗j(θ
k
i )− u∗j(θ̄i) > ε̄.

Since, as above, O∗∗ is u.s.c. and u∗i ≡ u∗∗, we have for all θi ∈ Θi,

O∗
i (θi) ⊆ O∗∗(θi).

8I thank an anonymous referee for pointing out this argument.
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Since vi is continuous, there exists an open set Ô ⊃ O∗∗(θ̄i) such that

(y,mi) ∈ Ô implies u∗i (θ̄i)−vi(y; θ̄i)−mi < ε̄. Since O
∗∗
i is u.s.c., there exists

k (sufficiently large) such that O∗∗(θk
i ) ⊂ Ô. This implies (ȳ(θk

i ), m̄i(θ
k
i )) ∈

Ô. Therefore, vi(ȳ(θ
k
i ); θ̄i) + m̄i(θ

k
i ) + ε̄ > u

∗
i (θ̄i), which contradicts bribe-

proofness. �

Finally, note that the assumption of a compact type-space was only

needed temporarily.

Corollary 1 Suppose that Y is compact and ϕ is bribe-proof. Then

u∗j is continuous in Θi.

Proof: Suppose not. Then u∗j violates continuity on some compact sub-

domain, Θ̄i ⊂ Θi. The restriction of ϕ to the subdomain Θ̄i ×Θ−i defines a

discontinuous bribe-proof solution (on a new domain) violating the conditions

of Theorem 1. �

We end this section by noting that the assumption of a compact Y can

not simply be dropped.

Example 2 Let Y = [0,∞), Θ1 = [0, 1], and v1 satisfy

v1(y, θ1) =

{
−y if θ1 = 0,

max{−y, 2− | 1
θ1
− y|} if θ1 > 0,

Let Θ2 = {θ2}, and v2(y; θ2) ≡ 0. Let ϕ̂ satisfy

ϕ̂(θ1, θ2) = (ȳ(θ1), m̄1(θ1), m̄2(θ1)) =

{
(0, 0, 0) if θ1 = 0,

( 1
θ1
,−1

2
, 1

2
) if θ1 > 0,

One may check that ϕ̂ is bribe-proof, but that neither u∗1 nor u
∗
2 is continuous

at θ1 = 0. A similar example can be constructed in which Y is bounded but

open.

3.2 Finite Sets of Public Outcomes

Consider again the bribe-proof solutions in Example 1. Suppose that instead

of being able to choose any point in some interval [a, b], we may only choose

integer points in the interval, e.g. Y = {1, 2, 3}. Median-voter types of
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solutions are well-defined in this setting also, subject to some tie-breaking

procedure when the “median voter” is indifferent between two elements of

Y . such solutions are, however, no longer bribe-proof ! Informally, when the

median voter is indifferent (or almost indifferent) between two elements of Y ,

he could be bribed to misreport his preferences. The reader is left to check

this.

A trivial example of a bribe-proof solution for this environment is a con-

stant solution. The discouraging news is that for connected domains in gen-

eral, if Y is finite, then this is essentially the only type of bribe-proof solution.

The following example illustrates why we say it is essentially so.

Example 3 (Two Outcomes) Consider two agents in neighboring of-

fices, each having his own air conditioner which can be turned on or off. An

agent’s type represents the value of having the air conditioner in his own

office turned on. Let N = {1, 2}, Y = {On,Off}2, and Θ1 = Θ2 = R. Fur-

thermore, while agent 2 has a quiet air conditioner, agent 1 has a noisy one,

which annoys agent 2 if it is turned on. So, the agents’ valuation functions

satisfy, for all θ1 ∈ Θ1 and θ2 ∈ Θ2,

v1((On, · ); θ1) = θ1 v2((On,On); θ2) = θ2 − 1

v1((Off, · ); θ1) = 0 v2((On,Off); θ2) = −1
v2((Off,On); θ2) = θ2

v2((Off,Off); θ2) = 0

The following “natural” solution, in which agent 2 has control over his air

conditioner and agent 1 compensates agent 2 if he uses his, is bribe-proof.

ϕ̂(θ) =



((On,On),−1, 1) if θ1 ≥ 1 and θ2 ≥ 0

((On,Off),−1, 1) if θ1 ≥ 1 and θ2 < 0

((Off,On), 0, 0) if θ1 < 1 and θ2 ≥ 0

((Off,Off), 0, 0) otherwise

For the solution in Example 3, agent 2 plays the role of a dictator over

the second dimension of the outcome space (the status of his own air condi-

tioner). This is compatible with bribe-proofness because agent 1 has “trivial”

preferences over that dimension—his preferences are unaffected by the status

of that air conditioner. Similarly, agent 2 has trivial preferences over the first
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dimension of Y—regardless of his type, he always is one unit worse off when

agent 1’s air conditioner is on. Agent 1 plays the role of a dictator on that

dimension, subject to the constraint that agent 2 be indifferent between any

“choices” agent 1 has.

For connected domains and finite sets of outcomes, this is in fact a con-

sequence of bribe-proofness—when the solution is responsive to a change in

an agent’s type, the change must not affect any other agent’s payoff.

Theorem 2 Suppose that Y is finite, Θ is a connected domain, and ϕ

is bribe-proof. Then u∗j is constant in Θi.

Proof: Since Y is finite, so is Ōi.
9 Therefore, O∗

i is finite, and the Maxi-

mum Theorem directly implies O∗
i is u.s.c. (without the assumption that Θi

is compact, as needed above). Hence for all θi ∈ Θi there exists δ > 0 such

that |θ′i − θi| < δ implies O∗
i (θ

′
i) ⊆ O∗

i (θi). Therefore for any such θ
′
i, we

have vi(ȳ(θ
′
i, θ−i); θi)+m̄i(θ

′
i, θ−i) = u

∗
i (θi). Therefore bribe-proofness implies

u∗j(θ
′
i) ≤ u∗j(θi) (otherwise j would bribe i).
We have shown that each θi ∈ Θi is a local maximizer of u

∗
j . Therefore,

since Θi is path-connected and u
∗
j is continuous (Corollary 1, u

∗
j is constant

(see Lemma 2 in the Appendix). �

Theorem 2 implies that under a bribe-proof solution, each agent is actually

a dictator on the range of the solution. Formally, the solution must satisfy

the following condition.

All-Dictatorial : The solution ϕ̂ = (ȳ, m̄) is all-dictatorial if for all θ, θ′ ∈
Θ and all i ∈ N , we have vi(ȳ(θ); θi) + m̄i(θ) ≥ vi(ȳ(θ′); θi) + m̄i(θ

′).

The Corollary follows directly from Theorem 2.

Corollary 2 Suppose that Y is finite and Θ is a connected domain.

Then ϕ is bribe-proof if and only if ϕ is all-dictatorial.

A relevant concept here is Hurwicz and Walker’s (1990) notion of a “de-

composable” domain. When each agent cares only about his own dimension

of the outcome space (i.e., the domain is decomposable), it is a trivial matter

to define bribe-proof solutions. They can even be efficient, but they need not

9Recall that by strategy-proofness, (y,mi), (y,m′
i) ∈ Ōi implies mi = m′

i.
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be anything close to “constant”, as in Example 3. When there is a “conflict of

interest” between agents (and the domain is indecomposable), however, the

condition (all-dictatorial) is much stronger. For example, in Section 3.4 we

examine a class of domains for which this conflict of interests always exists,

and derive an even stronger conclusion.

The next result follows from Corollary 2.

Corollary 3 Suppose that Y is finite, Θ is a connected domain, and ϕ

is bribe-proof. For all θ, θ′ ∈ Θ, if ϕ(θ) = (y,m) and ϕ(θ′) = (y,m′), then

m = m′.

Before concluding this section, note that even if a domain of interest is

not connected, the results could be applied to each “connected component”

of the domain, that is, each subdomain that itself forms a connected domain.

For example, if a 2-agent domain consisted of four connected components,

Theorem 2 implies that under a bribe-proof solution, there are four pairs of

payoffs, each associated with one of the components.

3.3 Smooth Preferences

Consider once again the solutions described in Example 1. Note that each

single-peaked valuation function has a slope of 1 to the left of its peak and

a slope of −1 to the right. As we did originally, let Y = R, but now sup-

pose that the domain was such that “steeper” and “flatter” single-peaked

valuation functions were also admissible. Again, the median-voter types of

solutions are well-defined in such a setting. They are not, however, bribe-

proof. If the median voter has a relatively flat valuation function, he cares less

about the location of y, relative to his transfer, than do agents with steeper

valuation functions, hence he can be bribed. Similarly, if valuation functions

were smooth, the same problem would arise: The median voter would have

a “locally flat” valuation function at his peak, and could be bribed to make

at least a small misrepresentation.

In fact, Theorem 2 and Corollary 2 generalize to the case in which Y

is infinite, as long as the domain is “smoothly” connected, in the sense of

Holmström (1979). That is, there should exist a smooth, one-dimensional

parameterization of some path between any two types:
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Smoothly Connected: The domain Θ is smoothly connected if for all i ∈
N and all θi, θ

′
i ∈ Θi, there exists w:Y × [0, 1]→ R such that

i. For all x ∈ [0, 1], there exists θx
i ∈ Θi such that w( · , x) = vi( · ; θx

i )

ii. w( · , 0) = vi( · ; θi)
iii. w( · , 1) = vi( · ; θ′i)
iv. For all y ∈ Y , w(y, · ) is differentiable on [0, 1]
v. There exists z ∈ R such that for all y ∈ Y and all x ∈ [0, 1],

∣∣∣∣∂w(y, x)∂x

∣∣∣∣ ≤ z
One may check that the domain of Example 1 can not be parameterized

in this way, so it is not smoothly connected. On the other hand, if vi is

differentiable in Θi for all i ∈ N , then any convex Θ is smoothly connected.

Theorem 3 Suppose that Θ is a smoothly connected domain and ϕ is

bribe-proof. Then u∗j is constant in Θi.

Proof: As in the definition of smoothly connected domains, let w be de-

fined with respect to Θi, and for all x ∈ [0, 1], let θx
i be defined as in (i).

Define f : [0, 1]2 → R so that for all x, x′ ∈ [0, 1],

f(x, x′) ≡ vi(ȳ(θx
i , θ−i), θ

x′
i ) + m̄i(θ

x
i , θ−i)

Strategy-proofness implies that for all x′ ∈ [0, 1],

x′ ∈ argmax
x∈[0,1]

f(x, x′) (1)

Bribe-proofness implies that for all x′ ∈ [0, 1],

x′ ∈ argmax
x∈[0,1]

f(x, x′) + u∗j(θ
x
i ) (2)

Since Θ is smoothly connected, the Lemma in the Appendix of Holm-

ström (1979) states that (1) and (2) imply that u∗j is constant. �

As in the previous section, this result can be used to derive the following.
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Corollary 4 Suppose that Θ is a smoothly connected domain. Then ϕ

is bribe-proof if and only if ϕ is all-dictatorial.

Corollary 5 Suppose that Θ is a smoothly connected domain and ϕ is

bribe-proof. For all θ, θ′ ∈ Θ, if ϕ(θ) = (y,m) and ϕ(θ′) = (y,m′), then

m = m′.

3.4 Rich Domains

One might observe that in the above examples in which non-constant bribe-

proof solutions exist, the domains are, loosely speaking, “narrow”. For exam-

ple, they don’t contain many perturbations of the functions they contain. It

turns out that if a domain is rich enough, then in fact only constant functions

are bribe-proof.

We will use the following definition of richness, which requires that if a

valuation function is admissible, then for any outcome y ∈ Y , there exists
another admissible valuation function for which the value of y, relative to

any other outcome, is strictly greater than for the original function.

Monotonically Closed: The domain Θ is monotonically closed if for all

i ∈ N , all θi ∈ Θi, and all y ∈ Y , there exists θ′i ∈ Θi such that for all

y′ ∈ Y \ {y}, vi(y; θ′i)− vi(y′; θ′i) > vi(y; θi)− vi(y′; θi).

Theorem 4 Suppose that Θ is connected and monotonically closed. Fur-

ther, suppose that either Y is finite or Θ is smoothly connected. If ϕ is

bribe-proof, then it is a constant function.

Proof: We will prove the theorem for the case in which Y is finite by using

the results of Section 3.2. The proof for the case in which Θ is smoothly

connected is the same but uses the results of Section 3.3.

Suppose by contradiction that there exist distinct (y,m) and (y′,m′) in

the range of ϕ. By Corollary 3, y �= y′, so without loss of generality we have
(y,mi), (y

′,m′
i) ∈ Ōi with y �= y′. In this proof we will change agent j’s type

(from θj). To simplify notation, let ϕ = (ȳ, m̄) depend only on the types of

agents i and j.

Let θi ∈ Θi satisfy ϕ(θi, θj) = (y,m). Since agent i receives (y′,m′
i) for

some reported type, and since Θ is monotonically closed, there exists θ′i ∈ Θi
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such that

{(y′,m′
i)} = argmax

(ŷ,m̂i)∈Ōi

vi(ŷ; θi) + m̂i (3)

Strategy-proofness implies ϕi(θ
′
i, θj) = (y′,m′

i). Corollary 3 therefore implies

ϕ(θ′i, θj) = (y′,m′) (4)

Corollary 2 implies that for all θ̂i, θ̂j, vj(y; θj) + mj ≥ vj(ȳ(θ̂i, θ̂j); θj) +

m̄j(θ̂i, θ̂j). So, since Θ is monotonically closed, there exists θ
′
j ∈ Θj such that

for all θ̂i, θ̂j,

ϕj(θ̂i, θ̂j) �= (y,mj) =⇒ vj(y; θ
′
j) +mj > vj(ȳ(θ̂i, θ̂j); θj) + m̄j(θ̂i, θ̂j) (5)

Strategy-proofness then implies ϕj(θi, θ
′
j) = (y,mj), so by Corollary 3,

ϕ(θi, θ
′
j) = (y,m) (6)

Theorem 2 implies

vj(ȳ(θ
′
i, θ

′
j); θ

′
j) + m̄j(θ

′
i, θ

′
j) = vj(ȳ(θi, θ

′
j); θ

′
j) + m̄j(θi, θ

′
j)

With eqns. (5) and (6), this implies ϕj(θ
′
i, θ

′
j) = (y,mj), so by Corollary 3,

ϕ(θ′i, θ
′
j) = (y,m) (7)

Similarly, Theorem 2 implies

vi(ȳ(θ
′
i, θ

′
j); θ

′
i) + m̄i(θ

′
i, θ

′
j) = vi(ȳ(θ

′
i, θj); θ

′
i) + m̄i(θ

′
i, θj)

With eqns. (4) and (7), this implies vi(y; θ
′
i) +mi = vi(y

′; θ′i) +m
′
i, contra-

dicting eqn. (3). �

4 Conclusion

We have presented a generalized model in which agents have quasi-linear

preferences over outcomes and transfers, and shown that in many situations

(domains), it is essentially impossible to design a non-trivial solution immune
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to manipulation by pairs of agents when they can make transfers. The spec-

ification of the model is such that the simplest interpretation of an outcome

is as a public decision, such as a level of public goods. Through the cor-

rect specification of a domain, however, there are applications of this model

to many other environments. Examples include auctions, more general al-

location problems with indivisible goods,10 matching problems with money,

queuing problems, exchange economies with or without production, and vot-

ing models.11

Our concept of manipulation is defined in such a way as to rule out situa-

tions in which two agents with given types could manipulate a solution. This

condition is most readily applied to situations in which agents have complete

information about each others’ types. It should be noted, however, that the

results apply even to cases in which agents have partial information.12 For

example, it may be the case that agents only know the types of their “neigh-

bors.” In such a case, our results apply to the payoff of an agent (only) with

respect to changes in his neighbors reported type. As another example, it

may be the case that an agent can identify a second agent’s type only when

that type is in some given subset of types. Again in such a case, our results

apply locally, regarding the agent’s payoff with respect to changes in the sec-

ond agent’s type within that subset of types. We leave the formalization of

such results to the reader.

Of additional interest is a result by Crémer (1996) regarding the manip-

ulability of Clarke–Groves mechanisms by groups of agents for the case of

exactly two outcomes (|Y | = 2). The remainder of the section is dedicated

to an informal discussion of Crémer’s result for groups of two agents, and the

way our two sets of results together establish a boundary between possibil-

ity and impossibility at the point where agents gain information about each

others’ types.

Crémer’s setup is as follows. Imagine that a Clarke–Groves mechanism

is being used, and that all of the agents except, say, i and j have already

reported their types to the mechanism (so interpret them as fixed). Further,

10See Schummer (1999) for a version of Theorem 2 in such an environment.
11For example, to model a simple 2-good exchange economy in which preferences are

quasi-linear in the first good, the set of “public outcomes” is a simplex representing the
division of the second good among the agents.

12I thank a referee for drawing attention to this point.
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imagine that agents i and j do not know each other’s types, but anticipate

the possibility of gains by jointly misrepresenting their types and making an

internal transfer. Since they do not know each others’ types, they coordinate

their potential misrepresentation by devising a “sub-mechanism”, to which

they report their types, and which determines for them (i) a (mis-)report of

their types to be made to the original Clarke–Groves mechanism, and (ii) a

transfer to be made between the two.

The question is whether a pair of agents could devise such a sub-

mechanism that is itself strategy-proof. The answer is sometimes : Crémer

(1996) provides some Clarke–Groves mechanisms that are immune to such

manipulation by pairs of agents.13

One may think that Theorem 2 contradicts Crémer’s result with the fol-

lowing reasoning: If a Clarke–Groves mechanism is not bribe-proof, as shown

by Theorem 2, then why can we not design a sub-mechanism for some pair

of agents, as above, to implement this bribe, violating the result of Crémer?

The answer is that such a sub-mechanism would be manipulable by one of

the two agents—one of the two agents cheating the system will be cheated

by the other agent.

For a precise example, consider a Clarke–Groves mechanism, which is not

bribe-proof : For some types θ ∈ Θ, agent j can successfully bribe agent i with
b units of money to mis-report his type as θ′i. In order to take advantage of

this, one may propose the following Crémer-style sub-mechanism for the two

agents: Given that the other agents have reported types θ−ij, whenever i

and j report (θi, θj) to the sub-mechanism, the sub-mechanism recommends

the mis-report (θ′i, θj) plus a transfer of b to be made from j to i. In all other

cases, the sub-mechanism recommends no misrepresentation and no transfer.

Is this sub-mechanism strategy-proof ? It is simple to check that in most

cases, this sub-mechanism can not be manipulated. However, when their

types are (θ′i, θj), agent i can mis-report to the sub-mechanism that he is

of type θi; the sub-mechanism then recommends the “mis-report” (θ′i, θj) to

the Clarke–Groves mechanism (which is what i would have reported anyway)

plus a transfer of b to agent i, resulting in a gain to agent i. Hence this is

not a strategy-proof sub-mechanism.

13In turn, he shows that all Clarke–Groves mechanisms are manipulable to this sort of
manipulation by triples of agents. On the other hand, he shows that each such manipula-
tion by a triple is, itself, re-manipulable by two of those agents!
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More generally, Crémer’s result tells us that for a particular class of

Clarke–Groves mechanisms, there is no strategy-proof sub-mechanism that

allows a pair of agents to take advantage of any such bribing situation.

The essential difference between bribe-proofness and Crémer’s manipula-

tion condition is in the need for agents to know each other’s types. Under the

stronger condition of bribe-proofness, a manipulation is considered possible

if there is any situation in which a pair of agents could gain through the

bribing procedure—this applies most readily to situations in which agents

have information (see above) about each others’ types. But for a pair of

agents to be able to gain with a sub-mechanism, they must devise a plan of

manipulation that covers all possible realizations of their types, and it must

be immune to further manipulation by any of the two individuals.

Since the two concepts are similar except for their respective implicit

assumptions regarding the information agents have about each others’ pref-

erences, the two sets of results could be seen as a dividing line between the

possibility and the impossibility of having solutions that are non-manipulable

by coalitions (or at least pairs) of agents. Possibility obtains even among the

class of Clarke–Groves mechanisms as soon as potentially misrepresenting

agents lose the information of each other’s types in a simple public goods en-

vironment. With more information, however, manipulation is possible under

almost any solution, in many different kinds of environments.

Appendix

Lemma 2 Let X be a path-connected set. If f :X → R is continuous and

if for all x ∈ X, x is a local maximizer of f , then f is constant.

Proof: Suppose f is continuous and not constant. Then there exist x, y ∈
X such that f(x) < f(y). Let g: [0, 1] → X be continuous, and satisfy

g(0) = x and g(1) = y. Let L = {δ ∈ [0, 1] : 0 ≤ δ′ ≤ δ =⇒ f(g(δ′)) ≤ f(x)}.
(Note that L is a non-empty, connected set.) Let δ̄ ≡ supL.

Since f is continuous, δ̄ ∈ L, so g(δ̄) is not a local maximizer of f . �

The continuity of f can be replaced with every x also being a local min-

imizer: If f is not continuous, then g(δ̄) in the proof of the Lemma is either

not a local maximizer or not a local minimizer. That is, if f is not constant,
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then either there exists a non-local-maximizer or there exists a non-local-

minimizer, but not necessarily both. For example, consider the function

f(x) = 0 for x �= 1 and f(1) = 1; every x is a local maximizer.

Proof of Corollary 2

Corollary 2 Suppose that Y is finite and Θ is a connected domain.

Then ϕ is bribe-proof if and only if ϕ is all-dictatorial.

Proof: Suppose by contradiction that for some θ, θ′ ∈ Θ and k ∈ N ,

vk(ȳ(θ); θk) + m̄k(θ) < vk(ȳ(θ
′); θk) + m̄k(θ

′)

By repeated application of Theorem 2,

vk(ȳ(θk, θ
′
−k); θk) + m̄k(θ, θ

′
−k) < vk(ȳ(θ

′); θk) + m̄k(θ
′)

contradicting strategy-proofness. �

Coalitional Strategy-proofness

It is simple to observe that any all-dictatorial solution is also coalition-

ally strategy-proof. Therefore on any domain of the types discussed in Sec-

tions 3.2–3.4, bribe-proofness implies coalitional strategy-proofness. The fol-

lowing trivial example shows, however, that this logical relation does not

hold in general.

TABLE I

Definition of valuation functions.

a b c d

v1( · ; 0) 0 2 −10 1

v1( · ; 1) 1 −10 2 0

v2( · ; 0) 0 −10 2 1

v2( · ; 1) 1 2 −10 0

Let N = {1, 2}, Y = {a, b, c, d}, and Θ1 = Θ2 = {0, 1}. Let the valuation
functions be defined as in Table I.
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One bribe-proof solution that is not coalitionally strategy-proof is ϕ =

(ȳ, m̄), defined by m̄1( · ) ≡ 0 ≡ m̄2( · ), and

ȳ(0, 0) = a

ȳ(0, 1) = b

ȳ(1, 0) = c

ȳ(1, 1) = d

Also note that this rule is not efficient; hence bribe-proofness does not even

imply efficiency.
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