
Games and Economic Behavior 63 (2008) 435–467
www.elsevier.com/locate/geb

Convergence to perfect competition of a dynamic
matching and bargaining market with two-sided
incomplete information and exogenous exit rate

Mark Satterthwaite a,∗, Artyom Shneyerov b

a Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA
b CIREQ, CIRANO, and Department of Economics, Concordia University, 1455 de Maisonneuve Blvd. West,

Montreal, PQ H3G 1M8, Canada

Received 19 January 2005

Available online 10 May 2008

Abstract

Consider a decentralized, dynamic market with an infinite horizon and incomplete information in which
buyers and sellers’ values for the traded good are private and independently drawn. Time is discrete, each
period has length δ, and each unit of time a large number of new buyers and sellers enter the market. Within
a period each buyer is matched with a seller and each seller is matched with zero, one, or more buyers.
Every seller runs a first price auction with a reservation price and, if trade occurs, the seller and winning
buyer exit with their realized utility. Traders who fail to trade either continue in the market to be rematched
or exit at an exogenous rate. We show that in all steady state, perfect Bayesian equilibria, as δ approaches
zero, equilibrium prices converge to the Walrasian price and realized allocations converge to the competitive
allocation.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Asymmetric information and strategic behavior interfere with efficient trade. Nevertheless
economists have long believed that for private goods’ economies the presence of many traders
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overcomes both these imperfections and results in convergence to perfect competition. This pa-
per contributes to a growing literature that shows the robust ability of simple market mechanisms
to elicit cost and value information from buyers and sellers even as at it uses the information to
allocate the available supply almost efficiently. In particular, for a two-sided incomplete infor-
mation environment with independent private values, we show how a completely decentralized
matching and bargaining market converges to a competitive outcome as each trader’s ability to
contact a sequence of possible trading partners increases.

Thus a market that for each trader is big over time—as opposed to big at a moment in
time—overcomes the difficulties of asymmetric information and strategic behavior. This is a
step towards a full understanding of why price theory with its assumptions of complete informa-
tion and price-taking works as well as it does even in markets where the validity of neither of
these assumptions is self-evident.

A description of our model and result is this. An indivisible good is traded in a market in
which time progresses in discrete periods of length δ and generations of traders overlap. The
parameter δ is the exogenous friction in our model that we take to zero. Every active buyer is
randomly matched with an active seller each period. Depending on the luck of the draw, a seller
may end up being matched with several buyers, a single buyer, or even no buyers. Each seller
solicits a bid from each buyer with whom she is matched. If the highest of the bids is satisfactory
to her, she sells her single unit of the good and both she and the successful buyer exit the market.
A buyer or seller who fails to trade remains in the market and seeks a new match the next period
unless for exogenous reasons he or she elects to exit the market without trading.

Each unit of time a large number of potential sellers (formally, measure 1) enters the market
along with a large number of potential buyers (formally, measure a). Each potential seller in-
dependently draws a cost c in the unit interval from a distribution GS and each potential buyer
draws independently a value v in the unit interval from a distribution GB . Individuals’ costs and
values are private to them. A potential trader only enters the market if, conditional on his pri-
vate cost or value, his equilibrium expected utility is positive. Potential traders who have zero
probability of profitable trade in equilibrium elect not to participate.

If trade occurs between a buyer and seller at price p, then they exit with utilities v − p and
p − c respectively that they discount back at rate r to their times of entry. As in McAfee (1993),
unsuccessful active traders face a risk of exiting whose source is exogenous. Specifically, each
period each unsuccessful trader exits with probability 1−e−δμ where μ is the exit rate per unit of
time. If δ is large (i.e., periods are long), then a trader who enters the market is impatient, seeking
to consummate a trade and realize positive utility amongst the first few matches he realizes. If,
however, δ is small (i.e., periods are short), then a trader can patiently wait through many matches
looking for a good price with little concern about exiting with no gain.

Buyers with higher values find it worthwhile to submit higher bids than buyers with lower
values. At the extreme, a buyer with a value 0.1 will certainly not submit a bid greater than
0.1 while a buyer with a value 0.95 certainly might. The same logic applies to sellers: low cost
sellers are willing to accept lower bids than are higher cost sellers. This means high value buyers
and low cost sellers tend quickly to realize a match that results in trade and exit. Low value
buyers and high cost sellers may take a much longer time on average to trade and are likely to
exit without trading. Consequently, among the buyers and sellers who are active in the market
in a given period, low value buyers and high cost sellers may be overrepresented relative to the
entering distributions GB and GS .
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We characterize equilibria for the steady state of this market and show that, as the period
length goes to zero, all equilibria of the market converge to the Walrasian price and the competi-
tive allocation. The Walrasian price pW in this market is the solution to the equation

GS(pW) = a
(
1 − GB(pW)

)
, (1)

i.e., it is the price at which the measure of entering sellers with costs less than pW equals the
measure of entering buyers with values greater than pW . If the market were completely central-
ized with every active buyer and seller participating in an enormous exchange that cleared each
period’s bids and offers simultaneously, then pW would be the market clearing price each period.
Our result, carefully stated, is as follows. Given a δ > 0, then each equilibria induces a trading
range [p

δ
, p̄δ] that simultaneously is the range of offers that sellers of different types make, the

range of bids that buyers make, and the range of prices at which trades are actually transacted.
We show that limδ→0 p

δ
= limδ→0 p̄δ = pW , i.e., the trading range converges to the competi-

tive price. That the resulting allocations give traders the expected utility they would realize in a
perfectly competitive market follows directly.

The intuition why the trading range converges to a single price is easily stated. As the time
period δ shrinks towards zero each trader expects to match an increasing number of times prior to
exiting at a random time as a consequence of the exogenous exit rate. The result is a strong option
value effect for every trader. Even if a buyer has a high value, he has an increasing incentive
as δ decreases to bid low and hold out for an offer near the low end of the offer distribution.
Therefore all serious buyers bid within an increasingly narrow range just above the minimum
offer any seller makes. A parallel argument applies to sellers, with the net effect being, as δ

becomes small, all bids and offers concentrate within an interval of decreasing length, i.e., the
trading range converges to a single price. However, as we discuss below, what price the trading
range converges to is not as obvious.

This paper is a companion to Satterthwaite and Shneyerov (2007). Both papers prove conver-
gence of dynamic, decentralized markets with two-sided incomplete information to the Walrasian
outcome as frictions are removed by letting time between trading opportunities approach zero.
The difference in the two papers’ models is that in this paper impatience is the consequence of
an exogenous exit rate while in the latter it is the consequence of a participation cost. There are
two reasons why the development of these parallel models is worthwhile.

The first reason is to demonstrate the robustness of convergence to the competitive price and
allocation for different frictions that may exist within a market. For example, the rise of Inter-
net enabled markets has driven the cost of participation in some—but certainly not all—markets
almost to zero. Consequently here we eliminate participation costs as the source of friction and
substitute an exogenous exit rate. One justification for this exogenous exit rate is that partici-
pating in a market with trivial participation costs still requires the scarce resource of attention.
A trader when he decides to enter a market may know there is a significant probability that, if he
is unsuccessful at trading quickly, his situation may change, preempt his attention, and force him
to exit. He is therefore impatient to consummate the trade because exiting does not indicate that
trade would no longer be of value. It only indicates that he can no longer give it attention. This
interpretation of the fixed exit rate is consistent with a developing literature on the implications
of attention scarcity, e.g., Falkinger (2007). The premise of this literature is that the allocation of
attention across multiple projects, responsibilities, and unanticipated stimuli is a critical strategic
decision each agent must make each day.

The second reason is that the two paper’s models illuminate different aspects of why a match-
ing and bargaining market with incomplete information may converge to perfect competition. It
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turns out that in both models the same intuition concerning option value applies as to why the
distribution of prices at which trades occur converges to a single price. This congruence is absent
when it comes to understanding why this limiting price must be the Walrasian price. This paper’s
strength is that it identifies a general mechanism that forces that price to be the Walrasian price,
pW , whenever transaction prices converge to a single price. To understand this, suppose to the
contrary that prices converge to some lower price, p∗ < pW . If the period length δ is quite short,
then a potential buyer may choose to enter if his value v exceed p∗ because of the possibility of
buying at or close to that price. Similarly, a potential seller may enter if her cost c is less than p∗.
With p∗ less than pW more potential buyers enter than potential sellers. This, however, need
not prevent the market from clearing; all that is necessary is that buyers on average exit prior to
trading more often than do sellers. This, to some extent, occurs automatically because buyers,
being present in greater numbers, tend to wait longer than sellers to trade and therefore are more
likely to exit due to the exogenous exit rate.

Nevertheless, as the period length approaches zero, we can show that the equilibrium trading
range cannot converge to the price p∗ < pW . The quite general reasoning is that an active buyer
whose value v is relatively low necessarily has a low probability of trading in equilibrium and
a high probability of exiting for exogenous reasons. If this were not so, then the market would
not be in a steady state. The reason is that the excess buyers p∗ attracts into the market must exit
exogenously for market clearing to occur. This, however, sets up a contradiction. As δ becomes
small the trading range becomes extremely narrow as it converges to p∗. The low value buyer,
who has a low probability of trading, can then increase his bid the very small amount that is
just sufficient to make trade in the current period certain. Doing so is worthwhile—and breaks
the putative equilibrium—because the cost in terms of the increased price he pays is small and is
more than offset by the guarantee that trade occurs immediately with no possibility of unexpected
exit for exogenous reasons. Thus, given that the trading range is collapsing to a single price, that
price cannot be p∗, but must be pW .

By contrast, in our participation cost model (Satterthwaite and Shneyerov, 2007) we identified
a simpler, less general mechanism that guarantees convergence to pW . In the steady state, traders
have stationary strategies because, with a fixed per period participation cost, each period’s opti-
mization problem as to whether to be in the market and what price to bid/offer is unchanging.
This means that every trader who enters the market stays until he trades; no exit occurs for other,
exogenous reasons. Then, if δ is very small, every trader who enters ultimately gets to trade in a
very small band around whatever price p∗ to which the trading range is shrinking. This price p∗
must be pW because that is the only price that clears the market. The strength of the participation
cost paper (Satterthwaite and Shneyerov, 2007) that this paper does not share is that it proves ex-
istence in reasonable generality: provided the discount rate and the period length is sufficiently
small, equilibria necessarily exist. In Section 4.4 we report that we have successfully proved ex-
istence when a restrictive assumption is made on the sellers’ type distribution GS , but that proof
is not included here because of its length and lack of generality.

Our two papers build on a substantial literature that investigates the foundations of perfect
competition using dynamic matching and bargaining games under full information. The strand
of this literature to which our papers are most closely related includes Gale (1987) and Mortensen
and Wright (2002).1 These papers specify an explicit bargaining game between bilaterally

1 The books of Osborne and Rubinstein (1990) and Gale (2000) contain excellent discussions of both their own and
others’ contributions to this literature.
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matched traders and, conditional on that game, prove that the steady states of their papers’ games
converge to the Walrasian price and allocation as the market friction vanishes, just as is the case
in this paper and our participation cost paper. A second, less closely related strand (Gale, 1986a;
McLennan and Sonnenschein, 1991; Dagan et al., 2000) considers equilibria of matching and
bargaining games at the limit where the market is frictionless. All three of these papers posit
a fixed measure of consumers who begin the game with an endowment of multiple goods and
trade each period according to a given protocol in order to improve their consumption bundles.
In Gale and in McLennan and Sonnenschein matching is bilateral. In Dagan et al., as in our
paper, matching is multilateral, a feature that enables them exploit the equivalence of core and
Walrasian allocations in large markets. In all three of these papers each consumer exits (without
being replaced) once he achieves a bundle that further trade will not improve. Only then does he
realize the utility of the allocation he has obtained through his trades.

The primary difference between this literature and our papers is its complete information
assumption: when two traders meet they reciprocally observe each other’s cost/value. This—
complete versus incomplete information—is fundamental, for our purpose is to determine if a
decentralized markets can robustly elicit sufficient private valuation information at the same time
it uses that information to assign the available supply almost efficiently.

Butters (1979), Wolinsky (1988), De Fraja and Sákovics (2001), and Serrano (2002) are the
most important prior bargaining and matching models that incorporate incomplete information,
albeit one-sided in the cases of Wolinsky and of De Fraja and Sákovics.2 Of these four, only
Butters obtains convergence to perfect competition in the limit. Specifically, in an old, incomplete
manuscript he analyzes a two-sided incomplete information model that is very similar to the one
we study here and makes a great deal of progress towards proving a variant of the convergence
theorem that we prove here. In contrast, the models of the other three papers fail to converge
robustly to the Walrasian price. The reason for these failures is that the allocation problems those
papers model are non-competitive in their fundamentals.

Our reason for asserting this may be seen by generalizing the static double auction model
to a dynamic setting. In a double auction there are m privately informed sellers, each of whom
seeks to sell her one unit of the undifferentiated commodity and n privately informed buyers,
each of whom seeks to purchase one unit of the commodity. All traders simultaneously submit
offers/bids from which the market maker computes a market clearing price p and, at that price,
assigns the m units of supply to those m traders who revealed through their offers/bids that they
most value the available units. Satterthwaite and Williams (1989, 2002) and Rustichini et al.
(1994) established that as m and n increase the market rapidly approaches the ex post efficient,
competitive outcome.

The direct generalization of this model to our dynamic setting is this. Each unit of time mea-
sure 1 sellers and measure a buyers choose whether to enter the market. Each of these traders has
a private cost/value for a single unit of a homogeneous good and each faces a small exogenous
probability of exit each period. The baseline problem is how in this dynamic setting the sellers’
units of supply can be reallocated to those traders who most highly value them. Observe that
this problem is intrinsically competitive because the traded good is homogeneous, the number of
traders is always large, and the distributions GS and GB define well behaved supply and demand
curves.

2 Another example of a centralized trading institution is the system of simultaneous ascending-price auctions, studied
in Peters and Severinov (2007). They also find robust convergence to the competitive outcome.
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An immediate solution to this problem is each period to conduct a large static double auction
involving all the active traders. This works because, with continua of traders, the double auction
exactly computes the Walrasian price and uses it to mediate trade. The present paper’s result is
that decentralized matching and bargaining can with almost no loss of efficiency substitute for
the large centralized market, provided the period length is small.

The models of Wolinsky (1988), De Fraja and Sákovics (2001), and Serrano (2002), each has
a non-competitive attribute.3 To be specific, Wolinsky’s model relaxes the homogeneous good
assumption and does not fully analyze the effects of entry/exit dynamics. The entry/exit dynamics
of De Fraja and Sákovics’ model do not specify fixed measures of buyers and sellers entering the
market each unit of time and therefore do not specify well defined demand and supply curves.
Serrano’s model is of a market that may initially be large but, as buyers and sellers successfully
trade and no new traders enter, it becomes small and non-competitive over time, an effect that
the discreteness of its prices aggravates.

Recently five interesting working papers have appeared that build on our two matching and
bargaining papers with incomplete information. Lauermann (2006) is most closely related to this
paper because he also assumes that the friction in the market is an exogenous probability of exit.
His paper identifies a set of four conditions on trading outcomes that are sufficient to guarantee
convergence independent of many of the market’s details. The other four papers consider markets
in which the friction is an explicit per period cost of participation and are therefore more closely
related to Satterthwaite and Shneyerov (2007). Shneyerov and Wong (2007a) consider a model
that is a replica of Mortensen and Wright (2002) but with private information, provide a simple
necessary and sufficient condition for existence of a non-trivial equilibrium, and compare equi-
librium outcomes to those in Mortensen and Wright. Shneyerov and Wong (2007b) then establish
that the convergence rate is worst case optimal in the sense of Satterthwaite and Williams (2002).
Atakan (2007a, 2007b) also considers markets in which meetings are pairwise and develops con-
ditions that guarantee convergence. The important innovation that both of his papers pioneer is
relaxation of the usual assumption that good being traded is homogeneous. The resulting models
fit, to take two examples, the realities of the housing and labor markets much better than do the
existing models with homogeneous goods.

Looking ahead, the next section formally states the model and our main result establishing
that the Walrasian price emerges as the market becomes frictionless. Section 3 derives basic
properties of equilibria. Section 4 utilizes the notation and basic results from Sections 2 and 3 to
present a computed example illustrating our result and then to describe in detail the mechanisms
that force convergence to the Walrasian price. Section 5 then proves our result and Section 6 both
summarizes and discusses possible extensions.

2. Model and theorem

We study the steady state of a market with two-sided incomplete information and an infinite
horizon. In it heterogeneous buyers and sellers meet once per period (t = · · · ,−1,0,1, . . .) and
trade an indivisible, homogeneous good. Every seller is endowed with one unit of the traded good
for which she has cost c ∈ [0,1]. This cost is private information to her; to other traders it is an
independent random variable with distribution GS and density gS . Similarly, every buyer seeks
to purchase one unit of the good for which he has value v ∈ [0,1]. This value is private to him;

3 More complete discussions of these three papers are contained in Satterthwaite and Shneyerov (2007).
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to others it is an independent random variable with distribution GB and density gB . Our model
is therefore the standard independent private values model. We assume that the two densities are
bounded away from zero: a g > 0 exists such that, for all c, v ∈ [0,1], gS(c) > g and gB(v) > g.
This implies that 0 < pW < 1, i.e., the Walrasian price as defined in Eq. (1) is interior to the
interval [0,1].

The length of each period is δ. Each unit of time a large number of potential sellers and
a large number of potential buyers consider entering the market; formally each unit of time
measure 1 of potential sellers and measure a of potential buyers consider entry where a > 0.
This means that each period measure δ of potential sellers and measure aδ of potential buyers
consider entry. Only those potential traders whose expected utility from entry is positive elect to
enter and become active traders.4 Active buyers and sellers who do not leave the market through
either trade or exogenous exit carry over and remain active in the next period.

Let the strategy of a seller, S : [0,1] → [0,1] ∪ {N }, map her cost c into either a decision N
not to enter or the minimal bid that she is willing to accept. Similarly, let the strategy of a buyer,
B : [0,1] → [0,1] ∪ {N }, map his value v into either a decision N not to enter or the bid that
he places whenever he is matched with a seller. Traders who do not enter receive zero utility.
Denote with μ > 0 the exogenous exit rate.5 Finally let ζbe the endogenous steady-state ratio of
active buyers to active sellers in the market. Given this notation, a period consists of four steps:

1. Each potential trader decides whether to enter and become an active trader as a function of
his type, i.e., a potential seller declines entry if S(c) = N and a potential buyer declines
entry if B(v) = N .

2. Every active buyer is matched with one active seller. His match is equally likely to be with
any active seller and is independent of the matches other buyers realize. Since there are
continua of buyers and sellers the matching probabilities are Poisson: the probability that a
seller is matched with k = 0,1,2, . . . buyers is6

ξk = ζ k

k!eζ
. (2)

Consequently a seller may end up being matched with zero buyers, one buyer, two buyers,
etc.7

4 In an earlier version of this paper we assumed that potential traders whose expected utility is zero did enter the
market and become active. These traders had zero probability of trading and exited the market at the exogenous rate μδ

per period. Modulo a plausible restriction on the equilibrium strategies of traders who have zero probability of trading
we are able to show that the equilibrium trading range collapses to the Walrasian price.

5 The presence of a positive exit rate (or something similar) is necessary if participation costs are zero. The reason is
that every trader who enters must have a probability of either trading or exiting that, per unit of time, is bounded away
from zero. Otherwise traders whose probability of trading is infinitesimal but positive would accumulate in the market
and jeopardize the existence of a steady state. The presence of the exogenous exit rate does this directly. The presence
of a small participation cost in Satterthwaite and Shneyerov (2007) does this indirectly, for it causes any potential trader
who has a low or zero probability of trading to refuse entry because he cannot in expectation recover those expected
costs.

6 In a market with M sellers and ζM buyers, the probability that a seller is matched with k buyers is ξM
k

=(ζM
k

)
( 1
M

)k(1 − 1
M

)ζM−k . Poisson’s theorem (see, for example, Shiryaev, 1995) shows that limM→∞ ξM
k

= ξk .
7 This one-to-several matching among sellers and buyers contrasts with the pairwise matching that, with the exception

of Dagan et al. (2000), is to our knowledge universal in this literature. Matching in this manner skirts the conceptual
issues that arise in a model with continua of buyers and sellers entering each period; see the discussion of this issue in
McLennan and Sonnenschein (1991, footnote 4).
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3. Traders within a match bargain in accordance with the rules of the buyers’ bid double auc-
tion.8

(a) Simultaneously every buyer announces a take-it-or-leave-it offer to the seller. A type v

buyer bids B(v). At the time he submits his bid, he does not know how many other buyers
he is bidding against; he only knows the endogenous steady-state probability distribution
of how many buyers with whom he is competing.9

(b) The seller reviews the bids she has received and accepts the highest one provided it is at
least as large as her reservation cost, S(c). If two or more buyers tie with the highest bid,
then the seller uses a fair lottery to choose between them.

(c) If trade occurs between a type c seller and a type v buyer at price B(v) = p, then the
seller leaves the market with utility p − c and the buyer leaves the market with utility
v − p. Each seller, thus, runs an optimal auction; moreover their commitment to this
auction is credible since the reservation value each sets stems from their dynamic opti-
mization.10

4. Every active trader who fails to trade either remains active the next period with probability
e−δμ or, for exogenous reasons, exits with probability 1 − e−δμ. Traders who exit without
trading leave with zero utility.

Traders’ time preference cause them to discount their expected utility at the rate r � 0 per unit
time. This, together with the exit risk μ per unit time, induces impatience. Section 3.1 shows that
e−δβ is the overall rate per period at which each trader discounts his utility where β = μ + r .

A seller who has low cost tends to trade within a short number of periods of her entry because
most buyers with whom she might be matched have a value higher than her cost and therefore
tend to bid sufficiently high to obtain agreement. A high cost seller, on the other hand, tends
not to trade as quickly or, perhaps, not at all. As a consequence, in the steady state among the
population of sellers who are active, high cost sellers are relatively common and low cost sellers
are relatively uncommon. Parallel logic implies that, in the steady state, low value buyers are
relatively common and high value buyers are relatively uncommon.

To represent this endogenous distribution of trader types, let TS be the measure of active
sellers in the market after entry occurs and before matching, TB be the measure of active buyers
after entry occurs and before matching, FS be the distribution of active seller types within the
measure TS , and FB be the distribution of active buyer types within the measure TB . The buyer–
seller ratio ζ is therefore TB/TS . The corresponding densities are fS and fB and, establishing
useful notation, the right-hand distributions are F̄S ≡ 1 − FS and F̄B ≡ 1 − FB . Define WS(c)

and WB(v) to be the beginning-of-period, steady-state, net payoffs to a seller of type c and the
buyer of type v

c ≡ S(0),

c̄ ≡ sup
c

{
c | WS(c) > 0

}
,

v ≡ inf
v

{
v | WB(v) > 0

}
, and

8 See Satterthwaite and Williams (1989) for an analysis of the static buyers’ bid double auction.
9 In Section 4.3 we discuss how allowing each buyer to observe how many rivals he faces might change our results.

10 We do not know if these auctions are the equilibrium mechanism that would result if we tried to replicate McAfee’s
(1993) analysis within our model.
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v̄ ≡ B(1). (3)

No seller enters whose cost is c̄ or greater and no buyer enters whose value is v or less because
a trader only becomes active if his expected utility from participating is positive. We show in the
next section that active sellers’ equilibrium reservation costs all fall in the interval [ c, c̄), active
buyers’ equilibrium bids all fall in ( v, v̄], and that [ c, c̄] = [v, v̄] ≡ [p, p̄]. We call this interval
the trading range.

Our goal is to show that in all symmetric, steady-state equilibria the trading range converges
to the Walrasian price and the allocation converges to the competitive allocation as the period
length goes to zero. By a steady-state equilibrium we mean one in which every seller in every pe-
riod plays a symmetric, time invariant strategy S, every buyer plays a symmetric, time invariant
strategy B , and both these strategies are always optimal. Given the friction δ, a market equilib-
rium Mδ consists of strategies {S,B}, traders’ masses {TS,TB}, and distributions {FS,FB} such
that (i) {S,B}, {TS,TB}, and {FS,FB} generate {TS,TB} and {FS,FB} as their steady state and
(ii) no type of buyer can increase his expected utility (including the continuation payoff from
matching in future periods if trade fails in the current period) by a unilateral deviation from the
strategy B , (iii) no type of seller can commit to reject any bid above her full dynamic opportu-
nity cost c + e−βδWS(c) and (iv) strategies {S,B}, masses {TS,TB}, and distributions {FS,FB}
are common knowledge among all active and potential traders. We assume that, for each δ > 0,
a market equilibrium exists in which each potential trader’s ex ante probability of trade is posi-
tive.11 Throughout the paper we only consider these equilibria; we never consider the trivial no
trade equilibrium in which all potential sellers and buyers choose not to enter (λ = N ).

Note that beliefs are straightforward because there are continua of traders and matching is
anonymous and independent. Therefore off-the-equilibrium path actions do not cause inference
ambiguities. In addition, observe that for simplicity of exposition we assume traders use sym-
metric, pure strategies. At a cost in notation we could define trader-specific and mixed strategies
and then prove that the anonymous nature of matching and the strict monotonicity of strategies
implies they in fact must be symmetric and (essentially) pure. To see this, first consider the im-
plication of anonymous matching for buyers. Even if different traders follow distinct strategies,
every buyer would still draw his opponents from the same population of active traders.12 There-
fore, for a given value v, every buyer would have the identical best response correspondence.
Second, as we show below, every selection from this correspondence is strictly increasing. This
means that the best response is pure except at a measure zero set of values where jumps oc-
cur. Mixing can occur at these jump points, but does not affect other traders’ strategies because
the measure of the jump points is zero and has no consequence for other traders’ maximization
problems.

We may now state our main result.

Theorem 1. Fix a sequence of symmetric, steady-state market equilibria Mδ indexed by δ in
which δ1, δ2, . . . , δn, . . . → 0 and each potential trader’s ex ante probability of trade is posi-
tive. Let {Sδ,Bδ} be the strategies associated with the equilibrium that δ indexes, let [ c δ, c̄δ] =
[v δ, v̄δ] = [p

δ
, p̄δ] be the trading range those strategies imply, and let WSδ(c)and WBδ(v) be

the resulting interim expected utilities of the sellers and buyers respectively. Then both the bid-
ding and offering ranges converge to pW :

11 In Section 4.4 we describe the limited existence results that we have obtained.
12 This is strictly true because we assume a continuum of traders.
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lim
δ→0

c δ = lim
δ→0

c̄δ = lim
δ→0

v δ = lim
δ→0

v̄δ = pW . (4)

In addition, each trader’s interim expected utility converges to the utility he would realize if the
market were perfectly competitive:

lim
δ→0

WSδ(c) = max[0,pW − c] (5)

and

lim
δ→0

WBδ(v) = max[0, v − pW ]. (6)

Section 5 contains the theorem’s proof.
This theorem is almost identical to Theorem 1 in our participation cost paper (Satterth-

waite and Shneyerov, 2007); the only difference is that that theorem does not assert that
[ c δ, c̄δ] = [v δ, v̄δ] = [p

δ
, p̄δ].The reason is that in the presence of participation costs traders’

equilibrium strategies must recover their expected costs. This requires, in effect, an equilib-
rium bid–ask spread that does not arise in the exogenous exit rate model. To understand this
specifically, consider active types only and begin with this paper’s model. Here buyers and
sellers’ equilibrium strategies have congruent, fully overlapping ranges: Sδ : [0, c̄δ) → [ c δ, c̄δ),
Bδ : ( v δ,1] → ( v δ, v̄δ], and [ c δ, c̄δ] = [v δ, v̄δ]. This congruence is driven by the fact that mar-
ket participation is free. To demonstrate this, suppose that in equilibrium the type vδ buyer bids
such that v δ > Bδ( v δ) > Sδ(0), i.e., v δ , the lowest active buyer, bids more than the lowest reser-
vation price that any seller offers. But this cannot be equilibrium behavior because a type v′
buyer for whom v′ ∈ (Sδ(0), v δ) can successfully enter with some bid B(v′) ∈ (S(0), v′). Doing
so has no cost and, with some positive probability, results in a trade that earns him v′ − B(v′)
profit. This contradicts v δ being the type of the lowest active buyer.

Obviously the argument just made breaks down in the participation cost model where each
trader incurs a cost each period he is in the market. With participation costs buyers’ strategies
retain the structure SP

δ : [0, c̄δ) → [ c δ, c̄δ]. Buyers’ strategies, however, take on a modified struc-
ture: BP

δ : ( v δ,1] → (p
δ
, p̄δ] where [p

δ
, p̄δ] 	= [ c δ, c̄δ], p

δ
∈ ( c δ, c̄δ], and p̄δ ∈ (c̄δ,1].13 In

words, the presence of participation costs causes the range of buyers’ strategies to slide up rel-
ative to the range of the sellers’ strategies, reducing their overlap. The extreme case is the “full
trade” equilibrium, which the participation cost paper (Theorem 2) shows must exist if δ is suf-
ficiently small. There the range of the buyers’ strategies slides up so far that all overlap but one
point is eliminated: p

δ
= c̄δ and [ c δ, c̄δ] ∩ [p

δ
, p̄δ] = p

δ
.14

That these differences in equilibrium structure have no effect on either models’ conver-
gence to the competitive price is remarkable. Apparently the underlying mechanisms forcing
convergence—even in the presence of incomplete information—are robust.

3. Basic properties of equilibria

In this section we derive several basic properties that all equilibria must satisfy. These
properties—formulas for the probability of trade, establishment of the strict monotonicity of

13 This characterization is from Lemma 6 in Satterthwaite and Shneyerov (2007).
14 This difference in the structure of equilibrium strategies across the two models can be seen by comparing the top
panels of each paper’s Fig. 1.
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strategies, and necessary conditions for a strategy pair (S,B) to be an equilibrium—enable us to
compute examples of equilibria and provide the foundations for the proof of our main result.

3.1. Discounted ultimate probability of trade

An essential construct for our analysis is the discounted ultimate probability of trade. It allows
a trader’s expected gains from participating in the market to be written as simply as possible.
Given any period, let ρS(λ) be the probability that a seller who offers λ ∈ [0,1] ∪ {N } trades
that period and let ρB(λ) be the probability that a buyer who bids λ trades that period. Observe
that ρS is non-increasing and ρB is non-decreasing for λ ∈ [0,1] because all trade is mediated
by the buyers’ bid double auction. Let ρ̄S(λ) = 1 − ρS(λ) and ρ̄B(λ) = 1 − ρB(λ). If a trader
chooses λ = N , then he does not enter and ρS(N ) = ρB(N ) = 0. In Section 3.3 we derive
explicit formulas for ρB and ρS .

Define recursively PB(λ) to be a buyer’s discounted ultimate probability of trade if he bids λ:

PB(λ) = ρB(λ) + ρ̄B(λ)e−μδe−rδPB(λ)

= ρB(λ) + ρ̄B(λ)e−βδPB(λ)

where β = μ + r . Therefore

PB(λ) = ρB(λ)

1 − e−βδ + e−βδρB(λ)
. (7)

Observe that the formula incorporates both the trader’s risk of having to exit and his time dis-
counting into the calculation. The parallel recursion for sellers implies that

PS(λ) = ρS(λ)

1 − e−βδ + e−βδρS(λ)
. (8)

PB is non-decreasing and PS is non-increasing.

3.2. Strategies are strictly increasing

This subsection demonstrates the most basic property that our equilibria satisfy: equilibrium
strategies for active traders are strictly increasing. As a preliminary step, we first show that the
sets of buyers and sellers active in the market are well behaved: buyers come from an interval at
the top of the [0,1] set of possible types and sellers come from an interval at the bottom.

Claim 2. In any equilibrium v < 1, c > 0,

( v,1] = {
v|WB(v) > 0

}
, (9)

[0, c) = {
c|WS(c) > 0

}
, (10)

S(c) = N for c ∈ [c̄,1], and B(v) = N for v ∈ [0, v ].

Proof. Since we have ruled out the uninteresting no trade equilibrium, every potential trader has
a positive ex ante probability of trade:

∫ 1
0 ρB [B(v)]gB(v)dv > 0 and

∫ 1
0 ρS[S(c)]gS(c)dc > 0.

These inequalities hold only if v < 1 and c > 0, establishing the first part of the claim.
A buyer who every period employs strategy B(v) ∈ [0,1] ∪ {N } gets equilibrium payoff

WB(v) = vPB [B(v)]−DB(B(v)) where DB(λ) is the discounted expected equilibrium payment
from using strategy λ ∈ [0,1] ∪ {N }. Note that DB(v) = 0 if B(v) = N . By definition
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WB(v) = max
λ∈[0,1]∪{N }

vPB(λ) − DB(λ),

and, for all λ ∈ [0,1] ∪ {N }, vPB(λ)−DB(λ) is differentiable in v. Application of Milgrom and
Segal’s (2002, Theorem 2) envelope theorem for arbitrary choice sets enables us to write

WB(v) = WB(0) +
v∫

0

PB

[
B(x)

]
dx. (11)

Therefore WB(·) is continuous and non-decreasing on [0,1]. Then, by the definition of v,
WB(v) > 0 for v ∈ ( v,1] and WB(v) = 0 for v ∈ [0, v ). WB(v ) = 0 because WB(·) is con-
tinuous, which establishes (9). Finally, B(v) = N for v ∈ [0, v ) because a trader only enters
if he has strictly positive utility. The proof of (10) and S(c) = N for all c ∈ [c̄,1] is exactly
parallel. �
Claim 3. B is strictly increasing on ( v,1]

Proof. WB(v) = supλ�0(v − λ)PB(λ) = (v − B(v))PB(B(v)) is the upper envelope of a set
of affine functions. It follows that, for v ∈ ( v,1], WB is a continuous, increasing, and convex
function that is differentiable almost everywhere.15 Convexity implies that W ′

B is non-decreasing
on [v,1]. By the envelope theorem W ′

B(·) = PB [B(·)]; PB [B(·)] is therefore non-decreasing on
[v,1] at all differentiable points. Milgrom and Segal’s (2002) Theorem 1 implies that at non-
differentiable points v′ ∈ [v,1]

lim
v→v′−

W ′
B(v) � PB

(
B

(
v′)) � lim

v→v′+
W ′

B(v).

Thus PB [B(·)] is everywhere non-decreasing on [v,1].
Pick any v, v′ ∈ ( v,1] such that v < v′. Since PB [B(·)] is everywhere non-decreasing,

PB [B(v)] � PB [B(v′)] necessarily. We first show that B is non-decreasing on ( v,1]. Suppose,
to the contrary, that B(v) > B(v′). The rules of the buyer’s bid double auction imply that PB(·)
is non-decreasing; therefore PB [B(v)] � PB [B(v′)]. Consequently PB [B(v)] = PB [B(v′)]. But
this gives v′ incentive to lower his bid to B(v′), since by doing so he will buy with the same
positive probability but pay a lower price. This contradicts B being an optimal strategy and es-
tablishes that B is non-decreasing. If B(v′) = B(v) (= λ) because B is not strictly increasing,
then any buyer with v′′ ∈ (v, v′) will raise his bid infinitesimally from λ to λ′ > λ to avoid the
rationing that results from a tie. This proves that B is strictly increasing. �
Claim 4. S is continuous, strictly increasing on [0, c), and

S′(c) = 1 − e−βδPS

[
S(c)

]
> 0

for almost all c ∈ [0, c).

Proof. Our assumption in Section 2’s definition of a market equilibrium Mδ that sellers do not
have commitment power to reject bids above their dynamic opportunity cost mandates that

S(c) = c + e−βδWS(c) (12)

15 An increasing function is differentiable almost everywhere.
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for all c ∈ [0, c) where WS(c) is the equilibrium payoff to a seller with cost c. In a stationary
equilibrium WS(c) = D(S(c)) − cPS(S(c)) where PS[S(c)] is her discounted ultimate probabil-
ity of trading when her offer is S(c) and D(S(c)) is the expected equilibrium payment to the
seller with cost c. Milgrom and Segal’s Theorem 2 implies that WS is continuous and can be
written, for c ∈ [0, c̄], as

WS(c) = WS(c̄) +
c̄∫

c

PS

(
S(x)

)
dx (13)

=
c̄∫

c

PS

(
S(x)

)
dx (14)

where the second line follows from the definition of c̄ and the continuity of WS . This immediately
implies that WS is strictly decreasing (and therefore almost everywhere differentiable) because
the definition of c̄ implies that PS(S(c)) > 0 for all c ∈ [0, c̄). It, when combined with Eq. (12),
also implies that S is continuous. Therefore, for almost all c ∈ [0, c),

S′(c) = 1 − e−βδPS

[
S(c)

]
> 0

because W ′
S(c) = −PS[S(c)]. This, together with the continuity of S, establishes that S is strictly

increasing for all c ∈ [0, c). �
Claim 5. p = v = c = S(0) = limv↓c B(v) and p̄ = c = v̄ = B(1) = limc↑v̄ S(c).

Proof. Given that S is strictly increasing, S(0) = c is the lowest offer any seller ever makes.
A buyer with valuation v < c does not enter the market because he can only hope to trade by
submitting a bid at or above c and such a bid would be above his valuation. S is continuous by
Claim 4, so a buyer with valuation v > c will enter the market with a bid B(v) ∈ ( c, v) because
he can make profit with positive probability. Therefore limv↓c B(v) = v = c.

By definition c ≡ supc{c|WS(c) > 0}. That Eq. (12) and continuity of WS imply that
limc↑v̄ S(c) = c can be seen as follows. A seller with cost c � v̄ = B(1) will not enter the mar-
ket, so c � B(1). Suppose c = limc↑v̄ S(c) < v̄ ≡ B(1). Then a seller with cost c′ ∈ (c,B(1))

can enter and, with a positive probability, earn a profit with an offer S(c′) ∈ (c,B(1)). This,
however, is a contradiction: supc{c|WS(c) > 0} � c′ > c ≡ supc{c|WS(c) > 0}. Therefore
limc↑v̄ S(c) = c = v̄ = B(1). �

These findings are summarized as follows.

Proposition 6. Suppose that {B,S} is a stationary equilibrium. Then S and B are strictly in-
creasing over [0, c̄) and ( v,1]. Additionally S is continuous and, for almost all c ∈ [0, c),

S′(c) = 1 − e−βδPS

[
S(c)

]
> 0.

The strategies also satisfy the boundary conditions p = v = c = S(0) = limv↓c B(v) and p̄ =
c = v̄ = B(1) = limc↑v̄ S(c). Finally, S(c) = N for c ∈ [c̄,1] and B(v) = N for v ∈ [0, v].

The strict monotonicity of B and S allows us to define their inverses, V and C, on the domain
[p, p̄]: V (λ) = inf{v: B(v) > λ} and C(λ) = inf{c: S(c) > λ}. These functions are used fre-
quently below.
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3.3. Explicit formulas for the probabilities of trading

Focus on a seller of type c who in equilibrium has a positive probability of trade. In a given
period she is matched with zero buyers with probability ξ0 (recall Definition 2 in Section 2) and
with one or more buyers with probability ξ̄0 = 1 − ξ0. Suppose she is matched and v∗ is the
highest type buyer with whom she is matched. Since by Proposition 6 each buyer’s bid function
B is increasing, she accepts his bid if and only if B(v∗) � λ where λ is her reservation price. The
distribution from which v∗ is drawn is F ∗

B : for v ∈ [v,1],

F ∗
B(v) = 1

ξ̄0

∞∑
i=1

ξi

[
FB(v)

]i

= 1

ξ̄0

∞∑
i=1

ζ i

eζ i!
[
FB(v)

]i

= eζFB(v) − 1

eζ − 1
(15)

where FB is the steady-state distribution of buyer types and {ξ0, ξ1, ξ2, . . .} are the probabilities
(defined in Eq. (2)) with which each seller is matched with zero, one, two, or more buyers.16 Note
that this distribution is conditional on the seller being matched. Thus if a seller has reservation
price λ, her probability of trading in a given period is

ρS(λ) = ξ̄0
[
1 − F ∗

B

(
V (λ)

)]
. (16)

A similar expression obtains for ρB(λ), the probability that a buyer submitting bid λ success-
fully trades in any given period. In order to derive this expression, we need a formula for ωk , the
probability that the buyer is matched with k rival buyers. If TB is the mass of active buyers and
TS is the mass of active sellers, then ωkTB , the mass of buyers participating in matches with k

rival buyers, equals k + 1 times ξk+1TS , the mass of sellers matched with k + 1 buyers:

ωkTB = (k + 1)ξk+1TS.

Solving, substituting in the formula for ξk+1, and recalling that ζ = TB/TS shows that ωk and ξk

are identical:

ωk = (k + 1)

ζ
ξk+1 = (k + 1)

ζ

ζ k+1

(k + 1)!eζ
= ξk. (17)

The implication of this is that the distribution of bids from other buyers that a buyer must beat is
exactly the same distribution of bids that each seller receives when she is matched with at least
one buyer.17

Turning back to ρB , a buyer who bids λ and is the highest bidder has probability FS(C(λ))

of having his bid accepted. This is just the probability that the seller with whom the buyer is

16 This formula follows from the facts that:

∞∑
i=1

xi

i! = ex − 1 and ξ̄0 =
∞∑
i=1

ξi = eζ − 1

eζ
.

17 The congruence of these distributions is a consequence of the number of sellers being Poisson. See Myerson’s (1999)
discussion of games in which the number of participants is uncertain.
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matched has a low enough reservation price so as to accept his bid. If a total of j + 1 buyers
are matched with the seller with whom the buyer is matched, then he has j competitors and the
probability that all j competitors bid less than λ is [FB(V (λ))]j . Therefore the probability that
the bid λ is successful in a particular period is

ρB(λ) = FS

(
C(λ)

) ∞∑
j=0

ωj

[
FB

(
V (λ)

)]j

= FS

(
C(λ)

) ∞∑
j=0

ξj

[
FB

(
V (λ)

)]j

= FS

(
C(λ)

) ∞∑
j=0

ζ j

eζ j !
[
FB

(
V (λ)

)]j
= FS

(
C(λ)

)
e−ζFB

(
V (λ)

)
,

recalling that 	∞
j=0x

j /j ! = ex and F̄B(x) ≡ 1 − FB(x).

3.4. Necessary conditions for strategies and steady-state distributions

In this subsection the goal is to write down a set of necessary conditions that are sufficiently
complete so as to form a basis for calculating Section 4.1’s example and, also, to create a foun-
dation for Section 5’s proof of Theorem 1.

The necessary conditions apply only to active trader types, i.e. for v ∈ ( v,1] and c ∈ [0, c ).
We first derive fixed point conditions that traders’ strategies must satisfy. Consider sellers first.
Substituting (13),

WS(c) =
c̄∫

c

PS

(
S(x)

)
dx (18)

into (12) gives a fixed point condition sellers’ strategies must satisfy:

S(c) = c + e−βδ

c̄∫
c

PS

(
S(x)

)
dx. (19)

Turning to buyers, we have from (11):

WB(v) =
v∫

v

PB

[
B(x)

]
dx. (20)

But also,

WB(v) = max
λ∈[0,1]∪{N }

(v − λ)PB(λ) = (
v − B(v)

)
PB

(
B(v)

)
.

Substituting (20) into this and solving gives a fixed point condition buyers’ strategies must sat-
isfy:
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B(v) = v − 1

PB [B(v)]
v∫

v

PB

[
B(x)

]
dx. (21)

In our model, the distributions {FB,FS} are endogenously determined by traders’ strategies.
In any steady state, the numbers of entering and leaving traders must be equal. This gives rise
to three necessary conditions. First, in the steady state, for each type v ∈ ( v,1], the density fB

must be such that the mass of buyers entering equals the mass of buyers leaving:

aδgB(v) = TBfB(v)
{
ρB

[
B(v)

] + ρ̄B

[
B(v)

](
1 − e−μδ

)}
(22)

where the left-hand side is the measure of type v buyers of who enter each period and the right-
hand side is the measure of type v buyers who exit each period. Note that it takes into account
that within each period successful traders exit prior to traders who exit for exogenous reasons. It
also takes into account that TB is defined to be the measure of buyers who are active immediately
after entry has occurred within the period. Second, the analogous steady-state condition for the
density fS is, for c ∈ [0, c̄),

δgS(c) = TSfS(c)
{
ρS

[
S(c)

] + ρ̄S

[
S(c)

](
1 − e−μδ

)}
. (23)

Third, trade always occurs between pairs consisting of one seller and one buyer. Therefore, given
a cohort of buyers and sellers who enter during a given unit of time, the mass of those buyers
who ultimately end up trading must equal the mass of sellers who ultimately end up trading:

a

1∫
v

P̃B(v)gB(v)dv =
c̄∫

0

P̃S(c)gS(c)dc (24)

where P̃B(v) and P̃S(c) are, respectively, the ultimate trading probabilities for a type v buyer
and a type c seller. Notice the distinction between PB and P̃B . The former is the discounted
ultimate probability of trade while the latter is the undiscounted ultimate probability of trade.
Examination of the derivation of PB (Eq. (7)) shows that the formulas for P̃B(v) and P̃S(c) are

P̃B(λ) = ρB(λ)

1 − e−μδ + e−μδρB(λ)
� PB(λ) (25)

and

P̃S(λ) = ρS(λ)

1 − e−μδ + e−μδρS(λ)
� PS(λ). (26)

Together the fixed point conditions (19) and (21), the expected utility formulas (18) and (20),
the steady-state conditions (22) and (23), and the overall mass balance equation (24) form a
useful set of necessary conditions for equilibria of our model.

4. Discussion

4.1. A computed example

These necessary conditions (18)–(24) supplemented with boundary conditions enable us to
compute an illustrative example of an equilibrium for our model and to show how, as δ is reduced,
the equilibrium converges towards the perfectly competitive limit. The boundary conditions are
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S(0) = c, lim
c↑v̄

S(c) = c̄, lim
c↑v̄

WS(c) = 0,

lim
v↓c

B(v) = v, B(1) = v̄, lim
v↓c

WB(v) = 0

where c = v̄ = p̄ and v = c = p. Our computation specifies that traders’ private values are drawn
from the uniform distribution (gS(c) = gB(v) = 1) on the unit interval, the mass of buyers en-
tering each unit of time exceeds the mass of sellers entering by 10% (a = 1.1), the exit rate is
one per unit time (μ = 1.0), and the discount rate is zero (r = 0.0). The Walrasian price for these
parameter values is pW = 0.524. We computed the equilibrium by fitting sixth degree Chebyshev
polynomials to the set of conditions using the method of collocation.18

Fig. 1 graphs equilibrium strategies S,B and steady-state densities fS,fB for these parameter
values.19 The left column of the figure graphs strategies and densities for period length δ = 0.2;
the right column does the same for period length δ = 0.1. Visual inspection of these equilibria
shows the flattening of strategies that occurs as the period length shortens and each trader’s
option to wait another period for a better deal becomes more valuable. Thus, as δ is cut in half,
the trading range [p, p̄] narrows from [0.387, 0.570] down to [0.449, 0.550], which is almost a
halving of its width from 0.182 to 0.100. In both equilibria the buyer-seller ratio is ζ = 1.570.
Observe that for both period lengths the trading range includes the Walrasian price. Inspection of
the densities shows that, as the period length shortens, sellers with costs just below c̄ and buyers
with values just above v tend to accumulate within the market.

Relative inefficiency is the expected gains that the traders would realize if the market were
perfectly competitive divided into the expected gains that the traders fail to realize in the equilib-
rium of the double auction market. Comparing these two computed equilibria, cutting δ in half
cuts the relative inefficiency I of the equilibrium by slightly less than half: I = 0.106 for δ = 0.2
and I = 0.056 for δ = 0.1. Thus the decrease in relative inefficiency appears to be roughly lin-
ear with respect to δ. The driver of this rate is the exit rate μ that forces δμ proportion of each
trader type to leave the market discouraged, irrespective of their potential gains from trade. If
as δ is reduced traders’ strategies were to remain invariant—an increasingly good approxima-
tion as δ becomes small—then cutting δ in half reduces by half the waste that exit before trade
generates.20

4.2. Sources of inefficiency

Fig. 1 highlights how this paper’s model with its friction of an exogenous exit rate creates
equilibrium inefficiency First, traders may have to wait before trading. This happens in several
ways: a seller may fail to be matched with any buyers, a buyer may fail to outbid competing
buyers, and a seller may set a reservation price higher than the highest bid she receives. Whatever
the cause, a trader who fails to trade in the current period has 1−e−δμ probability of exiting rather
than carrying over to the next period. This wastes the gains from trade that he would have realized
if he had not exited. Second, in any equilibrium the set of seller types who enter intersects with
the set of buyer types who enter:

18 See Judd (1998).
19 We do not know if this equilibrium is unique.
20 As δ is reduced from 0.2 to 0.1 the relative inefficiency is not quite reduced by half. An important reason for this is
that reducing δ has no effect on the gains from trade that are realized by traders who succeed in trading the very period
they enter.
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Fig. 1. This figure graphs two equilibria for the case in which gS and gB are uniform, a = 1.1, μ = 1.0, and r = 0.0. The
lower and upper curves in each top panel graph the bidding strategy B(v) and the offer strategy S(v) respectively. Each
lower panel graphs the densities of types in the market: the increasing curve is the sellers’ type density FS(c) and the
decreasing curve is the buyers’ type density FB(v). The two panels on the left side illustrate an equilibrium with period
length δ = 0.20. It has relative inefficiency I = 0.095 and masses of active traders TS = 0.201 and TB = 0.316. The two
panels on the right side illustrate an equilibrium with period length δ = 0.10. It has relative inefficiency I = 0.0513 and
masses of active traders TS = 0.106 and TB = 0.166.

[0, c̄δ) ∩ ( v δ,1] 	= [p
δ
, p̄δ].

This means that in every equilibrium trades occur between types that would not occur in a com-
petitive equilibrium, e.g., a type v buyer and type c seller may trade even though v > c > pW .
Note that in some equilibria (including both that are graphed in Fig. 1) pW ∈ [p

δ
, p̄δ] so that

every type who should enter does enter.21 In such equilibria these two sources of inefficiency are
the only sources of inefficiency.

This may be compared with the sources of inefficiency in our participation cost paper (Sat-
terthwaite and Shneyerov, 2007). In that model’s “full trade equilibria” every match results in a

21 We have not been able to rule out that equilibria exist in which pW /∈ [p , p̄δ].
δ
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trade.22 Nevertheless there are again two sources of inefficiency. As in this paper’s model ineffi-
ciencies in matching occur when a seller fails to match with any buyer, when a buyer is outbid by
other buyers, and when a seller sets her reservation price higher than the best bid any buyer sub-
mits to her. All such traders carry over to the next period, incurring wasteful participation costs
δκ where κ is cost of participating in the market per unit time. The cumulative participation costs
this waiting generates is analogous to the waste that exit without trade generates in this paper’s
model.

Additionally, in the participation cost model’s full trade equilibria a gap necessarily exists
between c̄δ , the highest cost seller who enters, and v δ , the lowest value seller who enters:

[0, c̄δ) ∩ ( v δ,1] = ∅.

The Walrasian price necessarily falls within this gap: pW ∈ (c̄δ, v δ). Therefore potential sellers
with types c ∈ (c̄δ,pW ) and potential buyers with types v ∈ (pW ,v δ) should enter and trade, but
do not. Their potential gains from trade are lost.

The conclusion from this comparison is that while both the exogenous exit rate model and
the participation cost model generate equilibrium inefficiency as a result of waiting, each has
a distinct source of inefficiency that the other does not share: too much entry in the case of an
exogenous exit rate and too little entry in the case of participation costs.

4.3. Mechanisms of convergence

Law of one price. As mentioned in the introduction, option value forces the trading range
[p

δ
, p̄δ] to collapse to a single price as δ → 0. A basic intuition for this is straightforward. Let

WB(v,ρB, δ) =
∞∑
i=0

(
e−βδρ̄B

(
λ∗))i

ρB

(
λ∗)(v − λ∗); (27)

it is the expected present value of a type v buyer who, facing period length δ and current period
trading probabilities ρB , makes the bid λ∗ that is optimal. Note that WB(v,ρB, δ) is decreasing
in δ.

Consider an equilibrium when the period length is δ′ > 0. A type v active buyer selects his
current period bid λ′ = Bδ′(v) that maximizes his expected net present value:

Bδ′(v) ∈ arg max
λ∈[0,v]

[
ρBδ′(λ)(v − λ) + ρ̄Bδ′(λ)e−βδ′′

WB
(
v,ρBδ′ , δ′)].

The product e−βδ′
WB(v,ρBδ′ , δ′) is his opportunity cost—his option value—of successfully

trading in the current period.
Now, suppose that the period length shortens to δ′′ < δ′, every buyer realizes this is so, but eve-

ry buyer continues to act as if the trading probabilities remain unchanged at ρδ′ . This increases his
opportunity cost of trading now, e−βδ′′

WB(v,ρBδ′ , δ′′) > e−βδ′
WB(v,ρBδ′ , δ′), and causes him

to revise his bid downward to λ′′ < Bδ′(v). That is, every buyer type revises his bid downward
towards the bottom of the original trading range [p

δ
, p̄δ]. In particular, a type 1 buyer bids less

than Bδ′(1) = v̄δ′ = p̄δ′ , which chops off the top of the trading range. A symmetric argument
implies that as δ shrinks Sδ(0) = c δ = p

δ
increases. Together these two arguments suggest that

22 They prove the existence of full trade equilibria and computationally construct examples of them. They, however,
have been unable to rule out the existence of other classes of equilibria.
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as δ decreases to δ′′ from δ′ the trading range [p
δ
, p̄δ] gets shortened at both ends and forces the

trading range to converge to a single price.
This intuition is incomplete, for it neglects the effect that reducing δ has (i) on the trading

probabilities ρSδ and ρBδ and (ii) the endogenous, steady-state distributions FSδ and FBδ of
active traders’ types. If, as δ shrinks, active buyers as a whole increasingly make bids that are
accepted only by sellers whose costs relative to all active sellers are low, then low cost sell-
ers rapidly exit from the market while high cost sellers accumulate. This tendency is apparent
in the bottom row of Fig. 1. The density of low cost sellers and high value buyers decreases
slightly as δ decreases. More noticeably, the density of high cost sellers and low value buyers in-
creases dramatically as δ decreases. These endogenous changes decrease the incentive of buyers
to bid aggressively low and sellers to set their reservation values aggressively high. Conceiv-
ably, this skewing of FSδ and FBδ could cancel the option value effect and stall convergence.
However, the proof of Proposition 7 shows that this cannot happen. Moreover with only mod-
erate customization this proof applies both to this paper’s model and to our participation cost
model (Satterthwaite and Shneyerov, 2007). The conclusion is that in our matching and bargain-
ing models the option value of waiting increases as the per period friction decreases and drives
convergence towards one price.

This intuition is useful in considering the possible effects of a plausible modification of our
model. We assume in our model that a trader chooses his bid/offer to maximize uncondition-
ally his expected gains over all possible match sizes. It would arguably be a more attractive
assumption to follow Dagan et al. (2000) and allow buyers and sellers to tailor their strategies to
whatever match is realized, i.e., each trader would condition his bid/reservation cost on the real-
ization of the number of buyers competing within his match. If we adopted this change, then in
a given equilibrium each seller and each buyer’s strategy would be an infinite sequence of func-
tions: {S1

δ (c), S2
δ (c), . . . , Sk

δ (c), . . .} and {B0
δ (c),B1

δ (c), . . . ,B�
δ (c), . . .} where k is the number of

buyers with whom the seller is matched with and � is the number of other buyers with whom the
buyer is bidding against.

Our belief is that doing this would, in the end, make no difference in our result even while
considerably increasing the complexity of our notation and proof. The reason is that, as δ be-
comes small, the discount factor e−δβ = e−δ(μ+r) approaches one, waiting becomes cheap and,
exactly as above, traders will only accept a small difference between the best possible price and
the price available in the current match. To be more specific, suppose that the trading range
[p

δ
, p̄δ] does not shrink to a point as δ approaches to zero, i.e., limδ→0(p̄δ −p

δ
) = ε > 0 where

now p̄δ ≡ sup�∈{0,1,2,...}{B0
δ (1),B1

δ (1),B2
δ (1), . . . ,B�

δ (1), . . .}. An active buyer’s maximization
problem is:

Bδ(v) = arg max
λ∈[0,1]

PBδ(λ)(v − λ).

Formula (7) for the discounted ultimate probability of trade has the property that if ρBδ(λ) > 0,
no matter how small, limδ→0 PBδ(λ) = 1. This means that, if δ is small, then an active type v

buyer can wait, with only a very small chance of exiting before trading, for the conjunction of
two favorable, independent events: a match in which (i) he is the only buyer bidding for the
seller’s unit of supply and (ii) the seller has a cost that is close to zero. His option value driven,
optimal bid is therefore, for sufficiently small δ and all possible match sizes �, to set B�

δ (v) very
close to p

δ
(i.e., less than ε above p

δ
) because ρBδ(B

�
δ (v)) > 0 whenever B�

δ (v) > p
δ
. But then

p̄δ ≡ sup
{
B0

δ (1),B1
δ (1),B2

δ (1), . . . ,B�
δ (1), . . .

}
< p

δ
+ ε,
�∈{0,1,2,...}
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which contradicts limδ→0(p̄δ − p
δ
) = ε. Thus, it appears, in the model in which traders con-

dition on the number of other traders in the match, option value causes the trading range to be
progressively truncated from both ends as δ approaches zero, just as it does in our model in which
traders do not condition on the match size.

Convergence to the Walrasian price. The necessity of supply to equal demand in the steady
state causes the trading range [p

δ
, p̄δ] to converge to pW . To see this, suppose it converges to a

price p∗ less than pW . This attracts more buyers into the market, i.e., potential buyers with values
in the interval (p,pW ) who would not enter in a competitive equilibrium find it worthwhile to
enter. This excess entry of buyers requires that there be a compensating increased probability
of exit prior to trading; otherwise the measure of buyers who are active would increase and the
market would not be in steady state.

Let δ be small so that the length of [p
δ
, p̄δ] is small. Consider a type v′ buyer whose value

falls approximately midway in the interval [p̄δ,1] so that p̄δ � v′ � 1. Necessarily this buy-
er’s ultimate probability of trading, PBδ(Bδ(v)), is less than one. But by increasing his bid
from Bδ(v

′) = λ < p̄δ to λ′ = p̄δ he can increase his probability of ultimately trading from
PBδ(Bδ(v

′)) to one. Given that δ is small, this increase in bid from λ to λ′ increases the price
that he pays only a tiny bit even as it guarantees that he will trade with certainty. The reason is
that λ,λ′ ∈ [p

δ
, p̄δ] and the interval [p

δ
, p̄δ] is narrow. Therefore, for small enough δ, it pays

the type v buyer to deviate upward from his equilibrium bid, contradicting the hypothesis that in
the sequence of equilibria the trading range shrinks to p∗ < pW .

This intuition underlies the construction of Claim 8’s proof that limδ→0 v̄δ � pW . A tighter
rendition of this intuition follows. Consider the following hypothetical equilibrium that we
have crafted to illustrate this mechanism. The distributions GB and GS of potential entrants’
types are uniform on [0,1]. The Walrasian price for the market is pW = 0.5, but suppose
as δ shrinks to zero the prices at which transaction take place converge to p∗ = 0.25, i.e.,
limδ→0 v̄δ = limδ→0 v δ = p∗. Further suppose that when the period length is δ′ the range of
transaction prices is [v δ′, v̄δ′ ] = [0.23,0.27]. Can this putative equilibria with its narrow trading
range actually be an equilibrium?

No! To show this we choose a type v′ = 0.35 buyer and show that this trading range implies
upper and lower bounds on the discounted ultimate probability of trade, PBδ′(Bδ′(v′)), that are
mutually inconsistent. The upper bound is

PBδ

(
Bδ

(
v′)) � GS(v̄δ)

aḠB(v′)
(28)

where ḠB(v′) ≡ 1 − GB(v′). To see this first recall (25), PBδ(Bδ(v
′)) � P̃BδBδ(v

′), i.e., the
discounted probability of trade is no more than the undiscounted probability of trade. To prove
(28) it is therefore sufficient to show P̃Bδ(Bδ(v

′)) � GS(v̄δ)/aḠB(v′) or, rewritten,

aP̃Bδ

(
Bδ

(
v′))ḠB

(
v′) � GS(v̄δ). (29)

Observe that aḠB(v′) is the measure of buyers that (i) enter each period and have valuation at
least v′ and (ii) P̃Bδ (Bδ(·)) is non-decreasing because P̃Bδ is non-decreasing and Bδ is increasing.
Therefore the measure of buyers with valuations v > v′ who enter each period and ultimately
trade is at most aP̃Bδ (Bδ(v

′))ḠB(v′), i.e., it is a lower bound on demand. Supply is the measure
of sellers who enter each period and ultimately trade. It is bounded above by GS(v̄δ), the measure
of traders who enter each period and who may or may not trade. Mass balance, Eq. (24), states
that demand must equal supply in a steady-state equilibrium. Its satisfaction requires that the
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lower bound on demand must be less than the upper bound on supply, which is exactly inequality
(29). Upper bound (28) is therefore established.

The lower bound on PBδ(Bδ(v
′)) follows from a revealed preference argument. In equilibrium

the type v′ buyer must prefer bidding Bδ(v
′) to bidding Bδ(1):

PBδ

(
Bδ

(
v′))(v′ − Bδ

(
v′)) � PBδ

(
B(1)

)(
v′ − Bδ(1)

)
.

Observe that PBδ(B(1)) = 1 because every period every buyer is matched with a seller and a
type 1 buyer is never outbid. Therefore a lower bound on PBδ (v

′) is

PBδ

(
Bδ

(
v′)) � (v′ − Bδ(1))

(v′ − Bδ(v′))
� v′ − v̄δ

v′ − v δ

,

where the second inequality is a consequence of Bδ(1) = v̄δ and Bδ(v
′) ∈ [v δ, v̄δ].

We now apply these bounds to the type v′ = 0.35 buyer. Recall that GB and GS are uniformly
distributed on [0,1]. Computation for the putative δ′ equilibrium gives an upper bound,

PBδ′
(
Bδ′(0.35)

)
� GS(v̄δ′)

ḠB(v′)
= 0.27

0.65
= 0.42,

that is less than the lower bound,

PBδ′
(
Bδ′(0.35)

)
� .35 − .27

.35 − .23
= 0.67.

Therefore the hypothesized sequence of equilibria in which the trading range converges to
p∗ < pW cannot exist.

4.4. Existence of equilibria

While we have been unable to prove that in general an equilibrium exists for our model, we
have been able to prove existence whenever the type distribution GS is concave.23 This class of
distributions does include the uniform distribution that we used for construction of our example
above, but except for constructing examples concavity is not an economically plausible assump-
tion to impose on type distributions. This proof, which parallels Athey (2001), is both long and
tedious. Given its length and lack of generality we decided not to include it here. We do point out
that our participation cost paper, Satterthwaite and Shneyerov (2007), does include a satisfactory
existence result. Moreover the recent working papers of Shneyerov and Wong (2007a) and of
Atakan (2007a, 2007b) also include existence results.

5. Proof of the theorem

5.1. The law of one price

In this subsection we prove that the trading range converges to a single price as the period
length approaches zero: limδ→0(p̄δ −p

δ
) = 0. As the discussion above indicates, this is driven by

option value—when the period length is short a trader can wait until he or she draws a favorable
price—complicated by the fact that distributions FS and FB of active traders’ costs/values is

23 Adam Szeidl collaborated with us on this proof.
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endogenous. This proof is based on the proof of Lemma 10 in Satterthwaite and Shneyerov
(2007). The differences, which occur in step 1, stem from the market friction here being the
exogenous exit rate rather than being a participation cost.

Proposition 7. Consider any sequence of equilibria for which δn → 0. Then limδ→0(p̄δ −p
δ
) =

limδ→0(v̄δ − v δ) = limδ→0(c̄δ − c δ) = 0.

Proof. The proof is by contradiction: pick a small ε and suppose p̄δ − p
δ

> ε > 0 along a
subsequence for which δ → 0. Define

b′
δ = p̄δ − 1

3
ε,

b′′
δ = p̄δ − 2

3
ε (30)

and note that b′′
δ > p

δ
+ ε

3 . Also define two probabilities. First

φδ = FSδ

(
Cδ(b

′
δ)

)
is the equilibrium probability that a randomly chosen active seller would accept a bid that is equal
to b′

δ . Second, let

ψδ =
∞∑

k=0

ξkδ

[
FBδ

(
Vδ

(
b′
δ

))]k

=
∞∑

k=0

ωkδ

[
FBδ

(
Vδ

(
b′
δ

))]k
.

The first series is the equilibrium probability that a seller receives either no bid or the highest bid
she receives is less or equal to b′

δ (see Eqs. (15) and (16)). The second series is the probability
that a buyer who bids b′

δ outbids all other buyers who are matched with the same seller. The
equality of these two probabilities follows from the equality ξkδ = ωkδ that Eq. (17) established.
Given these definitions the proof consists of three steps.

Step 1. The fraction of sellers for whom Sδ(c) � b′
δ does not vanish as δ → 0, i.e., φ ≡

lim δ→0φδ > 0.

Pick a single period t . Let m+
δ be the mass of sellers who enter the market at the beginning of

period t and for whom b′′
δ � Sδ(c) � b′. Partition this mass of sellers into three masses:

• m−
δ is the mass of sellers within m+

δ who exit by trading during period t .
• m=

δ is the mass of sellers within m+
δ who for exogenous reasons exit without trading during

period t .
• m0

δ is the mass of sellers within m+
δ who do not exit during period t .

Finally, let mδ be the steady-state mass of active sellers for whom b′′
δ � Sδ(c) � b′

δ .
Suppose step 1’s conclusion is not true. Then φδ → 0 along a subsequence. Fix this subse-

quence. The hypothesis that φδ → 0 implies that the mass of sellers entering each period who
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offer no more than b′
δ approaches zero.24 Therefore mδ → 0 as δ → 0. We show now that mδ → 0

entails cδ → b′′
δ . This establishes a contradiction because Proposition 6 states that c δ = p

δ
and

by construction b′′
δ > p

δ
+ ε

3 .

In the mass m+
δ pick a seller c′′

δ for whom

Sδ

(
c′′
δ

) = b′′
δ .

Note that her reservation price is as low as any other seller in m+
δ . Such a seller c′′

δ always exists
because Sδ is continuous (see Proposition 6) and g is a lower bound on the density of entering
sellers. Her probability trading within period t is ρSδ(b

′′
δ ); it is as high as the trading probability

of any other seller in m+
δ because ρSδ is non-increasing. Therefore ρSδ(b

′′
δ ) is at least as great as

m−
Nδ/m+

δ , which for any seller in m+
δ is the ex ante probability of trading within period t . Thus

ρSδ

(
b′′
δ

)
� m−

δ

m+
δ

. (31)

Now make the trivial observation PSδ(b
′′
δ ), the discounted ultimate trading probability of a type

c′′
δ seller who trades either in period t or after, is greater than ρSδ(b

′′
δ ). Therefore

PSδ

(
b′′
δ

)
� ρSδ

(
b′′
δ

)
� m−

δ

m+
δ

. (32)

If counterfactually in period t no sellers in the mass m+
δ traded, then in period t the mass that

would exit for exogenous reasons would be (1 − e−μδ)m+
δ because (1 − e−μδ) is the probability

that an active trader who has not traded in a period will exit for exogenous reasons. But some
sellers within mass m+

δ do successfully trade; therefore m=
δ � (1 − e−μδ)m+

δ . By definition
m+

δ = m−
Nδ + m=

Nδ + m0
Nδ , which implies that

m+
δ � m−

Nδ + (
1 − e−μδ

)
m+

δ + m0
Nδ

� m−
Nδ + (

1 − e−μδ
)
m+

δ + mδ

where the last inequality follows from the fact that the surviving mass m0
δ from period 1 cannot

exceed the steady-state mass mδ of sellers who make offers in the interval [b′′
δ , b′

δ]. Solving gives

m−
δ � e−μδm+

δ − mδ.

Substitute into (32) to get:

PSδ

(
b′′
δ

)
�

m−
Nδ

m+
δ

�
(

e−μδ − mδ

m+
δ

)
. (33)

Remember that m+
δ is the mass of sellers who enter the market in period 1 and for whom

b′′
δ � Sδ(c) � b′. The slope of Sδ is at most one (see the formula in Proposition 6), the mass of

potential entering sellers each period is 1, and the density gS has lower bound g. Consequently

m+
δ � ε

3
g

24 If it were possible for the steady-state mass TS of sellers to be infinite, then φδ → 0 would not imply mδ → 0. But
TS must be finite because the mass of potential sellers per unit time is 1 and the exogenous exit rate per unit time μ, is
positive.
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because m+
δ is minimized when the slope of Sδ is maximal, the density gS is minimal, and

b′
δ − b′′

δ = ε/3. Substituting this into (33) gives the lower bound we need:

PSδ

(
b′′
δ

)
� e−μδ − mδ

ε
3g

. (34)

Recall that this step’s argument is based on the hypothesis that φδ → 0 as δ → 0. Further
recall that φδ → 0 implies that mδ → 0 as δ → 0. Therefore

lim
δ→0

PSδ

(
b′′
δ

)
� lim

δ→0

[
e−βδ − mδ

ε
3g

]
= 1,

i.e., the type c′′
δ seller’s discounted probability of trade approaches 1 from below. Proposition 6

states that, for almost all c ∈ [0, c̄),

S′
δ(c) = 1 − e−βδPSδ

[
Sδ(c)

]
.

Since PSδ(Sδ(c)) � PSδ(b
′′
δ ) for c � c′′

δ and Sδ is increasing on [0, c̄), it follows that, for all seller
types c ∈ [0, c′′

δ ], PSδ[Sδ(c)] → 1 and

lim
δ→0

S′
δ(c) = 0.

Consequently, because Sδ is continuous,

c δ = Sδ(0) → b′′
δ .

This, however, is a contradiction, for c δ = p
δ

by Proposition 6 and b′′
δ > p

δ
+ ε/3 by construc-

tion. Therefore it cannot be that φδ → 0.

Step 2. If the ratio of buyers to sellers ζδ is bounded away from 0, then the probability ψδ that
the highest bid in a given meeting is less than b′

δ is also bounded away from 0. Proof of this step
stands alone and does not depend on step 1’s result.

Formally, if lim δ→0ζδ > 0, then ψ ≡ lim δ→0 ψδ > 0. Suppose not. Then ψδ → 0 and ζδ →
ζ > 0 along a subsequence. Fix this subsequence and recall that by construction

b′′
δ > p

δ
+ ε

3
. (35)

First, we show that the seller with cost c′′
δ such that S(c′′

δ ) = b′′
δ prefers to enter. Since ζδ → ζ and

ψδ → 0, for all δ sufficiently small, the probability that she meets a buyer for whom B(v) � b′
δ =

b′′
δ + ε/3 is at least 1

2 (1 − e−ζ ). This is because, with ψδ → 0, (i) almost every bid she receives
is greater than b′

δ and (ii) her probability of getting at least one bid is approaching 1 − e−ζ , i.e.,
limδ→0 ρSδ(b

′
δ) = 1 − e−ζ . Therefore, using formula (8), her discounted probability of trading

with a buyer for whom Bδ(v) � b′
δ approaches 1:

lim
δ→0

PSδ

(
b′
δ

) = lim
δ→0

ρSδ(b
′
δ)

1 − e−βδ + e−βδρSδ(b
′
δ)

= 1.

Consequently, the type c′′
δ seller’s profit as δ → 0 is at least ε/3 and she chooses to enter.

Second, since she chooses to enter, it must be that c′′
δ � c̄δ = p̄δ . Therefore the slope of S for

c ∈ [0, c′′) satisfies
δ
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S′(c) = 1 − e−βδPSδ(c) → 0

since PSδ(Sδ(c)) � PSδ(Sδ(c
′′
δ )) and PSδ(Sδ(c

′′
δ )) → 1. Therefore c δ → b′′

δ , a contradiction of
inequality (35) and Proposition 6’s conclusion that c δ = p

δ
.

Step 3. For small enough δ, a buyer for whom v = 1 prefers to deviate to bidding b′
δ instead

of p̄δ . There are two cases to consider.

Case 1. lim δ→0ζδ > 0. We show, using both steps 1 and 2 of this proof, that bidding p̄δ cannot
be equilibrium behavior for a type 1 buyer. Recall that φδ is the probability that a seller will
accept a bid less than b′

δ and that, according to step 1, φ = limδ→0 φδ > 0. Additionally, recall
that ψδ is the probability that the maximal rival bid a buyer faces in a given period is no greater
than b′

δ and that, according to step 2, limδ→0 ψδ = ψ > 0. For small enough δ > 0, this second
probability is bounded from below by (1/2)ψ . It follows that, for small enough δ, the buyer
who bids b′

δ (i) wins over all his rival buyers with probability greater than (1/2)ψ , and (ii) has
his bid accepted by the seller with probability greater than (1/2)φ. Thus, for small enough δ,
ρSδ(b

′
δ) > ψφ/4 and, again using formula (8), limδ→0 PSδ(b

′
δ) = 1. Consequently deviating to

b′
δ gives the type 1 buyer a profit of at least 1 − b′

δ , which is greater than 1 − p̄δ , the profit he
would make with his equilibrium bid B(1) = p̄δ . Therefore deviation to b′

δ is profitable for him.

Case 2. lim δ→0ζδ = 0. Fix a subsequence such that ζδ → 0. The proof of this case relies only
on the result in step 1 of this proof. The probability of meeting no rival buyers in a given period
is e−ζδ and, since ζδ → 0, this probability is at least 1/2 for sufficiently small δ. Therefore
in any given period, for a type 1 buyer and for all small δ, (i) the probability of meeting no
rivals is at least 1/2 and (ii) the probability of meeting a seller who would accept the bid b′

δ

is at least (1/2)φ > 0. It follows that as δ → 0, his discounted probability of trading, PSδ(b
′
δ),

approaches 1. Therefore deviating to b′
δ gives him a profit of at least 1 − b′

δ > 1 − p̄δ , which
proves that a deviation to b′

δ is profitable for him. This completes step 3’s proof.

Step 3 completes the proof that limδ→0(p̄δ −p
δ
) = 0 because it contradicts the hypothesis that

limδ→0(p̄δ − p
δ
) = ε > 0. That limδ→0(p̄δ − p

δ
) = limδ→0(v̄δ − v δ) = limδ→0(c̄δ − c δ) = 0

then follows directly from Proposition 6. �
5.2. Convergence of the trading range to the Walrasian price

The Walrasian price pW is the solution to the equation GS(pW) = aḠB(pW ). Recall from the
beginning of Section 2 that pW ∈ (0,1). In this subsection we prove three claims: limδ→0 v̄δ �
pW , limδ→0 c δ � pW , and limδ→0 PSδ(Sδ(c)) = 1, c ∈ [0, c̄). Together with Propositions 6
and 7’s results that [p

δ
, p̄δ] = [c δ, c̄δ] = [v δ, v̄δ] and limδ→0(p̄δ − p

δ
) = 0 these results im-

mediately imply that the trading range collapses to the Walrasian price.

Claim 8. lim δ→0v̄δ � pW .

Proof. Let v∗ = lim δ→0v̄δ and assume, contrary to the statement in the claim, that v∗ < pW . For
the remainder of this proof, fix a subsequence v̄δ → v∗. Let ṽδ = v̄δ + √

v̄δ − v δ . Proposition 7’s
conclusion that limδ→0(v̄δ − v δ) = 0 implies that ṽδ ∈ (v̄δ,1] for all small enough δ. Revealed
preference implies that
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πB

(
Bδ(ṽδ), ṽδ

)
� πB

(
Bδ(1), ṽδ

)
[
ṽδ − Bδ(ṽδ)

]
PBδ

[
Bδ(ṽδ)

]
�

[
ṽδ − Bδ(1)

]
PBδ

[
Bδ(1)

]
.

Therefore

PBδ

[
Bδ(ṽδ)

]
� ṽδ − Bδ(1)

ṽδ − Bδ(ṽδ)
PBδ

[
Bδ(1)

]
(36)

� ṽδ − Bδ(1)

ṽδ − vδ

PBδ

[
Bδ(1)

]
,

where the second inequality follows from Bδ being strictly increasing and, as a result, Bδ(ṽδ) �
Bδ(v δ) = v δ . Note that

ṽδ − Bδ(1)

ṽδ − v δ

= ṽδ − v̄δ

ṽδ − v δ

= 1

1 + √
v̄δ − v δ

, (37)

where the first equality follows from Bδ(1) = v̄δ and the second follows from the definition
ṽδ = v̄δ + √

v̄δ − v δ . Combining (36) and (37) gives

PBδ

[
Bδ(ṽδ)

]
� 1

1 + √
v̄δ − v δ

PBδ

[
Bδ(1)

]
. (38)

Mass balance, Eq. (24) above, states that

1∫
v δ

agB(x)P̃Bδ

[
Bδ(x)

]
dx =

v̄δ∫
0

gS(x)P̃Sδ

[
Sδ(x)

]
dx. (39)

Given that P̃Bδ[Bδ(·)] is non-decreasing and ṽδ > v,

1∫
v δ

agB(x)P̃Bδ

[
Bδ(x)

]
dx � P̃Bδ

[
Bδ(ṽδ)

] 1∫
ṽδ

agB(x)dx

= P̃Bδ

[
Bδ(ṽδ)

]
aGB(ṽδ).

Because P̃Sδ[Sδ(c)] � 1 for all c,

v̄δ∫
0

gS(x)P̃Sδ

[
Sδ(x)

]
dx � GS(v̄δ).

Therefore it follows from (39) that

P̃Bδ

[
Bδ(ṽδ)

]
aGB(ṽδ) � GS(v̄δ)

and, because PBδ[λ] � P̃Bδ[λ] for all λ,

PBδ

[
Bδ(ṽδ)

]
aGB(ṽδ) � GS(v̄δ).
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Then, by (38),

a
1

1 + √
v̄δ − v δ

PBδ

[
Bδ(1)

]
GB(ṽδ) � GS(v̄δ). (40)

A type v = 1 buyer always trades immediately because B(1) = v̄ = c̄ = S(c̄); therefore
PBδ[Bδ(1)] = 1. Consequently

a
1

1 + √
v̄δ − v δ

GB(ṽδ) � GS(v̄δ).

Taking limits as δ → 0 and invoking continuity of GSand GB , we obtain

a lim
δ→0

(
1

1 + √
v̄δ − v δ

)
GB

(
lim
δ→0

ṽδ

)
� GS

(
lim
δ→0

v̄δ

)
. (41)

By definition ṽ = v̄δ + √
v̄δ − v δ; Proposition 7’s result that lim δ→0(v̄δ − v δ) = 0 therefore

implies limδ→0 ṽδ = v̄δ . Additionally, by hypothesis, limδ→0 v̄δ = v∗. Therefore (41) reduces to

aGB(v∗) � GS(v∗).
This, however, is a contradiction because the maintained assumption that v∗ < pW implies that
aGB(v∗) > aGB(pW) = GS(pW) > GS(v∗). �
Claim 9. limδ→0 PSδ(Sδ(c)) = 1 for all c < pW .

Proof. Recall that Sδ(0) = cδ , and Sδ(c̄δ) = c̄δ . The mean slope of Sδ over its domain [0, c̄δ] is

1

c̄δ

c̄δ∫
0

S′
δ(x)dx = c̄δ − c δ

c̄δ

. (42)

Proposition 6 implies that

PSδ

(
Sδ(c)

) = eβδ
(
1 − S′

δ(c)
)

a.e. on [0, c̄δ],
so the average probability of ultimate trade is

1

c̄δ

c̄δ∫
0

PSδ

(
Sδ(c)

)
dx = eβδ

(
1 − 1

c̄δ

c̄δ∫
0

S′
δ(x)dx

)

= eβδ

(
1 − c̄δ − c δ

c̄δ

)
. (43)

Taking limits shows that the average discounted probability of ultimate trade converges to 1:

lim
δ→0

1

c̄δ

c̄δ∫
0

PSδ

(
Sδ(c)

)
dx = lim

δ→0
eβδ

(
1 − c̄δ − c δ

c̄δ

)
= 1

because limδ→0(c̄δ − cδ) = 0 (Proposition 7), c̄δ = v̄δ (Claim 5) and lim δ→0v̄δ � pW (Claim 8).
PSδ(Sδ(c)) � 1 for all c ∈ [0,1]. Therefore PSδ(Sδ(c)) = 1 for all c ∈ limδ→1[0, c̄δ) = [0,pw)

because PSδ(Sδ(c)) is non-increasing and the limiting average probability cannot equal 1 if
PSδ(Sδ(c)) < 1 for any interval in [0,pw]. �
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Claim 10. limδ→0c δ � pW .

Proof. Verification of this claim follows the same logic as that of Claim 8. It does, however,
require Claim 9’s result that limδ→0 PSδ[Sδ(0)] = 1. Define c∗ = limδ→0cδ and suppose, contrary
to the statement in the claim, that c∗ > pW . For the remainder of this proof, fix a subsequence
c δ → c∗. Let c̃δ = c δ − √

cδ − c δ , noting that Proposition 7 implies c̃δ ∈ [0, cδ) for all small
enough δ. A seller who offers Sδ(v) and succeeds in trading does not realize Sδ(v) as her revenue.
She realizes something more because the bid she accepts is at least as great as Sδ(v). Therefore,
for each δ sufficiently small, a function φδ : [c δ, c̄δ] → [c δ, c̄δ] exists that maps, conditional on
consummating a trade, the seller’s offer into her expected revenue from the sale. Thus φδ[Sδ(c)]
is a type c seller’s expected revenue given that she offers Sδ(c). Take note that φδ[Sδ(c)] ∈
[Sδ(c), c̄δ] because the expected revenue can be neither less than the seller’s offer Sδ(c) nor more
than the type 1 buyer’s bid.

Revealed preference implies that

πS

(
Sδ(c̃δ), c̃δ

)
� πS

(
Sδ(0), c̃δ

)
[
φδ

[
Sδ(c̃δ)

] − c̃δ

]
PSδ

[
Sδ(c̃δ)

]
�

[
φδ

[
Sδ(0)

] − c̃δ

]
PSδ

[
Sδ(0)

]
. (44)

Solving,

PSδ

[
Sδ(c̃δ)

]
� φδ[Sδ(0)] − c̃δ

φδ[Sδ(c̃δ)] − c̃δ

PSδ

[
Sδ(0)

]
� c δ − c̃δ

cδ − c̃δ

PSδ

[
Sδ(0)

]
= 1

1 + √
cδ − c δ

PSδ

[
Sδ(0)

]
(45)

where the second line follows from the fact that φδ[Sδ(c)] ∈ [c δ, c̄δ] for all active sellers and the
third line follows by substituting in the definition for c̃δ .

As in the proof of Claim 8, the mass balance equation (39) must hold:

1∫
c δ

agB(x)P̃Bδ

[
Bδ(x)

]
dx =

cδ∫
0

gS(x)P̃Sδ

[
Sδ(x)

]
dx. (46)

Since PSδ[Sδ(·)] is decreasing and PBδ[Bδ(·)] � 1,

c δ∫
0

gS(x)P̃Sδ

[
Sδ(x)

]
dx � P̃Sδ

[
Sδ(c̃δ)

] c̃δ∫
0

gS(x)dx

= P̃Sδ

[
Sδ(c̃δ)

]
GS(c̃δ)

and

1∫
c δ

agB(x)P̃Bδ

[
Bδ(x)

]
dx � aḠB( c δ).

Therefore (46) and the inequality P̃Sδ[Sδ(c̃δ)] � PSδ[Sδ(c̃δ)] imply that
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aGB(c δ) � P̃Sδ

[
Sδ(c̃δ)

]
GS(c̃δ)

� PSδ

[
Sδ(c̃δ)

]
GS(c̃δ).

Substituting this into inequality (45) gives

aGB(c δ) � 1

1 + √
cδ − c δ

PSδ

[
Sδ(0)

]
GS(c̃δ). (47)

Taking limits as δ → 0 and invoking continuity of GS and GB , we obtain

aḠB

(
lim
δ→0

c δ

)
� lim

δ→0

(
1

1 + √
cδ − c δ

)
lim
δ→0

(
PSδ

[
Sδ(0)

])
GS

(
lim
δ→0

c̃δ

)
. (48)

Remember that limδ→0(cδ − c δ) = 0 by Proposition 7, limδ→0 c̃δ = c∗ by construction,
limδ→0 c δ = c∗ by hypothesis, and limδ→0(PSδ[Sδ(0)]) = 1 by Claim 9. Inequality (48) reduces
to

aGB(c∗) � GS(c∗).

This, however, is a contradiction because the maintained assumption c∗ > pW implies aGB(c∗) <

aGB(pW) = GS(pW) < GS(c∗). �
Proposition 11. Consider any sequence of equilibria for which δn → 0. Then limδ→0 p̄δ =
limδ→0 p

δ
= limδ→0 v̄δ = limδ→0 vδ = limδ→0 c̄δ = limδ→0 c δ = pW .

Proof. Proposition 7, Claim 8, and Claim 10 immediately imply this. �
5.3. Convergence of the equilibrium allocation to the perfectly competitive allocation

All that remains to prove our main result, Theorem 1, is to show that convergence of the trad-
ing range, [p

δ
, p̄δ], to the Walrasian price pW is sufficient to guarantee the efficient, competitive

allocation. Doing so requires proof of one preliminary claim followed by a straightforward cal-
culation of each trader’s utility in the limit as δ → δ.

Claim 12. limδ→0 PBδ(Bδ(v)) = 1 for all v > pW .

Proof. Pick a buyer type v for which v > pW and an arbitrarily small ε > 0 such that v >

pW + 3ε. For small enough δ, v > v̄δ , |v̄δ − pW | < ε, and, by Proposition 7, v̄δ − v δ < ε.
Therefore v−Bδ(v) < v−pW +2ε because Bδ(v) ∈ [v δ, v̄δ]. If instead type v deviates to the bid
λ′

δ = pW + 3
2ε, then v > λ′

δ > v̄δ and he is certain to trade immediately: ρBδ(λ
′
δ) = PBδ(λ

′
δ) = 1.

By revealed preference

PBδ

[
Bδ(v)

](
v − Bδ(v)

)
� PBδ

(
λ′

δ

)(
v − pW − 3

2
ε

)

PBδ

[
Bδ(v)

]
(v − pW + 2ε) � 1

(
v − pW − 3

2
ε

)

PBδ

[
Bδ(v)

]
�

(v − pW − 3
2ε)

(v − pW + 2ε)
.

Obviously PBδ[Bδ(v)] � 1. Therefore
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1 � lim
δ,ε→0

PBδ

[
Bδ(v)

]
� lim

ε→0

(v − pW − 3
2ε)

(v − pW + 2ε)
= 1,

which proves the claim. �
Proposition 13. Consider any sequence of equilibria for which δn → 0. Then each trader’s
interim expected utility converges for sellers to

lim
δ→0

WSδ(c) = max[0,pW − c]
and for buyers to

lim
δ→0

WBδ(v) = max[0, v − pW ].

Proof. In the perfectly competitive outcome any trader for whom trading at pW is profitable
can do so instantly; therefore in a competitive market WB(v) = max[v − pW,0] and WS(c) =
max[pW − c,0]. To show that this is in fact the limiting equilibrium outcome for buyers, employ
formula (11) for WB and let δ → 0:

lim
δ→0

WBδ(v) = lim
δ→0

{
WBδ(0) +

v∫
0

PBδ

[
Bδ(x)

]
dx

}

= lim
δ→0

{
max

[
0,WBδ(0) +

v∫
v δ

PBδ

[
Bδ(x)

]
dx

]}

= max

{
0,

v∫
limδ→0 v δ

lim
δ→0

{
PBδ

[
Bδ(x)

]}
dx

}

= max

{
0,

v∫
pW

1 dx

}

= max{0, v − pW }.
The second line follows from Proposition 6: WBδ(0) = 0 and, for all v < v δ,PBδ[Bδ(v)] = 0.
The fourth line follows from Proposition 11 and Claim 12:

lim
δ→0

v δ = pW and lim
δ→0

PBδ

[
Bδ(v)

] = 1.

An exactly parallel argument shows that limδ→0 WSδ(c) = max{0,pW − c}. �
Proof of theorem. Propositions 11 and 13 together imply Theorem 1. �
6. Conclusions

In this paper we consider a simple, dynamic matching and bargaining market in which both
sellers and buyers have incomplete information and risk being forced to exit at any moment
due to an exogenous exit rate. We show that this market converges to the Walrasian price and
competitive allocation as the length of the matching period goes to zero. This is significant for



466 M. Satterthwaite, A. Shneyerov / Games and Economic Behavior 63 (2008) 435–467
two reasons. First, given the ubiquity of private information, extension of the full information
dynamic matching and bargaining models in this direction is critical because it shows that a
decentralized market in which matching frictions are small can elicit private values and costs
sufficiently well so as to allocate almost perfectly the market supply to the traders who most
highly value that supply. Complete information is not necessary for efficiency in these models.
Second, taking a broader perspective, this paper shows that in the presence of private information
a fully decentralized market such as the one we model can deliver the same economic efficiency
as a centralized market such as the k-double auction that Satterthwaite and Williams (1989, 2002)
and Rustichini et al. (1994) studied.

In relation to our participation cost paper (Satterthwaite and Shneyerov, 2007) this paper in-
dicates, first, that option value considerations drive convergence to a single price irrespective of
whether the friction is an exogenous exit rate or a participation cost. The difference in the two
papers is that this paper identifies a supply-demand mechanism that forces the price to which
the market converges to be the Walrasian price. Our proof shows how, for example, if the mar-
ket were to converge to a price below the Walrasian price, then buyers would be rationed and
therefore have an incentive to deviate to a price closer to the Walrasian price. This, it appears, is
a general argument that applies whenever the trading range converges to a single price. Our par-
ticipation cost paper does not identify this mechanism because a simpler argument applies there.
Together the two papers show why, even in the presence of incomplete information, matching
and bargaining markets are robust with respect to the source of the market friction.

Nevertheless our model is a specific, not general, model of trade and therefore immediately
raises a raft of further questions. Four stand out in our minds. First, existence of equilibria in
which each potential trader has an ex ante positive probability of trade needs to be established in
more generality than we have been able to do so. Second, it would be quite interesting to allow
for finite numbers of traders as opposed to continua. Such a model, which would be substantially
more realistic, would force us to look at transient distributions of types around the steady-state
distributions because each entry cohort would be a finite sample of types that would not replicate
the underlying continuous type distributions GS and GB . Third, we would like to know if our
results generalize to both correlated costs/values and to interdependent values with a common
component and affiliated private signals as has been done in the case of static double auctions
by Cripps and Swinkels (2006), Fudenberg et al. (2007), and Reny and Perry (2006). Showing
this would be particularly significant if the stochastic process generating traders’ cost and val-
ues resulted in a time varying Walrasian price. Convergence to that price as the period length
approached zero would establish that fully decentralized dynamic matching and bargaining mar-
kets can effectively follow—and reveal—an unknown and changing competitive price. Fourth,
an important complication of this question, which Wolinsky (1990) has explored in an imperfect
information model, would be to allow some traders to enter with more accurate information than
other traders about the underlying common component of traders’ costs and valuations.
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