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We call markets in which intermediaries sell networks of suppliers to consumers who are un-
certain about their needs “option demand markets.” In these markets, suppliers may grant the
intermediaries discounts in order to be admitted to their networks. We derive a measure of each
supplier’s market power within the network; the measure is based on the additional ex ante ex-
pected utility consumers obtain from the supplier’s inclusion. We empirically validate the WTP
measure by considering managed care purchases of hospital services in the San Diego market.
Finally, we present three applications, including an analysis of hospital mergers in San Diego.

1. Introduction

� Some important markets feature intermediaries that offer a network of upstream suppliers
to downstream consumers. Examples include general contractors, who assemble networks of
skilled craftsmen and subcontractors; business-to-business web sites, which assemble networks
of parts suppliers; and managed care organizations, which assemble networks of hospitals and
physicians. These intermediaries take advantage of their expertise and purchasing economies to
identify superior suppliers and extract better terms than could consumers shopping on their own.
In some cases, such as managed care, they also provide insurance against the risk of needing the
network’s services.

Sometimes, consumers may know their specific needs at the time they select their intermedi-
ary. For example, homeowners may have detailed architectural plans at the time they select their
building contractors. In other situations, consumers may select their intermediary before knowing
their specific needs. Insurance markets are an important example. Automobile owners often com-
mit to a network of auto repair shops at the time they purchase collision insurance, even though
they do not know in advance what kinds of repairs their cars might require. Similarly, patients
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commit to a network of medical providers at the time they purchase their health insurance, but
before they know their specific medical needs. Noninsurance examples include manufacturers
who sign long-term contracts with suppliers, who in turn outsource specific manufacturing tasks
as the need arises. Following Dranove and White (1996), we call these ”option demand markets”
(or OD markets). In OD markets, consumers commit to a potentially restricted network of sellers
prior to fully knowing their needs, but retain the option to visit any seller in the network once
their needs are known. The value that any one consumer places on a given network depends on
his expectation of how well the network’s members will be able to meet his needs. This contrasts
with direct-purchase markets, in which consumers do not eliminate any potential sellers prior to
learning their needs.

The article’s goal is to develop and validate an index of the market power of suppliers in OD
markets. We consider a competitive intermediary assembling a network of suppliers on behalf
of many consumers. We assume that consumers’ preferences follow the logit model of demand.
We also suppose the intermediary knows the underlying logit utility function, the distribution of
consumer characteristics, and the distribution of the possible states of the world that affect demand,
but not the upcoming demand realizations. A straightforward calculation based on the properties of
logit demand gives an estimate, for each supplier, of how much consumers in aggregate are willing
to pay ex ante to retain it in the network.1 A simple reduced-form bargaining model between the
supplier and the intermediary suggests that a portion of this willingness-to-pay (WTP) is captured
by the supplier. The WTP associated with a supplier is therefore a measure of its market power: a
supplier for which WTP is high secures higher prices from the intermediary than does a supplier
for which WTP is low.

After deriving the formula for WTP, we validate the measure by examining hospitals in the
San Diego, California, metropolitan area. Following our discussion, managed care organizations
(MCOs) in this market are the intermediaries and hospitals are the suppliers. Each MCO negotiates
bilaterally with each hospital for inclusion in its network. Its goal is to come to agreement on
rates with a set of hospitals such that the resulting network maximizes the difference between
consumers’ ex ante WTP for that network and its expected payments to the hospitals that provide
the services. To the extent that the MCO succeeds in doing this it can offer employers a competitive
price on a health plan that employees value highly. Once the network is formed, consumers realize
their health state and, for those who need hospitalization, select the hospital they most prefer from
among those included in their network.

Using 1991 data on inpatient hospital services in San Diego, we estimate a multinomial
hospital-choice model for patients who have a free choice of hospital. This provides estimates
of the parameters of patients’ logit utility functions. Based on these parameter values and the
empirical distributions of patient characteristics and health states we compute, for each hospital,
the consumers’ aggregate ex ante WTP to retain it in the network.2 These WTP measures are
denominated in “utils” because in estimating the logit function we intentionally select consumers
who did not face prices that vary across hospitals. To convert utils to dollars, we regress each hos-
pital’s actual profits from inpatient services provided to managed care patients onto our estimates
of consumers’ ex ante WTP. The results of this regression are consistent with the validity of the
WTP measure: WTP is a highly significant predictor of hospital profits.

The last section of the article offers several applications of the WTP measure. Of greatest
interest, we show how to use WTP to define geographic markets under current federal merger
guidelines. In this application, we estimate how much, if any, additional profit two or more
hospitals are able to extract from MCOs after increasing their WTP through a merger. We then
infer the effect of the merger on prices. When we conduct this exercise for a merger among three
geographically close hospitals in the suburbs of San Diego, we estimate that prices would increase
by more than 10%, under the assumption of zero cost changes. Under the merger guidelines, this

1 Brandenburger and Nalebuff (1996) refer to this as “added value.”
2 We exclude the Kaiser Health Plan hospital.

© RAND 2003.
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implies that the south suburbs are a well-defined geographic market. As a byproduct of this
analysis, the courts could compare the predicted price increase, under the assumption of zero cost
changes, against any asserted cost savings. This is essential to any rule-of-reason assessment of
a proposed merger.

2. Background on antitrust

� In the 1990s, the U.S antitrust agencies lost virtually every challenge to hospital mergers.3
In most of the contested merger cases, the court’s ruling turned on geographic market definition.
To define geographic markets, the antitrust agencies recommend using the small but significant
nontransitory increase in price (SSNIP) criterion.4 Under SSNIP, a narrow trial market definition
is initially proposed. If the firms in the trial market could collectively implement a SSNIP, then
they constitute the relevant set of competitors. If they cannot do so, then it must be because a
relevant competitor was excluded. In this case, the proposed market is expanded until the SSNIP
criterion is met.

Rather than directly observing or attempting to predict price effects, the courts often rely
on proxy measures. A popular proxy measure in hospital merger cases is derived from methods
introduced by Elzinga and Hogarty (1973). Elzinga and Hogarty and related approaches use
aggregate inflows and outflows of patients (or imports and exports of goods) to determine market
boundaries. Given the propensity of some patients to travel substantial distances for care, this
standard has led to large market boundaries and, consequently, permissive merger rulings.

Our results indicate that this may be a serious error. The south suburbs of San Diego would not
be a well-defined market under Elzinga and Hogarty, yet the WTP approach indicates that they are.
We conclude that the willingness of some patients to travel does not eliminate the market power
hospitals may have in their local neighborhood. Many patients, especially those with conditions
that are relatively straightforward to treat, have a strong preference to go to a convenient, nearby
hospital. These preferences give hospitals with no nearby competitors a strong bargaining position.

3. Related literature

� There is an extensive literature on hospital pricing.5 One branch of that literature, which
includes Noether (1988), Dranove, Shanley, and White (1993), Lynk (1995), and Keeler, Melnick,
and Zwanziger (1999), consists of traditional price-concentration studies using average hospital
prices across a large cross-section of markets. Another branch that includes Staten, Umbeck, and
Dunkelberg (1988) and Melnick et al. (1992) examines the hospital prices paid by specific health
insurers. Both of these branches share two difficulties that our article addresses.

First, because they use exogenous measures of market structure based on geographic delin-
eations or aggregate patient flow analyses, all of these studies fail to account for rich differentiation
and substitution patterns across individual sellers. They ignore the fact that hospital competition
in a metropolitan area is fought out in thousands of micro markets—each neighborhood and each
diagnosis is a distinct micro market. Our WTP measure of market power respects this fine struc-
ture by using a parsimonious, theoretically justified formula for approximating patients’ WTPs
in each micro market and then adding them up to obtain an aggregate measure.

3 Losses include Poplar Bluff, Missouri (FTC v. Tenet Healthcare Corp., E.D. MO 1998, reversed 8th Cir. July
1999); Joplin, Missouri (FTC v. Freeman Hospital, W.D. MO 1995); Long Island, New York (United States v. Long Island
Jewish Medical Center, E.D. NY 1997); and Dubuque, Iowa (United States v. Mercy Health Services, N.D. Iowa 1995).
See Capps et al. (2002) for a more detailed discussion of these cases.

4 The benchmarks are a 5% price increase and a one-year duration.
5 Our article also relates to the literature on common agency. In this literature, several principals contract with

a single agent who exerts effort to sell the principals’ services. In our setting, hospitals (the principals) contract with
an intermediary (the agent) who sells the option to use the hospitals’ services to consumers, usually through their
employers. The common-agency literature generally assumes that the agent has imperfect information about the attributes
of the principals (e.g., their costs) and studies both the principals’ noncooperative negotiation strategies and the agent’s
incentives to exert effort. See, for example, Bernheim and Whinston (1985, 1986).
© RAND 2003.
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Second, prior work on hospital pricing has been based on an analogy with conventional
markets in which individual consumers make their purchase at the time they know their needs.
This is inappropriate for hospital services. With the prevalence of managed care, almost all
consumers select among alternative bundles of providers not at the ex post stage, but at the ex
ante stage before they know their diagnoses. The proper theoretical construct for measuring
market power in such an option demand market must therefore be based on some form of ex
ante expected willingness-to-pay aggregated over all consumers. The main contribution of this
article is to show how to construct such a measure from first principles and to provide preliminary
empirical evidence that it is in fact a useful construct.

In a highly original article, Town and Vistnes (2001) offered the first analysis that focused on
the ex ante contribution of the supplier to the option demand intermediary. Their application was
also to managed care. Unfortunately, their article misstates the key formula for computing WTP,
thereby compromising their empirical validation of the WTP concept. Moreover, they provide no
derivation of the formula, making it difficult for the reader to correct the error and to extend their
work. In Appendix A, we rewrite their formula in our notation, contrast it with the formula we
derive, and discuss the resulting errors.

4. A model of option demand

� Our goal is to calculate each consumer’s ex ante WTP to include a particular hospital in
an MCO’s network. This is his WTP as calculated at the beginning of the year, at the time he
selects his MCO, and prior to his falling ill and requiring hospitalization. We compute the ex
ante value that a hospital brings to the network by summing this WTP over all consumers. An
individual consumer’s ex ante WTP is distinct from his interim WTP, which is his WTP contingent
on knowing his medical diagnosis, but before he explores specific treatment options. To compute
his ex ante WTP, however, we first determine his interim WTP under each possible realization of
health.

The following example illustrates our methodology. Suppose consumer i , a young adult
apparently in good health, is evaluating an MCO that offers him access for the next year to a
network G of hospitals that includes hospital j . Hospital j is located far from his home and he
can conceive of only one circumstance in which he would choose j for his care: congestive heart
failure requiring a heart transplant, since hospital j is commonly thought to be the best heart
transplant hospital in the region. Therefore, looking ahead, consumer i understands that should
he be diagnosed with congestive heart failure, his interim WTP to have access to hospital j would
be high, say $60,000.6 By contrast, if consumer i should tear a knee ligament, then his interim
WTP to have access to hospital j would be low, say $10, because there are several closer, more
convenient hospitals that provide fine treatment for torn ligaments. Finally if he remains healthy,
then his interim WTP for access to j is $0.

We now translate interim WTP into ex ante WTP. This is calculated as his interim WTP across
all possible diagnoses (including healthy) weighted by each diagnosis’s probability. Consumer i
understands that his probability of remaining healthy for the next year is high, of injuring a knee
ligament is low, and of developing congestive heart failure is negligible. Therefore his ex ante
WTP to have j included in the network might be only $5. If most of an MCO’s enrollees are like
consumer i , then the MCO will not pay hospital j a premium price for its services because it
does not add premium value. If, however, there are several enrollees in the MCO’s plan for whom
congestive heart failure is likely, or if there are many enrollees who live close to hospital j , then
the aggregate ex ante WTP across all enrollees may be quite high. Hospital j might use this as a
bargaining lever to secure higher-than-usual rates from the MCO and capture part of the value it
creates for consumers.

We formalize these concepts, first by defining the ex post expected utility of a patient who

6 This $60,000 represents the difference between the dollar value of receiving the transplant at hospital j versus
receiving it at the next-best transplant provider in the network, not the value of the transplant itself.
© RAND 2003.
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commits to obtain treatment for his realized illness at a specific hospital, and then by defining the
expected interim utility of a consumer who knows his health state but has not begun the process
of choosing among available hospitals. Finally, we aggregate the interim utilities to obtain the ex
ante expected utility of a consumer who has neither learned his health state nor begun choosing
among the available hospitals.

� Ex post expected utility. Suppose the consumer requires medical treatment and can choose
to be a patient at one hospital from the set G of network hospitals. The ex post expected utility of
patient i who has decided to utilize hospital j is

Ui j = αR j + H ′
j�Xi + τ1Ti j + τ2Ti j · Xi + τ3Ti j · R j − γ (Yi , Zi )Pj (Zi ) + εi j

= U (Hj , Xi , λi ) − γ (Xi )Pj (Zi ) + εi j . (1)

Hj = [R j , Sj ] is a column vector of hospital j’s characteristics, where the vector of variables
in R j includes features that are common across all patient conditions such as teaching status,
and the vector of variables in Sj includes condition-specific service offerings such as whether
hospital j has delivery rooms. This structure implies that a particular hospital service benefits
only patients whose diagnosis is related to that service. For instance, if patient i is admitted for a
delivery, then the corresponding element in Sj is an indicator of the presence of a delivery room at
hospital j . The column vector Xi = [Yi , Zi ] is patient i’s type and includes both his socioeconomic
characteristics Yi and his clinical attributes Zi that affect what services he may need. Pj (Zi ) is the
out-of-pocket price that patient i with clinical characteristics Zi pays at hospital j . The variable
λi is the geographical location of his home, and Ti j = Tj (λi ) is the approximate travel time from
his residence zip code to hospital j . The function γ (Yi , Zi ) converts money to utils: it is the value
in utils that patient i with characteristics (Yi , Zi ) places on $1. Finally, the error term represents
the component of patient i’s evaluation of hospital j that is personal and idiosyncratic.

The parameters in (1) are the unconditional marginal values of hospital attributes (vector α),
patient-specific values of hospital characteristics (matrix �), travel costs (scalar τ1 and vectors
τ2 and τ3),7 and the value of money as a function of the patient’s type. Many elements of � in
our estimation, namely those corresponding to irrelevant service-diagnosis pairs, are constrained
to be zero. For example, since cardiac patients do not consider whether a hospital has a delivery
room, we constrain the coefficient on the interaction between obstetric services and heart disease
to be zero. Note also that specific hospital services, Sj , appear only via their interactions with
patient characteristics, Xi .

In this setting, individual i will select hospital j if, for all hospitals k �= j ,

α(R j − Rk) + (Hj − Hk)′�Xi + τ1(Ti j − Tik) + τ2(Ti j − Tik)(Ti j − Tik)Xi

+ τ3(Ti j · R j − Tik · Rk) + γ (Yi , Zi )(Pj − Pk)
= U (Hj , Xi , λi ) − U (Hk, Xi , λi )
> εik − εi j , (2)

where we assume that (i) the εik and εi j are distributed independently and identically with the
standard double exponential distribution and (ii) the term γ (Yi , Zi )(Pj − Pk) vanishes because the
consumers in our estimation sample are selected to have health insurance of types that eliminate
all meaningful out-of-pocket price differences among hospitals. We choose such a sample because
out-of-pocket prices for hospital services are not available and are notoriously difficult to proxy.

Assumption (i) has two important implications. First, the probability si j that patient i chooses
hospital j is given by the logit demand formula:

s j (G, Xi , λi ) =
exp[U (Hj , Xi , λi )]∑

g∈G
exp[U (Hg, Xi , λi )]

. (3)

7 Ti j · Xi and Ti j · R j denote interactions of Ti j and Xi with R j , respectively.
© RAND 2003.
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An equivalent interpretation of s j plays an important role below: if G is the set of hospitals in the
market, then s j (G, Xi , λi ) is hospital j’s expected market share of type-Xi patients who live at
location λi . Second, the unit variance of εi j scales all the coefficients in equation (1) that define
ex post utility.

A major advantage of the utility specification in (1) is that the interaction of patient and
hospital characteristics permits flexible substitution patterns across hospitals. This in turn allows
for plausible own- and cross-price elasticities of demand and eliminates, or at least attenuates,
the problems associated with using simple logit models to compute surplus.8 As one hospital
becomes less attractive, different patients will react in different ways. Depending on their illness,
income, location, and other characteristics, some may remain, others may go to another nearby
hospital, and others may choose to travel farther for care. This flexibility allows us to estimate
more precisely the demand facing each hospital and thereby identify competitors.9 Maximizing
the likelihood function implied by equation (3) yields the underlying parameters of the utility
function (1), with the exception of γ (Yi , Zi ).

� Willingness-to-pay to include hospital j in a network. We seek patient i’s ex ante WTP
for the option to select hospital j from a network of hospitals G. To find this, we first compute, for
each consumer type Xi = [Yi , Zi ], the decrease in i’s interim utility when j is removed from the
network. Thus, given the ex post expected utility specification in (1), the interim expected utility
(up to an arbitrary constant) for access to network G of patient i with demographics Yi , clinical
attributes Zi , and location λi is

V IU (G, Yi , Zi , λi ) = E max
g∈G

[U (Hg, Yi , Zi , λi ) + εig] = ln

[∑
g∈G

exp(U (Hg, Yi , Zi , λi ))

]
. (4)

In deriving the formula for V IU (·) we rely on the mathematical result that for choice set G, if ug
is the systematic component of utility and εg is an independently distributed standard extreme-
value random variable, then the expectation of the maximum is ln[

∑
g∈G exp(ug)]. Hospital j’s

contribution to this interim expected utility is

�V IU
j (G, Yi , Zi , λi )

= V IU (G, Yi , Zi , λi ) − V IU (G/j, Yi , Zi , λi )

= ln





 ∑

k∈G/j

exp(U (Hk, Yi , Zi , λi ))∑
g∈G

exp(U (Hg, Yi , Zi , λi ))




−1
 =

[
1

1 − s j (Hj , Yi , Zi , λi )

]
, (5)

where G/j is the network G with hospital j excluded, and line three follows from the definition
of s j (G, Yi , Zi , λ) in equation (3) and the identity

∑
g∈G sg = 1.

Converting this to monetary terms gives, conditional on patient i being of type Xi , the interim
WTP to retain hospital j as part of network G:

�W IU
j (G, Yi , Zi , λi ) =

�V IU
j (G, Yi , Zi , λi )

γ (Yi , Zi )
. (6)

8 Trajtenberg (1989) uses logit models without individual-level data to compute surplus. Berry, Levinsohn, and
Pakes (1995) and Petrin (2002) discuss the substitution pattern problem. Without individual data and a flexible functional
form as in (1), the heterogeneity of individuals’ choices is accounted for by a substantial variance on the error term,
causing unrealistically high WTP values due to the resulting apparent patient loyalty.

9 Another concern about logit demand models is the specification of the outside option. Because we do not observe
patients who do not receive treatment, there is no clearly defined outside option in this case (also, nearly every San Diego
resident receives treatment from a San Diego hospital). Thus the model implicitly assumes that there is a captive market
of patients who must go to one of the hospitals.
© RAND 2003.
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Thus, suppose patient i with socioeconomic characteristics Yi should learn that he has clinical
characteristics Zi . Given that he will choose the hospital in the network that maximizes his ex
post expected utility, �W IU

j is i’s interim WTP to have hospital j included in the network G.
Note that if consumer i of type Xi is healthy, then �W IU

j = 0 because a consumer who knows he
is healthy does not value access to any hospital.

Let f (Yi , Zi , λ) be the joint density of the demographics, clinical indications, and locations
of all consumers who will be sufficiently ill during the next year to cause them to require hospital-
ization. Further, let f (Zi | Yi , λi ) be the conditional density of patient i’s clinical characteristics
Zi if he has demographics and location (Yi , λi ). Given network G and patient i with demographics
(Yi , λi ), i’s ex ante WTP to include hospital j in G is

�W E A
i j (G, Yi , λi ) =

∫
Z

�W IU
j (G, Yi , Zi , λi ) f (Zi | Yi , λi )d Zi

=
∫

Z

�V IU
j (G, Yi , Zi , λi )
γ (Yi , Zi , )

f (Zi | Yi , λi )d Zi , (7)

where Z is the set of all possible clinical indications. Summing this across all patients gives the
population’s ex ante WTP to include hospital j in network G (abbreviated henceforth as WTP
for j):

�W E A
j (G) = N

∫
y,λ

�W IU
j (G, Yi , Zi , λi ) f (Yi | λi )dYi dλi

= N
∫

Y,Z ,λ

1
γ (Yi , Zi )

ln
[

1
1 − s j (G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi , (8)

where Y and λ are the range of possible socioeconomic characteristics and geographic locations,
f (Yi , λi ) is the marginal density of consumers’ demographics and locations, and the second line
follows from equation (5).

The ex ante WTP for N ill consumers, expressed formally in equation (8), equals the ex ante
WTP for the entire population—N ill and the rest healthy—that is enrolled in the managed care
plan. The reason is that ex ante WTP for the entire population is a weighted sum of the change in
interim WTPs for each consumer, whether ill or healthy. From an interim perspective, including
hospital j in the network is good for those ill patients who might decide to choose hospital j , but
of no consequence for healthy patients. Therefore, as noted above, the changes in interim utilities
for healthy consumers are identically zero and drop out of the weighted sum, leaving (8) as the
aggregate WTP for the population of all consumers in the managed care plan.

� Bargaining between the hospital and the MCO over consumers’ WTP. As they create
provider networks, MCOs typically negotiate with hospitals over prices. MCOs have strong
incentives to be tough in this bargaining because firms and other organizations that purchase
managed care insurance for groups of individuals make their choices among competing plans in
part on the basis of price.

Most of these purchasers also care about the value that the network provides their employees.
In an afterword to a set of articles on employee benefits, Pauly (2001) finds substantial support
for the claim that wages and benefits are fungible so that employers would be expected (i) to
pass most, if not all, savings from managed care to employees and (ii) to charge employees for
the extra cost of a more attractive hospital network. Thus, at least to some extent, employers
have incentives to act as good agents for their employees. This gives a hospital with a favorable
location and characteristics countervailing power against any MCO that is trying to negotiate a
low price. Consequently, a reasonable hypothesis is that a hospital’s profitability is directly related
to consumers’ WTP for its inclusion in the network. Hospitals that deliver greater incremental
value to MCOs can presumably extract more profits from these negotiations in the form of higher
prices and/or fewer quantity restrictions.
© RAND 2003.
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More formally, a necessary condition for the inclusion of hospital j in an MCO network G
is that the WTP for it exceeds the additional costs its inclusion causes: �W E A

j (G) > �C j (G).
Including hospital j might cause the MCO’s total costs to increase if including j causes some
patients to switch from hospitals in G that have lower costs. Alternatively, if j is a relatively
low-cost hospital, then �C j (G) might be negative. Either way, the gain hospital j and the MCO
can split is �W E A

j (G) − �C j (G).
Depending on the parties’ relative bargaining power (and neglecting issues of the incomplete

information that they have about each other’s payoffs), hospital j may capture either a large
or small proportion of this gain. We assume that each hospital captures proportion α of it.10

This assumption that all hospitals, no matter what their position in the marketplace, capture the
fixed proportion α of the available gains is restrictive. It would be quite interesting to apply, for
example, the more sophisticated model of multilateral bargaining of Stole and Zweibel (1996) to
this situation. That model requires the intermediary to think strategically, e.g., excluding hospital
j from the network might leave hospital k in a near-monopoly position, implying that it may be
worth paying quite a high price to retain j .

We, however, stick with our myopic, reduced-form bargaining model because our focus here
is on developing the WTP concept. Hospital j accepts a contract to provide care only if it at least
covers its variable costs. Therefore, given that it captures proportion α of the gains from trade, the
contribution it earns toward fixed costs and profit from the managed care segment of its business
is

π j = α
(
�W E A

j (G) − �C j (G)
)

+ u j . (9)

Though we call π j “profit,” we emphasize that it in fact refers to the incremental contribution
above variable costs. Our goal is to measure the relationship between WTP and π j in San Diego
in 1991.

� Adaptation of the model to our dataset. Shortcomings in our dataset require us to impose
three additional assumptions on our model to make it estimable. This subsection discusses these
assumptions and their implications. The first difficulty is that we do not have price variation in
the data and therefore cannot directly identify the function γ (Yi , Zi ), which is the value of $1 in
terms of utils. This function plays a crucial role in equation (8) for consumers’ WTP to include
hospital j in the network:

�W E A
j (G) = N

∫
Y,Z ,λ

1
γ (Yi , Zi )

ln
[

1
1 − s j (G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi .

We assume that the dollar value of a util is constant: γ (Yi , Zi ) = γP . This allows us to rewrite (8)
as

�W E A
j (G) = γP�W E A

j (G)

= N
∫

Y,Z ,λ

ln
[

1
1 − s j (G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi . (10)

This index, in which �W E A
j (G) is WTP up to the unidentified scale factor γP , is calculable

because both s j (G, Yi , Zi , λi ) and f (Yi , Zi , λi ) are observable in the data. Fortunately, as we
show below, it is also sufficient for our purpose of demonstrating WTP’s practical potential as a
measure of market power in option demand markets.

The assumption that γ (·) is constant is strong but arises naturally if each patient chooses
among the hospitals in G as if he obeyed the following time sequence:

10 The cooperative, complete-information Nash bargaining solution implies α = .5. Brooks, Dor, and Wong (1997)
provide a good discussion of bargaining models applied to hospital-insurer bargaining.
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(i) At the beginning of the year, for each hospital j , patient i draws εi j latently from the
standard extreme-value distribution. The interpretation is that if, for two hospitals j and
k, εi j −εik > 0, then the quantity ρi jk = (εi j −εik)/γP expresses in monetary terms how
much more patient i values using hospital j instead of hospital k, provided everything
else is equal, i.e., ρi jk is the value of i’s loyalty to hospital j relative to hospital k.

(ii) Sometime during the year, patient i learns his clinical condition Zi .

(iii) Patient i recovers the latent vector εi = (εi1, . . . , ei J ) of loyalty premiums and chooses
among the hospitals in G on the basis of equation (2).

This sequence implies that equation (10) is the correct formula for aggregating the interim
utilities for each clinical indication Zi into the overall WTP index �W E A

j (G) for a particular
hospital j . Note that even with γ (·) specified to be constant, the flexible form of (1) permits, for
example, elderly or high-income patients to reveal through their choices that minimizing travel
time is more important for them than it is for younger or poorer patients.

The constant γ (·) assumption permits us to infer aggregate WTP from disease-specific in-
formation about market shares. To gain intuition as to why market share information informs us
as to which clinical conditions Zi have a large value �W IU

i j (G, Yi , Zi , λi ) and contribute most to
�W E A

j (G), consider an individual i who lives at location λi , has demographics Yi , and can choose
between two hospitals, j and k. Both hospitals are quite convenient for him, but j has a higher
reputation for quality than k. Suppose interim, before i recovers his vector ε, the probability that
he chooses j is .51 if he realizes diagnosis Z A and .95 if he realizes diagnosis Z B , a much more
serious condition than Z A. Therefore, for Z A the random difference εi j − εik in his idiosyncratic
preference terms dominates i’s choice between hospitals j and k. The ex post expected utility
difference U (Hj , Yi , Z A, λi ) − U (Hk, Yi , Z A, λi ) is trivial in comparison.

By contrast, for diagnosis Z B , the ex post expected utility difference U (Hj , Yi , Z B, λi ) −
U (Hk, Yi , Z B, λi ) dominates the expected idiosyncratic difference εi j − εik and leads to the .95
probability that i will choose hospital j . Inspection of equations (4) and (5) shows that this
larger difference in ex post expected utilities for Z B , in conjunction with the assumption of
constant γ (·), implies that �V IU

j (G, Yi , Z B, λi ) (the incremental interim utility j offers if Z B is
realized) exceeds �V IU

j (G, Yi , Z A, λi ) (the incremental interim utility j offers if Z A is realized).
In particular, given constant γ (·), �V IU

j (G, Yi , Z B, λi ) > �V IU
j (G, Yi , Z A, λi ) implies that

�W IU
j (G, Yi , Z B, λi ) > �W IU

j (G, Yi , Z A, λi ). Thus, if hospital j has high market shares in
enough diagnoses, then consumers have a high WTP for its inclusion, provided those diagnoses
are not too rare.

The second difficulty in our data is that we do not have sufficient information to calculate
�C j (G), the change in costs caused by adding hospital j to the network, with any degree of
confidence. Creating such a measure is a difficult exercise, for it would require not only knowing
where patients would reallocate themselves if j were not available in the network, but also
information on the cost of treating each of those patients at the preferred alternative hospital. To
simplify the analysis, we therefore assume that the incremental cost of treating a given condition
is the same at all hospitals and, therefore, �C j (G) = 0 for all hospitals j .11 We believe this
assumption is more reasonable than it at first appears. Consider two points. First, the Medicare
diagnosis related group (DRG) system is based on the idea that the expected cost of treating a
particular diagnosis should not vary across hospitals. Second, differences in apparent average costs
across hospitals for treating a particular DRG are, at least in part, accounted for by differences
in average severity across hospitals and by differences in allocation of fixed costs. Suppose
that severely ill patients within DRG Z B consistently choose hospital j . This will cause j’s
accounting data to indicate high costs of treating Z B , but this does not imply that �C j (G) �= 0;

11 With a sufficiently detailed estimate of each hospital’s cost function—one that gives the cost of treating every
condition at every hospital—it would be possible to use the choice model to determine where patients would reallocate
when the network changes. Then the cost function could be used to estimate �C j (G).
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presumably other hospitals would have similarly high costs of treating these severely ill patients.
Thus, �C j (G) �= 0 only if hospital j is more or less costly than other hospitals, holding severity
constant.

The third difficulty in our dataset is that we do not observe which hospitals managed care
patients are eligible to select. To fill this vacuum, we assume that each MCO � includes all
hospitals in its network, i.e., G� is the network of the whole. Again, this is a strong assumption,
though it does not appear to be far removed from reality and is supported by a straightforward
theoretical argument. Based on discussions with managed care executives, our informed (but not
well-documented) understanding is that networks in San Diego for the year we are studying were
likely to be quite inclusive. Better documented is recent hospital membership in MCO networks
within the state of Connecticut, which provides highly detailed data on hospital participation in
managed care networks (Cogswell, 2002). According to year 2000 data, of the nine HMOs in the
state, eight contract with at least 87% of the state’s hospitals and 5 contract with at least 93%.
Of the 15 PPOs, 13 contracted with 87% of the hospitals, and five contracted with 93%. Thus, in
Connecticut recently, almost all networks consist of nearly all hospitals, which is consistent with
using the network of the whole as a useful benchmark for computing WTP.

From a theoretical perspective, a simple argument shows that MCOs have a financial incentive
to increase the size of their network. (Appendix B sketches this argument formally.) Increasing
network size increases the ex ante expected utility of consumers by expanding their choice set.
At the same time, it increases competition among the hospitals, reduces their market power, and
thereby reduces the profits they are able to claim in their negotiations with MCOs. Therefore,
we expect that if MCO � does not include a particular hospital j in its network, then the reason
is that j’s inclusion would not significantly increase the value of the network that � is offering
its customers, i.e., WTP would only increase trivially if j were added. Note also that when we
estimate versions of the model in which the price predictions are based on logit models estimated
using only Medicare and fee-for-service patients—patients who do not face restricted choice
sets—the results are largely unchanged.

These difficulties prevent us from estimating equation (9), π j = α(�W E A
j (G)−�C j (G)) +

u j , as we would if we had better data. The equation we actually estimate is

π j =
α

γP

(
�W E A

j (G)
)

+ u j = a
(
�W E A

j (G)
)

+ u j . (11)

Estimating (11) instead of (9) potentially introduces both omitted-variable and errors-in-variable
bias into our estimate of a = α/γP > 0. We analyze this bias here. To keep our discussion of how
the different sources of bias interact as simple as possible, we assume that the measures �W E A

j (G),
�W E A

j (G), and �C j (G) are all represented as deviations from their respective means. This
eliminates all intercepts from the several regressions that are used in the analysis and considerably
simplifies the notation.

Most obviously, our estimate of a is subject to omitted-variable bias because we assume
�C(G) = 0. Only if �W E A

j (G) is uncorrelated with �C(G) is â free of omitted-variable bias. If,
however, our assumption that �C j (G) = 0 is violated and, as plausibly might be argued, �C j (G)
and �W E A

j (G) are positively correlated, then we can write �C j (G) as

�C j (G) = β1�W E A
j (G) + ε1 j , (12)

where β1 is positive and close to zero, and ε1 j is a mean zero error term that is independent of
�W E A

j (G). In other words, β1 is the regression coefficient that we would obtain if �C j (G) were
able to be regressed onto �W E A

j (G).
The second source of bias is that we use �W E A

j (G) in the regression rather than �W E A
j (G).

The theoretically correct formula for WTP is equation (8):

�W E A
j (G) = N

∫
Y,Z ,λ

1
γ (Yi , Zi )

ln
[

1
1 − s j (G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi .
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We, however, out of necessity compute and use the related WTP measure,�W E A
j (G) = γP�̂W (G),

where γP = EYi ,Zi [γ (Yi , Zi )] and

�̂W
E A
j (G) =

N
γP

∫
Y,Z ,λ

ln
[

1
1 − s j (G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi ;

this is just a restatement of our assumption that γ (Yi , Zi ) = γP .12 Certainly, however, our constant
γ assumption is at least somewhat incorrect. To the extent that this induces mean zero errors in
�̂W

E A
j (G) that are independent of �W E A

j (G), the effect on â is the usual bias toward zero induced
by errors in variables.

If, however, the errors are correlated with �W E A
j (G), then additional bias is introduced. Such

correlation is plausible if specialized, high-quality hospitals with high WTP attract patients with
serious, very worrying diagnoses Zi that lead them to assign a low utility value to money. That
is, γ (Yi , Zi ) < γP for the patients of high-WTP hospitals and, conversely, γ (Yi , Zi ) > γP for
patients of low-WTP hospitals. Thus, if �̂W

E A
j (G) is not an exact approximation of �W E A

j (G)

and is also represented as deviations about its mean, then we can write �̂W
E A
j (G) as the regression

�̂W
E A
j (G) = β2�W E A

j (G) + ε2 j , (13)

where β2 is positive, perhaps somewhat less than one, and ε2 j is uncorrelated with �W E A
j (G).

The overall effect of these several sources of bias is easily seen by substituting (12) and (13)
into (9), the equation that we would estimate if we could, and then collecting terms so as to obtain
(11), the equation that we do estimate:

π j = α
(
�W E A

j (G) − �C j (G)
)

+ u j

= α
(
�W E A

j (G) − βi�W E A
j (G) − ε1 j

)
+ u j

= α(1 − β1)


�̂W

E A
j (G) − ε2 j

β2


 − αε1 j + u1

=
α(1 − β1)

β2γP
�W E A

j (G) − αε1 j −
α(1 − β1)

β2
ε2 j + u1

= a�W E A
j (G) +

[
αε1 j −

α(1 − β1)
β2

ε2 j + u1

]
.

As stated above, β1 might plausibly be expected to be positive and near zero, and β2 might be
expected to be somewhat less than one. Thus, to the extent that β1 deviates from zero and β2
deviates from one, the estimate â is subject to offsetting biases. In addition, â suffers from errors-
in-variables bias toward zero because �W E A

j (G) is negatively correlated with the equation’s error
term:

E
{
�W E A

j (G)
(

αε1 j −
α(1 − β1)

β2
ε2 j + u1

)}

= E
{(

β2γP�W E A
j (G) + ε2 j

) (
αε1 j −

α(1 − β1)
β2

ε2 j + u1

)}

= −α(1 − β1)
β2

σ22 < 0,

12 Our constant assumption, if it is correct, trivially implies that γP = EYi ,Zi [γ (Yi , Zi )].
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where we have assumed that the covariance between ε1 j and ε2 j is zero because there is no
obvious reason why it should be positive or negative. Overall the bias is indeterminate: there are
two downward sources of bias and one upward source. Our subjective sense is that none of these
biases is large and that â is therefore a decent estimate of α/γP .

We end this discussion by noting that these difficulties can, at least in principle, be avoided
if we had better data that allowed us to reliably estimate �C j (G) for each hospital j . Given
measures for �C j (G), it is possible to identify both α and a simple form of the function γ (Yi , Zi )
as follows despite not having any variation in the out-of-pocket prices that patients face. Let the
functional form for γ (·) be γ (Yi , Zi ) = δg(Yi , Zi ; b), where δ is a scalar parameter and b is a short
vector of parameters.

Define

�W
E A
j (G) ≡ δ�W E A

j (G)

= N
∫

Y,Z ,λ

1
γ (Yi , Zi ; b)

ln
[

1
1 − s j (G, XC , X S, λi )

]
f (Yi , Zi , λi )dYi d Zi dλi .

The nonlinear equation to be estimated is then

π j =
(α

δ

)
�W

E A
j (G; b) − α�C j (C) + u j = a1�W

E A
j (G; b) − a2�C j (G) + u j .

Doing so would be computationally intensive.

5. Empirical issues in validating the WTP measure

� We validate our model by computing WTP and hospital profits for managed care patients and
then estimating. If WTP is an appropriate measure of market power, then it should be strongly
positively correlated with profits. Moreover, by regressing profits on WTP we estimate a, the
parameter that translates WTP into profits.

Our procedure for validation entails three steps. First, we estimate the choice model to re-
cover the parameters of the utility function. Second, we use these parameter estimates to compute
estimates ŝ j (G, Xi , λi ) of each hospital’s market share for each discrete cell of patient character-
istics (Xi , λi ). These estimated shares are used in formula (10) to compute �W E A

j (G) for each
hospital j .13 Third, we run the regression in equation (11), using profits from managed care pa-
tients to estimate the coefficient a.14 If WTP is a valid measure of hospital power, then a should
be positive and significant. The obstacles to implementing this plan include the following:

(i) Including managed care patients in the choice model can lead to biased results because
some of them face a restricted choice set. Managed care patients can be divided into
two broad categories. Those in PPOs usually have unrestricted access to virtually all
hospitals in their market. Those in HMOs usually face a narrower choice set, consisting
of perhaps 80–90% of available hospitals. Moreover, some HMOs may provide incen-
tives to physicians to steer patients to low-cost hospitals within the choice set. Ideally,
the choice model should not include HMO patients.

(ii) Most publicly available hospital financial data report revenues for privately insured
patients, which is sufficient to estimate variable profits obtained from those patients.
However, it is not always possible to obtain revenue from managed care patients only.

13 The reason that we use estimated shares rather than actual shares is that we subdivide our data into a large
number of cells, some of which have only a very few elements. Using the empirical shares will be, for some cells, quite
noisy estimates of the underlying expected shares. Using the estimated shares damps this noise and, if our choice model
is good, approximates the true expected shares.

14 We implicitly assume that managed care patients and other patients have similar utility functions.
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(iii) There appear to be three hospitals in our data that have very few contracts with managed
care payers. For these hospitals, MCO patients represent less than 4% of total admis-
sions, whereas for the remaining hospitals they constitute more than 20% of admissions.
Profit from managed care patients is near zero for any hospital that does not have a con-
tract with a managed care provider. In this instance, our measure of WTP may provide
an estimate of the profits these hospitals would realize following successful negotiations
with MCOs, but such hospitals cannot be used in the profit-WTP regression.

These obstacles suggest that implementation of our model will vary according to the available
data. Here we use 1991 data provided by California’s Office of Statewide Health Planning and
Development (OSHPD). OSHPD data, which has been widely used to study competition in health
care, lumps together all HMO and PPO hospital patients. In response, we develop two alternatives.

First, in stage 1 of our analysis, we use only patients with insurers that offer unfettered choice
of provider. These include indemnity insurance and Medicare patients under age 75. We implicitly
assume that the preferences of indemnity and “younger” Medicare patients are identical to those
of managed care patients, once we control for covariates such as disease characteristics and patient
demographics. In a second specification, we estimate the choice model with indemnity patients,
younger Medicare patients, and all MCO patients. HMO patients constitute about 30% of this
sample.15 Thus, the coefficients in the choice model may be biased. For example, if HMOs steer
patients away from high-cost hospitals, then hospitals with high levels of staffing and equipment
may appear to be less attractive, reducing their estimated WTP.

After estimating the parameters of patient utility functions using one of the two preceding
samples, we compute the WTP for each hospital. The next step is to relate WTP to MCO profits.
Unfortunately, OSHPD data do not separately report revenues for managed care patients. Thus
we can only compute profits from MCO contracts with an unknown degree of precision. This
gives us two options for comparing WTP and profits:

(a) Compare WTP based on only MCO patients with a noisy measure of profits from MCO
contracts.

(b) Compare WTP based on all privately insured patients with a less noisy measure of
profits from all privately insured patients.

The advantage of option (a) is that our model of WTP applies specifically to managed care.
Option (b) therefore has the disadvantage that it is not fully based on a structural model of hospital
profits. It also has, however, several offsetting advantages. First, it may recover a more precise
relationship between WTP and profits by reducing the error in measuring profits. This is especially

TABLE 1 Alternative Estimation Approaches

Logit WTP
Sample Sample Benefit Drawback

1. M,I H/P All patients in choice model have unfettered Noisy measure of HMO profit;
access. Follows model in second stage. bias in stage 2.

2. M,I I, H/P All patients in choice model have unfettered Applies WTP formula to non-MCO
access. Better measure of profits. patients.

3. M,I,H/P H/P Possibly better prediction of MCO patient choice. Noisy measure of HMO profit, possible
Follows model in second stage. bias in choice model and in stage 2.

4. M,I,H/P I,H/P Possibly better prediction of MCO patient choice. Possible bias in choice model. Applies
Better measure of profits. WTP formula to non-MCO patients.

Note: M = Medicare; I = indemnity (includes Blue Cross indemnity); H/P = HMO/PPO.

15 HMO/PPO patients represent slightly less than half of all the patients that we consider. According to the 1994
Pulse survey, HMO patients represented about 62% of the total managed care enrollments in San Diego. Thus, we estimate
that HMO patients represent about 30% of our multinomial logit sample. The Pulse survey was conducted by Inforum, a
consulting firm.
© RAND 2003.



mss # Capps et al.; AP art. # 08; RAND Journal of Economics vol. 34(4)

750 / THE RAND JOURNAL OF ECONOMICS

likely if WTP turns out to be correlated with the prices that hospitals charge to indemnity patients.
Second, it will better reflect the performance of hospitals that were attractive to MCO patients but
failed to secure contracts. Finally, antitrust enforcers may be equally concerned about indemnity
and MCO patients. To the extent that option (b) recovers an empirical regularity, this may prove
helpful in predicting the effects of mergers on prices, even if it is not completely grounded in
economic theory. Table 1 summarizes the various approaches to comparing WTP to profits.

6. Data

� The primary data are a cross-section of San Diego area patients and hospitals, taken from the
OSHPD 1991 Patient Discharge Report and Financial Disclosure Report. We select San Diego
because it is large enough to have geographic submarkets, but not so large as to be computationally
burdensome. Under the broadest definition, there are 25 acute care hospitals in the San Diego
area. We omit three of these: two are extremely small, and the third is a Kaiser hospital.16 Table 2
lists the remaining 22 San Diego hospitals and some of their characteristics. Of these 22 hospitals,
five are municipal hospitals operated by local government agencies.17

There were 78,932 nonemergency admissions to the 22 hospitals that we consider. We
retained the 41,083 patients for whom the insurer was listed as Medicare (under age 75), in-
demnity (listed as either fee-for-service or Blue Cross), or an HMO/PPO. Excluded patients
include worker’s compensation patients, who may have highly idiosyncratic preferences, and the

TABLE 2 San Diego Hospitals (N = 22)

Patients in
Sample Control Teach Transplants Delivery

Harbor View Health Partners 1,122 FP N N N
HCA Hospital of San Diego, Inc. 2,718 FP Y Y N
Mission Bay Memorial Hospital 615 FP N N N
NME Hospitals, Inc. 2,055 FP N N Y
Children’s Hospital, San Diego 1,818 NFP Y N N
Community Hospital of Chula Vista (CHCV) 999 NFP N N N
Coronado Hospital, Inc. 316 NFP N Y Y
Mercy Hospital 4,910 NFP Y N Y
Paradise Valley Hospital (PVH) 681 NFP N Y Y
San Miguel Hospital 145 NFP Y N N
Scripps Memorial Hospital 526 NFP N N N
Scripps Memorial, Chula Vista (SCV) 1,367 NFP N N Y
Scripps Memorial, La Jolla 3,314 NFP N N Y
Sharp Cabrillo Hospital 1,090 NFP N N N
Sharp Memorial Hospital 6,587 NFP Y Y Y
UCSD Medical Center 1,909 NFP Y Y Y
Villa View Community Hospital 256 NFP N N N
Fallbrook Hospital District 388 Munic. N N Y
Grossmont District Hospital 3,295 Munic. N N Y
Palomar Pomerado, Escondido 2,401 Munic. N N Y
Palomar Pomerado, Poway 1,797 Munic. N N Y
Tri-City Hospital District 2,774 Munic. N Y Y

16 Kaiser is an HMO that owns its own hospitals. Pragmatically, Kaiser was eliminated because it only reports a
subset of the data reported by other hospitals. Additionally, non-Kaiser patients do not generally go to Kaiser hospitals,
and vice versa.

17 Additional hospital data and a map of San Diego hospitals are available at http://www.kellogg.nwu.edu/faculty/
dranove/research/.
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TABLE 3 Patient Variables (N = 41,083)

Standard
Variable Type Mean Deviation Minimum Maximum

Male Y .336 .472 0 1
Elderly Y .314 .464 0 1
White Y .794 .404 0 1
Income, $1,000’s Y 16,640 5,999 0 40,268
Expected Length of Stay Y 5.539 7.533 0 415
%Travel (pcttravel) Y .219 .060 .128 .581
Number of Other Procedures Y 1.448 1.391 0 4
Number of Other Diagnoses Y 2.092 1.442 0 4
Driving Time (minutes to chosen hospital) — 15.801 9.995 1 79
Travel Distance (miles to chosen hospital) — 8.884 7.525 .3 61.1
Driving Time (minutes to all hospitals) — 29.346 16.751 1 92
Travel Distance (miles to all hospitals) — 19.848 13.775 .2 69.3
Medicare Dummy — .268 .443 0 1
Blue Cross/Blue Shield Dummy — .046 .210 0 1
Indemnity Dummy — .206 .405 0 1
HMO/PPO Dummy — .479 .500 0 1
Neurological Diagnosis Z .031 .174 0 1
Respiratory Diagnosis Z .036 .186 0 1
Cardiac Diagnosis Z .115 .319 0 1
Labor/Delivery Z .285 .452 0 1
MRI/CT Admission Z .042 .200 0 1
Psychiatric Admission Z .025 .157 0 1

uninsured, who may face a limited choice set. We also exclude Medicaid patients because some
hospitals may shun such patients due to low reimbursements.

The hospital characteristics used in the analysis are a general hospital characteristic (R j )
and measures of specific service offerings (Sj ). Variables in R j include Profit and Teach, dummy
variables indicating a hospital’s type of control and whether it is a teaching hospital, respectively;
nursing intensity equals nursing hours converted to annual full-time-equivalent nurses, divided
by patient days in 1990. Equipment intensity is the dollar value of equipment, divided by patient
days in 1990.18 The service offerings dummies, Sj , that we include indicate whether the hospital
specializes in each of the following service lines: diseases of the nervous system, diseases of the
respiratory system, cardiac care, labor and delivery, magnetic resonance imaging, and psychiatric
care.

Descriptive statistics for San Diego patients are in Table 3. Male, white, and elderly indicate
the patient’s gender, race, and whether the patient is over age 60. Income is taken from the 1990
census and is matched to patients by zip code and by race for the categories white, black, and
other. We employ three indicators of severity. The first two are the number of other procedures
and the number of other diagnoses, both of which are truncated at four. The third measure of
severity, pcttravel, is to our knowledge, new to health services research. We compute a value of
pcttravel for each DRG by starting with the universe of patients living in rural California counties
that have hospitals. We then compute, for every DRG, the percentage of rural patients who leave
their county of residence to receive treatment. We suppose that if pcttravel is high, then the DRG
must require complex treatment, which explains why patients are more likely to bypass their local
hospital.

In addition to these hospital and patient characteristics, our choice model includes the approx-
imate driving time (timeij), computed using the travel time from patient i’s home zip code centroid

18 We use 1990 patient days to avoid endogeneity bias.
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to hospital j’s street address. We used the “driving directions calculator” on the Mapquest.com
web page to generate the time and distance data. The Mapquest algorithm accounts for actual
driving conditions, and considers turns, stoplights, and freeway travel.

7. Estimation

� The first step toward obtaining the measure of interest, aggregate willingness to pay, is
estimating the utility function in equation (1) using standard multinomial logit techniques. The
choice set in the estimation consists of the 22 San Diego hospitals listed in Table 2. The predictors
include five types of variables. First are hospital-specific variables that are constant across all
patient conditions (R j ), including ownership type, teaching status, a dummy for transplant services
(indicating a “high-tech” hospital), and measures of equipment and nursing intensity. Second, we
include travel time, Ti j , as well as interactions of travel time with the hospital-specific variables
(Ti j · R j ). The third set of variables, (Ti j · Xi ), includes interactions between travel time and the
patient-specific clinical and demographic variables listed in Table 3. These interactions allow
willingness to travel to vary with patient type and condition.

Fourth and fifth are the interactions between hospital characteristics and patient character-
istics, [R j , Sj ]′�[Yi , Zi ]. These include interactions between patient characteristics and hospital
characteristics (R′

j�1 Xi ), and interactions between diagnosis dummies and hospital service of-
ferings (S′

j�2 Zi ).19 An example of the former is an interaction between severity and teaching
status. An example of the latter is a “match” interaction between the dummy for an obstetric
admission and whether the hospital has a dedicated labor and delivery room. Similar “match”
interactions are included for cardiac admissions, respiratory admissions, psychiatric admissions,
and neurological admissions.

We estimate the multinomial choice model twice, first using only indemnity and younger
Medicare patients, and then with MCO patients added. The pseudo R2 for the two estimations are
.367 and .355 respectively.20 For the current work, one important finding is that the coefficient
on travel time is negative and highly significant. There are also many significant interactions
between patient and hospital characteristics, suggestive of substitution patterns that vary greatly
across patient types.

We use the estimated coefficients to compute the WTP for inclusion of each of the 22 hospitals
in the network, as indicated in equation (10). As discussed above, we do this twice: first for MCO
patients only, and then for MCO and indemnity patients. Thus, we have four different estimates
of WTP (two estimates of the utility function, and two computations of WTP per estimate).

Our next empirical task is to compute profits. For those models where we compute WTP
for indemnity and MCO patients, we subtract contractual deductions (excluding deductions at-
tributable to Medicare and Medicaid) from gross private-payer revenue to obtain net revenue
attributable to private payers. For models where we compute WTP for MCO patients only, we
use the percentage of all private discharges at each hospital that are categorized as HMO/PPO to
scale down revenue from all private payers. In either case, we restrict attention to profits from
daily hospital services (DHS). This category includes nursing and intensive care services, for ex-
ample, but excludes ancillary services. We exclude the latter because OSHPD includes revenues
from outpatient care in the total revenues from ancillary services. There are many substitutes for
outpatient services, including physician and clinic services, so including outpatient revenue may
muddy the analysis of market power.

To estimate costs, we compute the DHS average direct cost per admission for all patients
(OSHPD does not break costs down by payer type). We then multiply by the number of discharges
for MCO patients or privately insured patients, as appropriate. Profits equal net revenues minus

19 If the kth element of Hj is in S j and the �th element of Xi is in Yi , then ��,k is constrained to be zero. For
example, income is not interacted with a dummy indicating whether the hospital has psychiatric services (an element of
S j ), but income is interacted with the dummy for teaching status (an element of R j ).

20 Coefficient tables are available at http://www.kellogg.nwu.edu/faculty/dranove/research/.
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direct costs. Note that this computation excludes indirect costs, and therefore reflects the profits
available when an MCO negotiates with a hospital.

8. Results

� Figure 1 plots profits from daily hospital services against WTP for the four combinations of
first- and second-stage samples. Table 4 reports the profit and WTP values for each hospital, and
Table 5 reports the results of the corresponding regressions. In all four cases, there is a strong,
precisely estimated positive relationship between WTP and profits, with correlations ranging from
.75 to .90.21 The results are insensitive to which model is used, reflecting the fact that the various
measures are all highly correlated: the correlations across the four WTP measures range from .78
to .99, while the two profit measures have a correlation of .94. Depending on the model, when
evaluated at the mean, a 10% increase in WTP corresponds to an increase in profits between 9.6%
and 10.6%.

To illustrate how WTP translates into profits, consider model 1, in which each one-unit
increase in WTP increases profits from MCOs by $2,233 (with a standard deviation of $412). To
interpret the magnitude of this estimate, consider a successful nonprofit hospital, Sharp Memorial
Hospital (WTP = 2,132), and a lesser hospital, Community Hospital of Chula Vista (WTP =
310). Using the results of model 1, the WTP difference of 1,826 generates a managed care profit
difference of $4.1 million.

Three points should be emphasized about this analysis. First, although we estimate the
multinomial choice problem using the five municipally operated hospitals, we exclude them from
this profit-WTP analysis because they admit a disproportionate number of uninsured patients and
can use local taxing power to offset revenue shortfalls. Thus, they may use their market power in
a different manner than we hypothesize for the 17 privately owned hospitals that are used in the
plots.

Second, in models 1 and 3, which use managed care profits as the dependent variable, the three
hospitals lowest on the profit axis are those that apparently did not have managed care contracts
in 1991. Third, in all four models, the most obvious outlier is the University of California, San
Diego (UCSD) hospital. UCSD, while generating a high WTP, reports an extremely high level of
profits. Indeed, if we exclude UCSD, the correlation between WTP and profits increases to about
.95. Although there are several teaching hospitals in the market, UCSD is the only member of
the Council of Teaching Hospitals and the only university hospital in the market. It is possible
that this confers a higher WTP than we are able to capture with the variables at hand. Another
possibility is that the method used to allocate costs and revenue across the hospital and the parent
university may misstate the true profits at UCSD.

An interesting application of our methodology is to assess whether nonprofits or for-profits
are more likely to exploit their market power. In one recent hospital merger case, the courts
accepted arguments that nonprofits are unlikely to use market power to raise prices.22 Inspection
of the WTP-profit plots would shed light on this claim. If the slope is steeper for the for-profits,
this would be consistent with the theory that they are more likely to exploit their market power.
We find no support for this claim—in fact, the nonprofit line appears slightly above the for-profit
line. When we separately estimated for-profit and nonprofit slopes, we were unable to reject the
null hypothesis that the slopes are identical; the slope of the for-profit line is always smaller than
the slope of the nonprofit line.

To further understand the sources of hospital pricing power, examine again equation (10),

�W E A
j (G) ≡ N

∫
Y,Z ,λ

ln
[

1
1 − s j (G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi ,

21 All regressions are without a constant, as implied by the model in Section 2. As the plots suggest and our
bargaining model implies, if a constant is included, it is not significantly different from zero.

22 FTC v. Butterworth Health Corp., W.D. Michigan 1997.
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FIGURE 1

PROFITS AND WTP

the formula for WTP. Think of each triple (Yi , Zi , λi ) as specifying a distinct market segment
of patients who all have demographic characteristics Yi , clinical indications Zi , and location λi .
The formula states that total WTP is the sum of segment WTPs and that, for a segment, WTP
for hospital j is greater when it offers services and facilities that patients—whether local or
distant—reveal as highly valued through awarding it a high market share. To obtain a high share,

© RAND 2003.



mss # Capps et al.; AP art. # 08; RAND Journal of Economics vol. 34(4)

CAPPS, DRANOVE, AND SATTERTHWAITE / 755

TABLE 4 Willingness to Pay and Profits

Willingness to Pay Profits ($1,000s)

Logit Sample: M,I M,I M, I,H/P M, I,H/P Private- Manage
Hospital WTP Sample: I,H/P H/P I,H/P H/P Payer Care

Scripps Memorial, Chula Vista (SCV) 906.4 734.1 1012.2 818.7 $4,853 $2,198
Children’s Hospital, San Diego 3679.4 1900.3 2525.6 1343.6 $11,900 $3,015
Coronado Hospital, Inc. 658.4 501.2 680.7 516.8 $1,413 $143
Sharp Cabrillo Hospital 561.3 394.5 555.9 386.8 $4,008 $1,534
Sharp Memorial Hospital 2865.0 2131.6 4278.1 3191.4 $15,600 $7,202
San Miguel Hospital 902.9 642.8 1124.1 799.9 $531 $20
Mercy Hospital 2101.6 1536.3 2959.5 2148.5 $15,800 $6,471
Paradise Valley Hospital (PVH) 1965.3 1544.6 1641.3 1273.0 $2,199 $337
Scripps Memorial, La Jolla 3119.3 2077.0 2528.6 1633.1 $14,400 $3,933
UCSD Medical Center 1871.1 1234.4 2200.3 1448.5 $33,200 $8,418
Villa View Community Hospital 640.2 467.6 642.7 468.2 $1,017 $89
Community Hospital of Chula Vista (CHCV) 413.4 309.5 400.7 298.6 $1,985 $605
Scripps Memorial Hospital 480.0 260.7 492.3 265.5 $2,075 $641
NME Hospitals, Inc. 2840.0 2104.4 1802.1 1318.9 $6,145 $2,353
Harbor View Health Partners 456.2 343.5 457.4 349.5 $1,702 $1,005
Mission Bay Memorial Hospital 283.2 197.2 259.1 180.7 $2,515 $734
HCA Hospital of San Diego, Inc. 2046.3 1262.1 1520.3 932.3 $5,699 $1,019
Fallbrook Hospital District 1769.3 384.3 1704.9 376.3 $608 $1
Grossmont District Hospital 1721.4 1278.3 1577.9 1161.2 $6,058 $2,185
Palomar Pomerado, Escondido 2646.8 1049.5 2688.6 1063.4 $12,400 $943
Tri-City Hospital District 3138.8 1753.7 3131.2 1745.7 $10,600 $4,158
Palomar Pomerado, Poway 2812.4 1649.4 2743.7 1590.7 $1,399 $570

Note: M = Medicare; I = indemnity (includes Blue Cross indemnity); H/P = HMO/PPO.

hospital j must have above-average amounts of characteristics (R j , Sj ) that interact positively
with the characteristics (Yi , Zi , λi ) of that segment’s patients. Finally, for overall WTP to be high,
the hospital’s high shares must not be restricted to “inconsequential” segments, that is, segments
with small values of f (Yi , Zi , λi ).

We use these ideas to illustrate how excellence in specific diseases can contribute significantly
to ex ante bargaining power. Consider the following exercise: partition hospital j’s contribution
to aggregate ex ante utility, �W E A

j (G), into components attributable to each of the 475 DRGs in
the data. The component for DRG Z̃i is defined to be

�W E A
j (G, Z̃i ) = N

∫
Y,λ

ln
[

1
1 − s j (G, Yi , Z̃i , λi )

]
f (Yi , Z̃i , λi )dYi dλi , (14)

so that
∑

Z̃i∈Z �W E A
j (G, Z̃i ) = �W E A

j (G).23

Now consider two dramatically different hospitals, the University of California, San Diego
Medical Center (UCSD) and Scripps Memorial Hospital of Chula Vista (SCV). UCSD is a high-
tech teaching hospital, while SCV is a “plain vanilla” community hospital. Both have delivery
services. A priori, neither hospital is predicted to have a higher aggregate contribution to WTP.
UCSD may be a higher-quality hospital, but SCV could have a better location, be in a higher-
income area, or have fewer nearby rivals. We expect, however, the higher-quality UCSD to generate
relatively more of its total WTP from more severe DRGs. To demonstrate this, we compute the

23 Note that the weighting by f (Y, Z , λ) causes hospitals’ values to tend to move together as the probability of
contracting an ailment is independent of the hospital chosen upon contraction.
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TABLE 5 Profit and Willingness to Pay

Standard
Variable Observations Mean Deviation Minimum Maximum

Private Payer Profit 17 $7,362,361 $8,516,887 $531,282 $33,200,000
MCO Profit, 17 $2,336,292 $2,652,812 $20,275 $8,417,834

all private hospitals
MCO Profit, >4% HMO patients 14 $2,818,887 $2,690,646 $337,343 $8,417,834

only hospitals with
WTP, Model 1 17 1,517.07 1,114.37 283.23 3,679.41
WTP, Model 2-a 17 1,037.75 722.42 197.22 2,131.57
WTP, Model 2-b 14 1,145.01 755.50 197.22 2,131.57
WTP, Model 3 17 1,475.36 1,120.20 259.06 4,278.15
WTP, Model 4-a 17 1,022.00 794.69 180.67 3,191.36
WTP, Model 4-b 14 1,113.50 849.26 180.67 3,191.36

Model 1-a 1-ba 2 3-a 3-ba 4
N 17 14 17 17 14 17
Logit sample M,I M,I M,I M, I,H/P M,I M, I,H/P
WTP sample H/P H/P I,H/P H/P H/P I,H/P
Dependent variable MCO Profits MCO Profits Private-Payer MCO Profits MCO Profits Private-Payer

Profits Profits
Independent variable WTP(H/P) WTP(H/P) WTP(I,H/P) WTP(H/P) WTP(H/P) WTP(I,H/P)
Coefficient 2233.11 2304.71 4654.33 2419.05 2516.01 5069.10
(Standard error) (412.16) (451.98) (922.97) (308.24) (322.39) (820.82)
Adjusted R2 .6252 .641 .590 .7809 .8106 .686

Note: M = Medicare, I = indemnity (includes Blue Cross indemnity), H/P = HMO/PPO.
aExcludes three hospitals with <4% admissions from HMO-insured patients.

DRG-specific WTP components �W E A
j (G, Zi ) for UCSD and SCV. Figure 2 shows these values

for each hospital where DRGs are sorted by increasing severity (as measured by pcttrv).24 While
UCSD is uniformly above SCV, meaning that for every DRG it generates more WTP by being in
the choice set, the contribution gap in percentage terms widens above the median-severity DRG,

FIGURE 2

ITEMIZATION OF WTP BY DRG FOR UCSD AND SCRIPPS MEMORIAL CHULA VISTA (SCV)

24 The data are smoothed using Cleveland’s lowess running-line smoother and a bandwidth of .8.
© RAND 2003.



mss # Capps et al.; AP art. # 08; RAND Journal of Economics vol. 34(4)

CAPPS, DRANOVE, AND SATTERTHWAITE / 757

and the value of SCV falls to zero at the highest level of severity.25 This shows how a hospital,
even if its overall market share is low, can gain leverage by successfully specializing in specific
segments that are important to consumers.

9. Using WTP for antitrust market definition

� Implementing the SSNIP criterion requires predicting how prices will change if two or more
sellers set price as if they were a merged entity, holding costs constant. We now demonstrate how
to use the WTP measure for this purpose. We do this in two steps. First, we estimate the increase in
profit that hospitals can obtain postmerger. Then, using reasonable assumptions about price/cost
margins, we estimate the associated change in prices.26

In general, merged entities enjoy greater market power because they can coordinate pricing.
The same principle applies here: two merged hospitals increase their market power by coordinating
their decision to join an MCO. To see how this affects WTP, consider hospitals j and k that have
similar services and reputations and are geographically close together, but do not have any nearby
competitors. Suppose they are independent and hospital k, but not j , is excluded from MCO A’s
network. Patients enrolled in A may only have a small WTP for adding hospital k to the network
because the included hospital j is an excellent substitute. Similarly, if j were excluded and k
included, then enrollees’ WTP for j would also be small. Thus the sum, �W E A

j (G) + �W E A
k (G),

would be small.
Now suppose j and k merge and inform MCO A that it must include both j and k in its

network if it wants either one. If A excludes both j and k, then its enrollees’ WTP for the bundle j
and k is likely to be large because there is no nearby substitute. In this case, j’s and k’s joint WTP
may greatly exceed the sum of their isolated WTPs: �W E A

j+k(G) � �W E A
j (G) + �W E A

k (G). The
formula for computing joint WTP (denoted by �W E A

j+k(G)) is the straightforward generalization
of (10):

�W E A
j+k(G) = N

∫
Y,Z ,λ

ln
[

1
1 − s j (G, Yi , Zi , λi ) − sk(G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi .

(15)
Quick inspection of this equation may suggest that �W E A

j+k(G) necessarily exceeds �W E A
j (G) +

�W E A
k (G). This is incorrect, however, because if two hospitals are far enough apart, then hospital

j will have zero market share in each market segment (Yi , Zi , λi ) in which k has positive share,
and, exactly parallel, k will have zero share in each segment in which j has positive share. Simply
put, merging a San Diego hospital with a Boston hospital is unlikely to increase their market
power.

The formula we use to estimate the profit effect of a merger between hospitals j and k is

�π̂ j+k = â
[
�W E A

j+k(G) − �W E A
j (G) − �W E A

k (G)
]
, (16)

where â is the coefficient on WTP from the regression in Table 5. This takes the empirically
observed relationship between WTP and profits and uses it to project how much a merger-driven
increment to WTP would permit the combined hospitals to increase their profits. While we have
empirically demonstrated the relationship between WTP and profits in the cross-section, we have
yet to empirically study the relationship between the change in profits and the change in WTP
after mergers. Though illustrative of the methodology, the remaining examples have not been
validated on actual mergers.

25 UCSD has a better location, north of downtown, than does SCV in the lower-income south suburban area. UCSD
does face more geographically close rivals, including two other high-tech hospitals, Mercy and Sharp Memorial.

26 The simple bargaining model suggests that it is more appropriate to regress profits on WTP rather than directly
regress prices on WTP.
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TABLE 6 Effects of Chula Vista Mergers

Model

Merger 1a 2b 3a 4b

Increase in WTP

SCV and PVH 274.64 33.6 222.84 27.66
SCV and CHCV 59.88 78.05 62.74 82.15
PVH and CHCV 55.7 73.2 47 62.35
All three 422.96 524.38 361.59 453.31

Profit Increase Per Private Discharge

SCV and PVH $144.48 $172.68 $126.99 $153.97
SCV and CHCV $28.94 $41.56 $32.84 $47.64
PVH and CHCV $77.17 $77.15 $7.53 $71.57
All three $18.28 $221.19 $166.96 $208.26

Percentage Increase in Profit

SCV and PVH 8.94% 14.07% 9.36% 14.74%
SCV and CHCV 4.26% 7.23% 4.94% 8.40%
PVH and CHCV 2.23% 3.76% 2.63% 4.41%
All three 12.12% 19.50% 13.30% 21.45%

Percentage Increase in Price

SCV and PVH 10.97% 12.46% 9.64% 11.11%
SCV and CHCV 1.95% 2.74% 2.22% 3.15%
PVH and CHCV 3.52% 3.65% 3.22% 3.38%
All three 11.39% 13.98% 10.55% 13.16%

aProfit computed as QMCOAR(QPrivate) − AC(Q)QMCO.
bProfit computed as QPrivateAR(QPrivate) − AC(Q)QPrivate.

We first consider Chula Vista, a suburb of San Diego that lies about 11 miles south of
downtown. There are two hospitals within Chula Vista proper, Scripps Memorial and Community
Hospital of Chula Vista (CHCV), and one hospital roughly midway between Chula Vista and
downtown San Diego, Paradise Valley Hospital (PVH). We consider this suburb because it bears
directly upon a key issue in many hospital merger cases. Due to its high patient outflows (over
30%), courts using Elzinga and Hogarty–type methods would most likely rule that Chula Vista
was not a well-defined geographic market and instead deem that the relevant market includes at
least San Diego and its suburbs. As a result, such a court would be likely to conclude that the
effects of a merger in Chula Vista would be trivial. However, our calculations indicate that Chula
Vista is a well-defined market and that the traditional approach may be incorrect.

Table 6 reports the results of simulating the effects of mergers among the three Chula Vista
hospitals. In keeping with SSNIP guidelines, we assume that costs are unchanged. Our results
indicate that mergers in this suburb could lead to significant increases in profits. Should all three
hospitals merge, the estimated effect on profits ranges from 12.1% to 21.5%, depending on the
model. Depending on the hospitals involved, pairwise mergers would lead to increases in profits
of 2.2% to 14.7%.27

The SSNIP question is generally formulated in terms of prices rather than profits. The bottom
panel of Table 6 shows the increase in the average revenue (price) of an inpatient day, for each of

27 These compare postmerger profits with the sum of merging hospitals’ premerger profits. Note that PVH appears
to have few contracts with managed care providers, whose patients account for only 7.2% of admissions at PVH. Thus, the
somewhat larger percentage increases for mergers involving PVH in columns (2) and (4) in part reflect the lower baseline.
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TABLE 7 Other Mergers (Based on Model-4 Results)

Patient- Per Discharge
% Weighted % Increase in

WTP Increase Premerger Increase Private-Pay Miles Number Number Number
Merger Gain Profit AR in Price Profit (Minutes) Teaching Transplant Delivery

Sharp Memorial a 463.3 7.15% 27,18.4 3.42% $93.11 5.2 (10) 2 2 2
and UCSD

Scripp’s La Jolla 233.8 5.78% 2,322.5 5.98% $106.44 1.5 (3) 1 1 1
and HCAb

San Miguel and Mercyc 115.7 2.83% 2,175.9 2.53% $55.00 1.2 (3) 2 0 1
Paradise and HCAd 36.1 1.14% 2,339.7 1.15% $26.90 19.6 (26) 1 2 1
Villa View and Coronadoe 17.8 1.35% 2,189.6 1.90% $41.55 9.9 (22) 0 1 1
Scripps Chula Vista

and Mission Bayf 4.3 .34% 1,509.1 .17% $2.54 16.4 (23) 0 0 1

aSharp Memorial and UCSD are near downtown San Diego.
bScripps La Jolla and HCA are a northern satellite-pair.
cSan Miguel and Mercy are both near downtown San Diego.
dParadise and HCA are on opposite sides of downtown San Diego.
eVilla View is in northeast San Diego and Coronado is near downtown.
fScripps and Mission Bay are on opposite sides of downtown San Diego.

the four models under the assumption that quantity is unchanged.28 These price changes reflect
the increases in average revenue necessary to generate the predicted increase in profits, given the
premerger number of patients, average revenue, and average cost at each hospital. The predicted
increase for a three-way merger is between 10.5% and 14.0%, while pairwise mergers generate
price increases ranging from 2.0% to 12.5%. Of the two-way mergers, only the SCV and PVH
merger has a substantial predicted effect. In large part, this probably reflects the absence of
labor and delivery services—a particularly important service line—at CHCV. On balance, these
increases suggest that a merger among all the Chula Vista hospitals would lead to a SSNIP and
that this suburb in fact constitutes a relevant antitrust market.

After defining the market, the next step is to determine if a merger in that market is likely to
harm consumers. This often entails a comparison of predicted price increases and cost savings.
For example, our model predicts a price increase of about 10% should SMCV and PVH merge.
Research on the likelihood of realizing comparable costs savings is mixed. Connor, Feldman, and
Dowd (1998) find that hospital mergers are unlikely to produce savings of more than 3–4%, while
Dranove and Lindrooth (2003) find that systems acquisitions do not generate savings, though
mergers in which hospitals consolidate licenses generate savings of about 14%.

Table 7 shows the results of simulating the effects of six other potential mergers, using the
estimate of â from model 4. The first merger, between Sharp Memorial and UCSD, involves
two hospitals near downtown San Diego, roughly five miles apart. The modest price increase of
3.4% reflects a combination of service overlap—both are teaching hospitals offering labor and
delivery—and geographic proximity, offset by the presence of eight other downtown hospitals.
Compare this to the San Miguel/Mercy merger. These downtown hospitals are only 1.2 miles
apart, but they lack specialized service overlap. The predicted price increase is even smaller than
for UCSD/Sharp Memorial. Based on these findings, it appears that it would take much or all of
the downtown area to constitute a SSNIP market.

We also simulate a merger among a pair of hospitals in La Jolla, a large suburb 11 miles north
of downtown San Diego. Despite modest service overlap, a merger of Scripps Memorial of La Jolla
and HCA Hospital of San Diego (HCA) has a predicted price increase of 6.0%, suggesting that

28 Under a purely capitated system, quantity is independent of the lump-sum transfer. If the marginal price con-
sumers pay out of pocket increases as a result of the merger, then quantity would fall and the calculations in Table 6 would
underpredict the price increase.
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this suburb may also be a well-defined market. In this case the price effects stem primarily from
the lack of nearby alternative hospitals. Finally, the PVH/HCA and SCV/Mission Bay mergers
illustrate that even modest price effects are unlikely when the hospitals are far apart and do not
have service overlap; the latter price effect is essentially zero.

10. Conclusions

� In option demand markets, intermediaries sell choice sets to downstream consumers. If the
intermediary market is competitive, then the price paid by the end-user is determined by the
bargaining position of the upstream suppliers: when the value to consumers of a choice set is
greatly reduced when a given firm is removed, that firm commands a premium. We derive and
implement a measure, WTP, that permits the computation of a seller’s power in option demand
markets. There are several potential applications of this measure. For example, one could assess
the relative power of body shops in their negotiations with automotive insurance companies. Data
on out-of-insurance repair purchases could be used to recover the underlying demand structure,
and our methods could then be implemented to compute the WTP to include each body shop in
the insurer’s repair network. Another application might examine the power of trade workers (e.g.,
plumbers) relative to the general contractors who hire them, assuming the necessary consumer
choice data are available.

Perhaps the most significant application is health care. Using data from the San Diego
hospital market, we demonstrate that our measure of WTP is highly correlated with profits. We
also offer three applications of the WTP measure, all of which pertain to merger analysis. During
the consolidation wave of the 1990s, merging hospitals overwhelmingly prevailed when the DOJ
or the FTC attempted to block a merger. The courts cited a number of reasons in finding for the
defendants, but two arguments frequently surfaced: (1) the relevant geographic market is large,
and (2) nonprofit hospitals serve the community and therefore will not exercise their market power
even if they have it.

The claim that the relevant geographic market is large rests upon flow analyses (Elzinga
and Hogarty, 1973) showing that a significant number of patients receive treatment outside of a
narrowly defined market. As observers have commented, the fact that a substantial portion of, say,
oncology patients travel long distances for care reveals nothing about a hospital’s market power
over, for example, expectant mothers who generally want to deliver in a nearby hospital (Werden,
1981, 1990). More generally, the fact that a patient at the interim stage is willing to travel a great
distance to receive care in no way indicates that she did not, ex ante, place a high value on having
one or more local hospitals available in her network.

Our approach obviates the need for flow analyses. The parameters from the logit demand
estimation allow computation of WTP for each hospital. This measure, when converted to a dollar
value through regression equation (11), provides a direct means to assess the SSNIP criterion for
both defining markets and predicting the price effects of a merger. These predictions are at odds
with those from ad hoc flow analyses. Indeed, more than 30% of Chula Vista residents receive
treatment in a San Diego hospital; nevertheless, we predict that a three-way merger, and one of
the possible two-way mergers, in Chula Vista would lead to substantial price increases.

Some final caveats apply to our present study. As noted earlier, we lack precise profit informa-
tion. Further validation should be performed on better data. We only consider the profitability of
unilateral deviations in price postmerger. We do not compute a new equilibrium, which would have
to account for fixed costs, entry, exit, and other competitor reactions. Also, while our derivation
and estimation of WTP is structural, our bargaining model is reduced form and does not consider
a variety of complex bargaining interactions. For example, when two hospitals merge, our model
assumes that the splitting parameter α remains constant. A more realistic model would allow this
to vary. Finally, we rely heavily upon the assumption that demand is logit. More computationally
intensive approaches would allow relaxation of this assumption.
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Appendix A

� Correction of Town and Vistnes. There are two problems with Town and Vistnes’s (2001) pioneering treatment of
using ex ante utility to develop a measure of market power in an option demand market. The first problem is that they use
an incorrect expression to calculate ex ante utility given under the assumption of logit demand. Their expression for the
ex ante utility of a type-i consumer is given by their equation (3), reproduced here in our notation,

W E A∗
(G, Yi , λi ) =

∫
Z

ln

{∑
g∈G

exp[w(Zi )U (Hg, Yi , Zi , λi )]

}
f (Zi | Yi , λi )d Zi ,

where w(Zi ) is the cost-based DRG weight for diagnosis Zi . Comparison of this with our equations (4) and (7) shows
that this is incorrect. If the intention was to use the DRG weights, then the correct expression for ex ante utility is

W E A(G, Yi , λi ) =
∫

Z
w(Zi ) ln

{∑
g∈G

exp[U (Hg, Yi , Zi , λi )]

}
f (Zi | Yi , λi )d Zi .

If, given a utility function U (·) and a set of weights w(·), both of these formulas were applied to a dataset of 20 hospitals and
10,000 consumers in order to compute for each individual his ex ante utility W E A(G, Yi , λi ) and his Town and Vistnes
utility W E A∗ (G, Yi , λi ), then the two resulting vectors of computed utilities would be different, though undoubtedly
correlated. Nevertheless, W E A(G, Yi , λi ) must be used if the purpose is to show that ex ante utility is a useful construct
for deriving a measure of market power in option demand markets.

The second difficulty lies with Town and Vistnes’s equation (4), the regression equation that they use to estimate
the empirical relationship between price and the incremental, aggregate, ex ante expected utility that a hospital adds to
a network. They use a slightly more sophisticated bargaining model than we do; the key equation in their formulation is
their equation (1):

B j = min[πG − πG− j , πNI − πG− j+mh ],

where B j is hospital j’s bargaining power, πG is the profit of the MCO for its actual network G that includes j , πG− j
is the profit of the MCO for the alternative network that excludes j , and πG− j+mh is the profit of the MCO under the
alternative network that excludes j and substitutes hospital m j , which is the hospital not previously in the network that
best substitutes for j . Town and Vistnes assume that the profit the MCO earns is proportional to the ex ante aggregate
utility that the network generates and that the price hospital j can secure is proportional to its bargaining power B j .
Therefore, aggregate ex ante utility for the actual network and the two alternative networks, denoted W E A

G , W E A
G− j , and

W E A
G− j+m j

respectively, can be substituted into the formula for B j . Town and Vistnes assert that this leads to their equation
(4), whose parameters they estimate through a switching regression:

ln PjG = X ′
j β + (1 − α j )δ1 ln(W E A

G− j ) + α j δ2 ln(W E A
G− j+m j

) + ε jG ,

where PjG is the price hospital j receives from the network G and X j is a vector of hospital j’s characteristics. This
equation is incorrect because it indicates that hospital j’s ability to obtain a high price is driven by the level of ex ante
utility j creates rather than the measure suggesed by their theory, the incremental ex ante utility that j contributes. Thus
the equation that their theory suggests should be estimated is

ln PjG = X ′
j β + (1 − α j )δ1 ln(W E A

G − W E A
G− j ) + α j δ2 ln(W E A

G − W E A
G− j+m j

) + ε jG ,

This is different from the previous equation, which is the one that they state they used.

Appendix B

� A simple theory of MCO competition. Let there be M competitive MCOs that sell their services at cost. To see
that this competition naturally leads each MCO to choose the network of the whole as its network, suppose several MCOs
are competing for a contract to cover the employees of firm XY . Focus on MCO �, which has an associated network G�.
If it secures firm XY ’s contract, then in monetary terms the ex ante utility that the XY group gains is

W E A
� (G�) =

NXY

γ

∫
Y,Z ,λ

V IU (G�, Yi , Zi , λi ) f (Yi , Zi , λi )dYi d Zi dλi ,

where NXY is the number of people in the firm XY ’s group, f (·) is the density of group members’ characteristics and
locations, and the formula is just equation (8) from the article modified to be total utility (in monetary units) rather than ex
© RAND 2003.
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ante WTP. Note from equation (4) that V IU (·) is increasing with the size of G� and therefore W E A
�

(G�) is also increasing
in the size of G� i.e., if G ′

�
⊆ G ′′

�
, then W E A

�
(G ′

�
) ≤ W E A

�
(G ′′

�
).

The cost to � of providing the coverage for firm XY is

C + α
∑
j∈G�

�W E A
j (G�) + K�,

where C is the actual expected hospital costs of caring for the group members, the summation term is the surplus that the
hospitals extract through the bargaining process, and K� represents the MCO’s costs of administering the coverage. C is
a constant that does not vary with the identity of the MCO or the composition of the network because we assume that
�C j (G�) = 0.

Firm XY wants to choose the MCO that results in the largest possible surplus for it and its employees. Given that
the competitive environment forces MCO � to sell its services at cost, the surplus that � generates for firm XY is

T E A
� (G�) = W E A

� (G�) −
[

C + α
∑
j∈G�

�W E A
j (G�) + K�

]
.

The dominant strategy for MCO � to follow in its efforts to secure the XY contract is therefore to maximize this surplus
through minimizing its costs K� and picking that network G� that maximizes the difference �(G�, α) = W E A

�
(G�) −

α
∑

j∈G�
�W E A

j (G�).
We now show that MCO � maximizes this difference by expanding its network to be the network of the whole,

denoted G∗
�
. This has two steps. First we show that WTP for a particular hospital j is weakly decreasing in the size of the

network. Pick a particular hospital j and observe that logit demand implies that its market share in every micromarket is
weakly decreasing in network size: s j (G ′

�
, Yi , Zi , λi ) ≥ s j (G ′′

�
, Yi , Zi , λi ) if G ′

�
⊆ G ′′

�
. Again recall equation (8), which

is the formula for ex ante WTP in terms of market shares:

�W E A
j (G) =

NXY

γ

∫
Y,Z ,λ

ln
[

1
1 − s j (G, Yi , Zi , λi )

]
f (Yi , Zi , λi )dYi d Zi dλi .

This, together with the monotonicity of market shares, immediately implies that if G ′
�
⊆ G ′′

�
, then �W E A

j (G ′
�
) ≥

�W E A
j (G ′′

�
). In particular, if G∗

�
denotes the network of the whole, then �W E A

j (G ′
�
) ≥ �W E A

j (G∗
�
) for all networks G ′

�
.

Second, we show that firm XY ’s surplus is weakly increasing in the size of the network, i.e., that �(G�, α) is weakly
increasing in the size of the network. It is sufficient to show that

�(G ′
�, α) ≤ �(G ′′

� , α)

whenever G ′
�
⊆ G ′′

�
and G ′

�
= G ′′

�
/k, where the notation G ′′

�
/k denotes the network G ′′

�
with hospital k removed. Take

the difference

�(G ′′
� , α) − �(G ′

�, α)

=
[
W E A

� (G ′′
� ) − W E A

� (G ′
�)

]
+ α


 ∑

j∈G′
�

�W E A
j (G ′

�) −
∑
j∈G′′

�

�W E A
j (G ′′

� )




=
[
W E A

� (G ′′
� ) − W E A

� (G ′′
� /k)

]
+ α


 ∑

j∈G′′
�
/k

�W E A
j (G ′′

� /k) −
∑
j∈G′′

�

�W E A
j (G ′′

� )




=
[
W E A

� (G ′′
� ) − W E A

� (G ′′
� /k) − α�W E A

k (G ′′
� )

]
+ α


 ∑

j∈G′′
�
/k

�W E A
j (G ′′

� /k) −
∑

j∈G′′
�
/k�

�W E A
j (G ′′

� )




=
[
W E A

� (G ′′
� ) − W E A

� (G ′′
� /k) − α�W E A

k (G ′′
� )

]
+ α

∑
j∈G′′

�
/k

[
�W E A

j (G ′′
� /k) − �W E A

j (G ′′
� )

]
.

Note that α
∑

j∈G′′
�
/k (�W E A

j (G ′′
�
/k) − �W E A

j (G ′′
�
)) is nonnegative because α ∈ (0, 1) and �W E A

j (G�) is both
nonnegative and weakly decreasing in G�. Similarly, W E A

�
(G ′′

�
) − W E A

�
(G ′′/k) − α�W E A

k (G ′′
�
) is nonnegative be-

cause α ∈ (0, 1) and, by definition, �W E A
k (G ′′

�
) = W E A

�
(G ′′

�
) − W E A

�
(G ′′/k). These two observations establish that

�(G ′′
�
, α) − �(G ′

�
, α) ≥ 0 if G ′

�
⊆ G ′′

�
. Therefore the network of the whole G ′′

�
maximizes the difference �(G�, α),

which establishes that the dominant strategy for MCO � is to include every hospital in its network.
© RAND 2003.
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This is an intuitive result. Increasing network size increases the ex ante utility W E A
�

(G�) of consumers because
they have more choices for their care. It also increases the competition between the hospitals, which directly decreases
�W E A

j (G�). It therefore should come as no surprise that the difference W E A
�

(G�) − α
∑

j∈G�
�W E A

j (G�) is increasing
in network size.
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