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Abstract

Consider a decentralized, dynamic market with an infinite horizon in
which both buyers and sellers have private information concerning their
values for the indivisible traded good. Time is discrete, each period has
length δ, and each unit of time a large number of new buyers and sellers
enter the market to trade. Within a period each buyer is matched with
a seller and each seller is matched with zero, one, or more buyers. Every
seller runs a first price auction with a reservation price and, if trade occurs,
both the seller and winning buyer exit the market with their realized
utility. Traders who fail to trade either continue in the market to be
rematched or exit at an exogenous rate. We characterize the steady-
state, perfect Bayesian equilibria as δ becomes small and the market–in
effect–becomes large for each trader. We show that, as δ converges to
zero, equilibrium prices at which trades occur converge to the Walrasian
price and the realized allocations converge to the competitive allocation.
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1 Introduction
Asymmetric information and strategic behavior interfere with efficient trade.
Nevertheless economists have long believed that for private goods’ economies
the presence of many traders overcomes both these imperfections and results in
convergence to perfect competition. This paper contributes to a growing liter-
ature that shows the robust ability of simple market mechanisms to elicit cost
and value information from buyers and sellers even as at it uses the information
to allocate the available supply almost efficiently. In particular, we show how a
completely decentralized matching and bargaining market with two-sided incom-
plete information converges to a competitive outcome as each trader’s ability to
contact a sequence of possible trading partners increases.Thus a market that for
each trader is big over time–as opposed to big at a moment in time–overcomes
the difficulties of asymmetric information and strategic behavior. This is a step
towards a full understanding of why price theory with its assumptions of com-
plete information and price-taking works as well as it does even in markets where
the validity of neither of these assumptions is self-evident.
A description of our model and result is this. An indivisible good is traded in

a market in which time progresses in discrete periods of length δ and generations
of traders overlap. The parameter δ is the exogenous friction in our model that
we take to zero. Every active buyer is randomly matched with an active seller
each period. Depending on the luck of the draw, a seller may end up being
matched with several buyers, a single buyer, or even no buyers. Each seller
solicits a bid from each buyer with whom she is matched. If the highest of
the bids is satisfactory to her, she sells her single unit of the good and both
she and the successful buyer exit the market. A buyer or seller who fails to
trade remains in the market and seeks a new match the next period unless for
exogenous reasons he or she elects to exit the market without trading.
Each unit of time a large number of potential sellers (formally, measure

1) enters the market along with a large number of potential buyers (formally,
measure a). Each potential seller independently draws a cost c in the unit
interval from a distribution GS and each potential buyer draws independently a
value v in the unit interval from a distribution GB. Individuals’ costs and values
are private to them. A potential trader only enters the market if, conditional on
his private cost or value, his equilibrium expected utility is positive. Potential
traders who have zero probability of profitable trade in equilibrium elect not to
participate.
If trade occurs between a buyer and seller at price p, then they exit with

utilities v − p and p− c respectively that they discount back at rate r to their
times of entry. As in McAfee (1993) unsuccessful active traders face a risk of
exiting whose source is exogenous. Specifically, each period each unsuccessful
trader exits with probability 1− e−δµ where µ is the exit rate per unit of time.
If δ is large (i.e., periods are long), then a trader who enters the market is
impatient, seeking to consummate a trade and realize positive utility amongst
the first few matches he realizes. If, however, δ is small (i.e., periods are short),
then a trader can patiently wait through many matches looking for a good price
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with little concern about exiting with no gain.
Buyers with higher values find it worthwhile to submit higher bids than

buyers with lower values. At the extreme, a buyer with a value 0.1 will certainly
not submit a bid greater than 0.1 while a buyer with a value 0.95 certainly might.
The same logic applies to sellers: low cost sellers are willing to accept lower bids
than are higher cost sellers. This means high value buyers and low cost sellers
tend quickly to realize a match that results in trade and exit. Low value buyers
and high cost sellers may take a much longer time on average to trade and are
likely to exit without trading. Consequently, among the buyers and sellers who
are active in the market in a given period, low value buyers and high cost sellers
may be overrepresented relative to the entering distributions GB and GS .
We characterize equilibria for the steady state of this market and show that,

as the period length goes to zero, all equilibria of the market converge to the
Walrasian price and the competitive allocation. The Walrasian price pW in this
market is the solution to the equation

GS (pW ) = a (1−GB (pW )) , (1)

i.e., it is the price at which the measure of entering sellers with costs less than pW
equals the measure of entering buyers with values greater than pW . If the market
were completely centralized with every active buyer and seller participating in
an enormous exchange that cleared each period’s bids and offers simultaneously,
then pW would be the market clearing price each period. Our result, carefully
stated, is as follows. Given a δ > 0, then each equilibria induces a trading range
[p
δ
, p̄δ] that simultaneously is the range of offers that sellers of different types

make, the range of bids that buyers make, and the range of prices at which
trades are actually transacted. We show that limδ→0 pδ = limδ→0 p̄δ = pW ,
i.e., the trading range converges to the competitive price. That the resulting
allocations give traders the expected utility they would realize in a perfectly
competitive market follows directly.
The intuition why the trading range converges to a single price is easily

stated. As the time period δ shrinks towards zero each trader expects to match
an increasing number of times prior to exiting at a random time as a consequence
of the exogenous exit rate. The result is a strong option value effect for every
trader. Even if a buyer has a high value, he has an increasing incentive as δ
decreases to bid low and hold out for an offer near the low end of the offer
distribution. Therefore all serious buyers bid within an increasingly narrow
range just above the minimum offer any seller makes. A parallel argument
applies to sellers, with the net effect being, as δ becomes small, all bids and
offers concentrate within an interval of decreasing length, i.e., the trading range
converges to a single price. However, as we discuss below, what price the trading
range converges to is not as obvious.
This paper is a companion to Satterthwaite and Shneyerov (2007). Both

papers prove convergence of dynamic, decentralized markets with two-sided in-
complete information to the Walrasian outcome as frictions are removed by
letting time between trading opportunities approach zero. The difference in the
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two papers’ models is that in this paper impatience is the consequence of an
exogenous exit rate while in the latter it is the consequence of a participation
cost. There are two reasons why the development of these parallel models is
worthwhile.
The first reason is to demonstrate the robustness of convergence to the com-

petitive price and allocation for different frictions that may exist within a mar-
ket. For example, the rise of Internet enabled markets has driven the cost of
participation in some–but certainly not all–markets almost to zero. Con-
sequently here we eliminate participation costs as the source of friction and
substitute an exogenous exit rate. One justification for this exogenous exit rate
is that participating in a market with trivial participation costs still requires
the scarce resource of attention. A trader when he decides to enter a market
may know there is a significant probability that, if he is unsuccessful at trad-
ing quickly, his situation may change, preempt his attention, and force him to
exit. He is therefore impatient to consummate the trade because exiting does
not indicate that trade would no longer be of value. It only indicates that he
can no longer give it attention. This interpretation of the fixed exit rate is
consistent with a developing literature on the implications of attention scarcity,
e.g., Falkinger (2005). The premise of this literature is that the allocation of
attention across multiple projects, responsibilities, and unanticipated stimuli is
a critical strategic decision each agent must make each day.1

The second reason is that the two paper’s models illuminate different aspects
of why a matching and bargaining market with incomplete information may
converge to perfect competition. It turns out that in both models the same
intuition concerning option value applies as to why the distribution of prices at
which trades occur converges to a single price. This congruence is absent when
it comes to understanding why this limiting price must be the Walrasian price.
This paper’s strength is that it identifies a general mechanism that forces that
price to be the Walrasian price, pW , whenever transaction prices converge to a
single price. To understand this, suppose to the contrary that prices converge to
some lower price, p∗ < pW . If the period length δ is quite short, then a potential
buyer may choose to enter if his value v exceed p∗ because of the possibility of
buying at or close to that price. Similarly, a potential seller may enter if her
cost c is less than p∗. With p∗ less than pW more potential buyers enter than
potential sellers. This, however, need not prevent the market from clearing;
all that is necessary is that buyers on average exit prior to trading more often
than do sellers. This, to some extent, occurs automatically because buyers,
being present in greater numbers, tend to wait longer than sellers to trade and
therefore are more likely to exit due to the exogenous exit rate.

1Scarce attention is not the only reason why making the exit rate a primitive of the model
makes sense. Among the many decision biases psychologists have identified is overoptimism.
One form this may take is that a trader may be optimistic as to how much time and attention
consumating a trade in the market will take. For such a less than fully rational trader,
participation in the market, if he is not fortunate in getting a good match early on, tends to
disabuse him of this optimism and lead to a decision to exit. Two interesting papers in this
literature, which Adam Galinsky and Keith Murnighan kindly brought to our attention, are
Kahneman and Lovallo (1993) and Buelher, Griffin, and Ross (1994).

4



Nevertheless, as the period length approaches zero, we can show that the
equilibrium trading range cannot converge to the price p∗ < pW . The quite gen-
eral reasoning is that an active buyer whose value v is relatively low necessarily
has a low probability of trading in equilibrium and a high probability of exiting
for exogenous reasons. If this were not so, then the market would not be in a
steady state. The reason is that the excess buyers p∗ attracts into the market
must exit exogenously for market clearing to occur. This, however, sets up a
contradiction. As δ becomes small the trading range becomes extremely narrow
as it converges to p∗. The low value buyer, who has a low probability of trading,
can then increase his bid the very small amount that is just sufficient to make
trade in the current period certain. Doing so is worthwhile–and breaks the
putative equilibrium–because the cost in terms of the increased price he pays
is small and is more than offset by the guarantee that trade occurs immediately
with no possibility of unexpected exit for exogenous reasons. Thus, given that
the trading range is collapsing to a single price, that price can not be p∗, but
must be pW .
By contrast, in our participation cost model (Satterthwaite and Shneyerov,

2006) we identified a simpler, less general mechanism that guarantees conver-
gence to pW . In the steady state, traders have stationary strategies because,
with a fixed per period participation cost, each period’s optimization problem
as to whether to be in the market and what price to bid/offer is unchanging.
This means that every trader who enters the market stays until he trades; no
exit occurs for other, exogenous reasons. Then, if δ is very small, every trader
who enters ultimately gets to trade in a very small band around whatever price
p∗ to which the trading range is shrinking. This price p∗ must be pW because
that is the only price that clears the market.
A strength of the participation cost paper (Satterthwaite and Shneyerov,

2006) that this paper does not share is that it proves existence in reasonable
generality: provided the discount rate and the period length is sufficiently small,
equilibria necessarily exist. In section 4.4 we report that we have successfully
proved existence when a restrictive assumption is made on the sellers’ type
distribution GS , but that proof is not included here because of its length and
lack of generality.
Our two papers build on a substantial literature that investigates the foun-

dations of perfect competition using dynamic matching and bargaining games
under full information. The strand of this literature to which our papers are
most closely related includes Gale (1987) and Mortensen and Wright (2002).2

These papers specify an explicit bargaining game between matched traders and,
conditional on that game, prove convergence to the Walrasian price and an ex
post efficient allocation as the market friction vanishes. A second, less closely
related strand specifies a matching technology but does not specify the bargain-
ing game that sets the terms of trade. Instead this literature depends on the
powerful results of cooperative game theory to show that no matter how bar-

2The books of Osborne and Rubinstein (1990) and Gale (2000) contain excellent discussions
of both their own and others’ contributions to this literature.
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gaining is conducted equilibrium in the market must be Walrasian. Gale (1986),
McClennan and Sonnenschein (1991), and Dagan, Serrano, and Volij (2000) are
representative of this important approach.3

The primary difference between both strands of this literature and our papers
is that it assumes complete information: when two traders meet they recipro-
cally observe each other’s cost/value. This–full versus incomplete information–
is fundamental, for our purpose is to determine if a decentralized markets can
robustly elicit sufficient private valuation information at the same time it uses
that information to assign the available supply almost efficiently.
Butters (circa 1979), Wolinsky (1988), De Fraja and Sákovics (2001), and

Serrano (2002) are the most important dynamic bargaining and matching mod-
els that incorporate incomplete information, albeit one-sided in the cases of
Wolinsky and of De Fraja and Sákovics.4 Of these four, only Butters obtains
convergence to perfect competition in the limit. Specifically, in an old, incom-
plete manuscript he analyzes a two-sided incomplete information model that is
very similar to the one we study here and makes a great deal of progress towards
proving a variant of the convergence theorem that we prove here. In contrast,
the models of the other three papers fail to converge robustly to the Walrasian
price. The reason for these failures is that the allocation problems those papers
model are non-competitive in their fundamentals.
Our reason for asserting this may be seen by generalizing the static double

auction model to a dynamic setting. In a double auction there are m privately
informed sellers, each of whom seeks to sell her one unit of the undifferentiated
commodity and n privately informed buyers, each of whom seeks to purchase one
unit of the commodity. All traders simultaneously submit offers/bids from which
the market maker computes a market clearing price p and, at that price, assigns
the m units of supply to those m traders who revealed through their offers/bids
that they most value the available units. Satterthwaite and Williams (1989,
2002) and Rustichini, Satterthwaite, and Williams (1994) established that as
n increases the market rapidly approaches the ex post efficient, competitive
outcome.
The direct generalization of this model to our dynamic setting is this. Each

unit of time measure 1 sellers and measure a buyers choose whether to enter
the market. Each of these traders has a private cost/value for a single unit
of a homogeneous good and each faces a small exogenous probability of exit
each period. The baseline problem is how in this dynamic setting the sellers’
units of supply can be reallocated to those traders who most highly value them.
Observe that this problem is intrinsically competitive because the traded good
is homogeneous, the number of traders is always large, and the distributions GS

and GB define well behaved supply and demand curves.

3The techniques of these papers are not applicable to models such as ours with incom-
plete information in which the market friction is approaching zero because the core has not
generalized cleanly to games incomplete information.

4Another example of a centralized trading institution is the system of simultaneous
ascending-price auctions, studied in Peters and Severinov (2002). They also find robust con-
vergence to the competitive outcome.
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An immediate solution to this problem is each period to conduct a large
static double auction involving all the active traders. This works because, with
continua of traders, the double auction exactly computes the Walrasian price
and uses it to mediate trade. The present paper’s result is that decentralized
matching and bargaining can with almost no loss of efficiency substitute for the
large centralized market, provided the period length is small.
The models of Wolinsky (1988), De Fraja and Sákovics (2001), and Serrano

(2002) each have a non-competitive attribute.5 To be specific, Wolinsky’s model
relaxes the homogeneous good assumption and does not fully analyze the effects
of entry/exit dynamics. The entry/exit dynamics of De Fraja and Sákovics’
model do not specify fixed measures of buyers and sellers entering the market
each unit of time and therefore do not specify well defined demand and supply
curves. Serrano’s model is of a market that may initially be large but, as buyers
and sellers successfully trade and no new traders enter, it becomes small and
non-competitive over time, an effect that the discreteness of its prices aggravates.
Recently five interesting working papers have appeared that build on our

two matching and bargaining papers with incomplete information. Lauermann
(2006) is most closely related to this paper because he also assumes that the
friction in the market is an exogenous probability of exit. His paper identifies a
set of four conditions on trading outcomes that are sufficient to guarantee con-
vergence independent of many of the market’s details. The other four papers
consider markets in which the friction is an explicit per period cost of partic-
ipation and are therefore more closely related to Satterthwaite and Shneyerov
(2007). Shneyerov and Wong (2007a) consider a model that is a replica of
Mortensen and Wright (2002) but with private information, provide a simple
necessary and sufficient condition for existence of a non-trivial equilibrium, and
compare equilibrium outcomes to those in Mortensen and Wright. Shneyerov
and Wong (2007b) then establish that the convergence rate is worst case opti-
mal in the sense of Satterthwaite and Williams (2002). Atakan (2007a, 2007b)
also considers markets in which meetings are pairwise and develops conditions
that guarantee convergence. The important innovation that both of his pa-
pers pioneer is relaxation of the usual assumption that good being traded is
homogeneous. The resulting models fit, to take two examples, the realities of
the housing and labor markets much better than do the existing models with
homogeneous goods.
Looking ahead, the next section formally states the model and our main

result establishing that the Walrasian price emerges as the market becomes
frictionless. Section 3 derives basic properties of equilibria. Section 4 utilizes
the notation and basic results from sections 2 and 3 to present a computed
example illustrating our result and then to describe in detail the mechanisms
that force convergence to the Walrasian price. Section 5 then proves our result
and section 6 both summarizes and discusses possible extensions.

5More complete discussions of these three papers are contained in Satterthwaite and
Shneyerov (2007).
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2 Model and theorem
We study the steady state of a market with two-sided incomplete informa-
tion and an infinite horizon. In it heterogeneous buyers and sellers meet once
per period (t = . . . ,−1, 0, 1, . . .) and trade an indivisible, homogeneous good.
Every seller is endowed with one unit of the traded good for which she has cost
c ∈ [0, 1]. This cost is private information to her; to other traders it is an inde-
pendent random variable with distribution GS and density gS . Similarly, every
buyer seeks to purchase one unit of the good for which he has value v ∈ [0, 1].
This value is private to him; to others it is an independent random variable with
distribution GB and density gB. Our model is therefore the standard indepen-
dent private values model. We assume that the two densities are bounded away
from zero: a g > 0 exists such that, for all c, v ∈ [0, 1], gS(c) > g and gB(v) > g.
This implies that 0 < pW < 1, i.e., the Walrasian price as defined in equation
(1) is interior to the interval [0, 1].
The length of each period is δ. Each unit of time a large number of potential

sellers and a large number of potential buyers consider entering the market; for-
mally each unit of time measure 1 of potential sellers and measure a of potential
buyers consider entry where a > 0. This means that each period measure δ of
potential sellers and measure aδ of potential buyers consider entry. Only those
potential traders whose expected utility from entry is positive elect to enter and
become active traders.6 Active buyers and sellers who do not leave the market
through either trade or exogenous exit carry over and remain active in the next
period.
Let the strategy of a seller, S : [0, 1] → [0, 1] ∪ {N} , map her cost c into

either a decision N not to enter or the minimal bid that she is willing to accept.
Similarly, let the strategy of a buyer, B : [0, 1] → [0, 1] ∪ {N} , map his value
v into either a decision N not to enter or the bid that he places whenever he
is matched with a seller. Traders who do not enter receive zero utility. Denote
with µ > 0 the exogenous exit rate.7 Finally let ζ be the endogenous steady
state ratio of active buyers to active sellers in the market. Given this notation,
a period consists of four steps:

1. Each potential trader decides whether to enter and become an active
trader as a function of his type, i.e., a potential seller declines entry if

6 In an earlier version of this paper we assumed that potential traders whose expected utility
is zero did enter the market and become active. These traders had zero probability of trading
and exited the market at the exogenous rate µδ per period. Modulo a plausible restriction on
the equilibrium strategies of traders who have zero probability of trading we are able to show
that the equilibrium trading range collapses to the Walrasian price.

7The presence of a positive exit rate (or something similar) is necessary if particpation
costs are zero. The reason is that every trader who enters must have a probability of either
trading or exiting that, per unit of time, is bounded away from zero. Otherwise traders
whose probability of trading is infinitesimal but positive would accumulate in the market and
jeopardize the existence of a steady state. The presence of the exogenous exit rate does this
directly. The presence of a small participation cost in Satterthwaite and Shneyerov (2007)
does this indirectly, for it causes any potential trader who has a low or zero probability of
trading to refuse entry because he can not in expectation recover those expected costs.
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S (c) = N and a potential buyer declines entry if B (v) = N .

2. Every active buyer is matched with one active seller. His match is equally
likely to be with any active seller and is independent of the matches other
buyers realize. Since there are continua of buyers and sellers the matching
probabilities are Poisson: the probability that a seller is matched with
k = 0, 1, 2, . . .buyers is8

ξk =
ζk

k! eζ
. (2)

Consequently a seller may end up being matched with zero buyers, one
buyer, two buyers, etc.9

3. Traders within a match bargain in accordance with the rules of the buyers’
bid double auction.10

(a) Simultaneously every buyer announces a take-it-or-leave-it offer to
the seller. A type v buyer bids B (v). At the time he submits his
bid, he does not know how many other buyers he is bidding against;
he only knows the endogenous steady-state probability distribution
of how many buyers with whom he is competing.11

(b) The seller reviews the bids she has received and accepts the highest
one provided it is at least as large as her reservation cost, S (c) . If
two or more buyers tie with the highest bid, then the seller uses a
fair lottery to choose between them.

(c) If trade occurs between a type c seller and a type v buyer at price
B(v) = p, then the seller leaves the market with utility p− c and the
buyer leaves the market with utility v− p. Each seller, thus, runs an
optimal auction; moreover their commitment to this auction is cred-
ible since the reservation value each sets stems from their dynamic
optimization.12

4. Every active trader who fails to trade either remains active the next period
with probability e−δµ or, for exogenous reasons, exits with probability
1− e−δµ. Traders who exit without trading leave with zero utility.

8 In a market with M sellers and ζM buyers, the probability that a seller is matched with
k buyers is ξMk = ζM

k
1
M

k
1− 1

M

ζM−k
. Poisson’s theorem (see, for example, Shiryaev,

1995) shows that limM→∞ ξMk = ξk.
9This one-to-several matching among sellers and buyers contrasts with the pairwise match-

ing that, with the exception of Dagan, Serrano, and Volij (2000), is to our knowledge universal
in this literature. Matching in this manner skirts the conceptual issues that arise in a model
with continua of buyers and sellers entering each period; see the discussion of this issue in
McClennan and Sonnenschein (1991, footnote 4).
10 See Satterthwaite and Williams (1989) for an analysis of the static buyers’ bid double bid

double auction.
11 In section 4.3 we discuss how allowing each buyer to observe how many rivals he faces

might change our results.
12We do not know if these auctions are the equilibrium mechanism that would result if we

tried to replicate McAfee’s analysis (1993) within our model.
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Traders’ time preference cause them to discount their expected utility at the
rate r ≥ 0 per unit time. This, together with the exit risk µ per unit time,
induces impatience. Section 3.1 shows that e−δβ is the overall rate per period
at which each trader discounts his utility where β = µ+ r.
A seller who has low cost tends to trade within a short number of periods

of her entry because most buyers with whom she might be matched have a
value higher than her cost and therefore tend to bid sufficiently high to obtain
agreement. A high cost seller, on the other hand, tends not to trade as quickly or,
perhaps, not at all. As a consequence, in the steady state among the population
of sellers who are active, high cost sellers are relatively common and low cost
sellers are relatively uncommon. Parallel logic implies that, in the steady state,
low value buyers are relatively common and high value buyers are relatively
uncommon.
To represent this endogenous distribution of trader types, let TS be the

measure of active sellers in the market after entry occurs and before matching,
TB be the measure of active buyers after entry occurs and before matching,
FS be the distribution of active seller types within the measure TS , and FB be
the distribution of active buyer types within the measure TB. The buyer-seller
ratio ζ is therefore TB/TS . The corresponding densities are fS and fB and,
establishing useful notation, the right-hand distributions are F̄S ≡ 1 − FS and
F̄B ≡ 1− FB. Define WS (c) and WB (v) to be the beginning-of-period, steady-
state, net payoffs to a seller of type c and the buyer of type v, respectively. Also
define

c ≡ S (0) , (3)

c̄ ≡ sup
c
{c |WS (c) > 0},

v ≡ inf
v
{v |WB (v) > 0} , and

v̄ ≡ B (1) .

No seller enters whose cost exceeds c̄ and no buyer enters whose value is less
than v because a trader only becomes active if his expected utility from partic-
ipating is positive. We show in the next section that active sellers’ equilibrium
reservation costs all fall in the interval [c, c̄), active buyers’ equilibrium bids all
fall in (v, v̄], and that [c, c̄] = [v, v̄] ≡ [p, p̄]. We call this interval the trading
range.
Our goal is to show that in all symmetric, steady state equilibria the trad-

ing range converges to the Walrasian price and the allocation converges to the
competitive allocation as the period length goes to zero. By a steady state equi-
librium we mean one in which every seller in every period plays a symmetric,
time invariant strategy S, every buyer plays a symmetric, time invariant strat-
egy B, and both these strategies are always optimal. Given the friction δ, a
market equilibrium Mδ consists of strategies {S,B}, traders’ masses {TS , TB},
and distributions {FS , FB} such that (i) {S,B}, {TS , TB}, and {FS , FB} gener-
ate {TS , TB} and {FS , FB} as their steady state and (ii) no type of buyer can
increase his expected utility (including the continuation payoff from matching in
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future periods if trade fails in the current period) by a unilateral deviation from
the strategy B, (iii) no type of seller can commit to reject any bid above her
full dynamic opportunity cost c+e−βδWS (c) and (iv) strategies {S,B}, masses
{TS , TB} , and distributions {FS , FB} are common knowledge among all active
and potential traders. We assume that, for each δ > 0, a market equilibrium
exists in which each potential trader’s ex ante probability of trade is positive.13

Throughout the paper we only consider these equilibria; we never consider the
trivial no trade equilibrium in which all potential sellers and buyers choose not
to enter (λ = N ) .
Note that beliefs are straightforward because there are continua of traders

and matching is anonymous and independent. Therefore off-the-equilibrium
path actions do not cause inference ambiguities. In addition, observe that for
simplicity of exposition we assume traders use symmetric, pure strategies. At a
cost in notation we could define trader-specific and mixed strategies and then
prove that the anonymous nature of matching and the strict monotonicity of
strategies implies they in fact must be symmetric and (essentially) pure. To
see this, first consider the implication of anonymous matching for buyers. Even
if different traders follow distinct strategies, every buyer would still draw his
opponents from the same population of active traders.14 Therefore, for a given
value v, every buyer would have the identical best response correspondence.
Second, as we show below, every selection from this correspondence is strictly
increasing. This means that the best response is pure except at a measure zero
set of values where jumps occur. Mixing can occur at these jump points, but
does not affect other traders’ strategies because the measure of the jump points
is zero and has no consequence for other traders’ maximization problems.
We may now state our main result.

Theorem 1 Fix a sequence of symmetric, steady-state market equilibria Mδ

indexed by δ in which δ1, δ2, . . . , δn, . . .→ 0 and each potential trader’s ex ante
probability of trade is positive. Let {Sδ, Bδ} be the strategies associated with the
equilibrium that δ indexes, let [cδ, c̄δ] = [vδ, v̄δ] = [p

δ
, p̄δ] be the trading range

those strategies imply, and let WSδ (c) and WBδ (v) be the resulting interim
expected utilities of the sellers and buyers respectively. Then both the bidding
and offering ranges converge to pW :

lim
δ→0

cδ = lim
δ→0

c̄δ = lim
δ→0

vδ = lim
δ→0

v̄δ = pW . (4)

In addition, each trader’s interim expected utility converges to the utility he
would realize if the market were perfectly competitive:

lim
δ→0

WSδ (c) = max [0, pW − c] (5)

and
lim
δ→0

WBδ (v) = max [0, v − pW ] . (6)

13 In Section 4.4 we describe the limited existence results that we have obtained.
14This is strictly true because we assume a continuum of traders.
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Section 5 contains the theorem’s proof.
This theorem is almost identical to theorem 1 in our participation cost paper

(Satterthwaite and Shneyerov, 2006); the only difference is that that theorem
does not assert that [cδ, c̄δ] = [vδ, v̄δ] = [pδ, p̄δ].The reason is that in the presence
of participation costs traders’ equilibrium strategies must recover their expected
costs. This requires, in effect, an equilibrium bid-ask spread that does not arise
in the exogenous exit rate model. To understand this specifically, consider
active types only and begin with this paper’s model. Here buyers and sellers’
equilibrium strategies have congruent, fully overlapping ranges: Sδ : [0, c̄δ) →
[cδ, c̄δ), Bδ : (vδ, 1] → (vδ, v̄δ], and [cδ, c̄δ] = [vδ, v̄δ]. This congruence is driven
by the fact that market participation is free. To demonstrate this, suppose that
in equilibrium the type vδ buyer bids such that vδ > Bδ (vδ) > Sδ (0) , i.e., vδ,
the lowest active buyer, bids more than the lowest reservation price that any
seller offers. But this can not be equilibrium behavior because a type v0 buyer for
whom v0 ∈ (Sδ (0), vδ) can successfully enter with some bid B (v0) ∈ (S (0) , v0) .
Doing so has no cost and, with some positive probability, results in a trade that
earns him v0−B (v0) profit. This contradicts vδ being the the type of the lowest
active buyer.
Obviously the argument just made breaks down in the participation cost

model where each trader incurs a cost each period he is in the market. With
participation costs buyers’ strategies retain the structure SPδ : [0, c̄δ)→ [cδ, c̄δ].
Buyers’ strategies, however, take on a modified structure: BP

δ : (vδ, 1]→ (p
δ
, p̄δ]

where [p
δ
, p̄δ] 6= [cδ, c̄δ], pδ ∈ (cδ, c̄δ], and p̄δ ∈ (c̄δ, 1].15 In words, the presence

of participation costs causes the range of buyers’ strategies to slide up relative
to the range of the sellers’ strategies, reducing their overlap. The extreme case
is the “full trade” equilibrium, which the participation cost paper (theorem
2) shows must exist if δ is sufficiently small. There the range of the buyers’
strategies slides up so far that that all overlap but one point is eliminated:
p
δ
= c̄δ and [cδ, c̄δ] ∩ [pδ, p̄δ] = p

δ
.16

That these differences in equilibrium structure have no effect on either mod-
els’ convergence to the competitive price is remarkable. Apparently the un-
derlying mechanisms forcing convergence–even in the presence of incomplete
information– are robust.

3 Basic properties of equilibria
In this section we derive several basic properties that all equilibria must satisfy.
These properties–formulas for the probability of trade, establishment of the
strict monotonicity of strategies, and necessary conditions for a strategy pair
(S,B) to be an equilibrium–enable us to compute examples of equilibria and
provide the foundations for the proof of our main result.

15This characterization is from lemma 6 in Satterthwaite and Shneyerov (2007).
16This difference in the structure of equilibrium strategies across the two models can be

seen by comparing the top panels of each paper’s figure 1.
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3.1 Discounted ultimate probability of trade

An essential construct for our analysis is the discounted ultimate probability of
trade. It allows a trader’s expected gains from participating in the market to
be written as simply as possible. Given any period, let ρS (λ) be the probability
that a seller who offers λ ∈ [0, 1]∪ {N} trades that period and let ρB (λ) be the
probability that a buyer who bids λ trades that period. Observe that ρS is non-
increasing and ρB is non-decreasing for λ ∈ [0, 1] because all trade is mediated by
the buyers’ bid double auction. Let ρ̄S (λ) = 1−ρS (λ) and ρ̄B (λ) = 1−ρB (λ) .
If a trader chooses λ = N , then he does not enter and ρS (N ) = ρB (N ) = 0. In
section 3.3 we derive explicit formulas for ρB and ρS .
Define recursively PB (λ) to be a buyer’s discounted ultimate probability of

trade if he bids λ:

PB (λ) = ρB (λ) + ρ̄B (λ) e
−µδe−rδPB (λ)

= ρB (λ) + ρ̄B (λ) e
−βδPB (λ)

where β = µ+ r. Therefore

PB (λ) =
ρB (λ)

1− e−βδ + e−βδρB (λ)
. (7)

Observe that the formula incorporates both the trader’s risk of having to exit
and his time discounting into the calculation. The parallel recursion for sellers
implies that

PS (λ) =
ρS (λ)

1− e−βδ + e−βδρS (λ)
. (8)

PB is non-decreasing and PS is non-increasing.

3.2 Strategies are strictly increasing

This subsection demonstrates the most basic property that our equilibria satisfy:
equilibrium strategies for active traders are strictly increasing. As a preliminary
step, we first show that the sets of buyers and sellers active in the market are
well behaved: buyers come from an interval at the top of the [0, 1] set of possible
types and sellers come from an interval at the bottom.

Claim 2 In any equilibrium v < 1, c > 0,

(v, 1] = {v|WB (v) > 0}, (9)

[0, c) = {c|WS (c) > 0}, (10)

S (c) = N for c ∈ [c̄, 1], and B (v) = N for v ∈ [0, v].

Proof. Since we have ruled out the uninteresting no trade equilibrium, every
potential trader has a positive ex ante probability of trade:

R 1
0
ρB [B (v)] gB(v)dv >

13



0 and
R 1
0
ρS [S (c)] gS(c)dc > 0. These inequalities hold only if v < 1 and c > 0,

establishing the first part of the claim.
A buyer who every period employs strategy B(v) ∈ [0, 1]∪{N} gets equilib-

rium payoff WB(v) = vPB [B (v)]−DB (B (v)) where DB (λ) is the discounted
expected equilibrium payment from using strategy λ ∈ [0, 1] ∪ {N}. Note that
DB (v) = 0 if B (v) = N . By definition

WB(v) = max
λ∈[0,1]∪{N}

vPB (λ)−DB (λ) ,

and, for all λ ∈ [0, 1]∪{N} , vPB (λ)−DB (λ) is differentiable in v. Application of
Milgrom and Segal’s envelope theorem for arbitrary choice sets (2002, theorem
2) enables us to write

WB(v) =WB (0) +

Z v

0

PB [B (x)] dx. (11)

Therefore WB(·) is continuous and non-decreasing on [0, 1]. Then, by the defi-
nition of v, WB (v) > 0 for v ∈ (v, 1] and WB (v) = 0 for v ∈ [0, v). WB (v) = 0
because WB(·) is continuous, which establishes (9). Finally, B (v) = N for
v ∈ [0, v) because a trader only enters if he has strictly positive utility. The
proof of (10) and S (c) = N for all c ∈ [c̄, 1] is exactly parallel. ¥

Claim 3 B is strictly increasing on (v, 1].

Proof. WB(v) = supλ≥0(v − λ)PB(λ) = (v − B (v))PB(B (v)) is the upper
envelope of a set of affine functions . It follows that, for v ∈ (v, 1], WBis a
continuous, increasing, and convex function that is differentiable almost every-
where.17 Convexity implies thatW 0

B is non-decreasing on [v, 1]. By the envelope
theorem W 0

B(·) = PB [B (·)] ; PB [B (·)] is therefore non-decreasing on [v, 1] at
all differentiable points. Milgrom and Segal’s (2002) theorem 1 implies that at
non-differentiable points v0 ∈ [v, 1]

lim
v→v0−

W 0
B (v) ≤ PB (B (v

0)) ≤ lim
v→v0+

W 0
B (v) .

Thus PB [B (·)] is everywhere non-decreasing on [v, 1].
Pick any v, v0 ∈ (v, 1] such that v < v0. Since PB [B (·)] is everywhere

non-decreasing, PB [B (v)] ≤ PB [B (v
0)] necessarily. We first show that B is

non-decreasing on (v, 1]. Suppose, to the contrary, that B(v) > B(v0). The
rules of the buyer’s bid double auction imply that PB (·) is non-decreasing;
therefore PB [B (v)] ≥ PB [B (v

0)]. Consequently PB [B (v)] = PB [B (v
0)] . But

this gives v0 incentive to lower his bid to B(v0), since by doing so he will buy with
the same positive probability but pay a lower price. This contradicts B being
an optimal strategy and establishes that B is non-decreasing. If B(v0) = B(v)
(= λ) because B is not strictly increasing, then any buyer with v00 ∈ (v, v0) will
raise his bid infinitesimally from λ to λ0 > λ to avoid the rationing that results
from a tie. This proves that B is strictly increasing.¥
17An increasing function is differentiable almost everywhere.
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Claim 4 S is continuous, strictly increasing on [0, c), and

S0(c) = 1− e−βδPS [S(c)] > 0

for almost all c ∈ [0, c).

Proof. Our assumption in section 2’s definition of a market equilibriumMδ

that sellers do not have commitment power to reject bids above their dynamic
opportunity cost mandates that

S(c) = c+ e−βδWS(c) (12)

for all c ∈ [0, c) where WS(c) is the equilibrium payoff to a seller with cost c. In
a stationary equilibrium WS(c) = D(S (c)) − cPS(S(c)) where PS [S (c)] is her
discounted ultimate probability of trading when her offer is S (c) and D(S (c)) is
the expected equilibrium payment to the seller with cost c. Milgrom and Segal’s
theorem 2 implies that WS is continuous and can be written, for c ∈ [0, c̄], as

WS (c) = WS (c̄) +

Z c̄

c

PS(S(x))dx (13)

=

Z c̄

c

PS(S(x))dx (14)

where the second line follows from from the definition of c̄ and the continuity
of WS . This immediately implies that WS is strictly decreasing (and there-
fore almost everywhere differentiable) because the definition of c̄ implies that
PS (S (c)) > 0 for all c ∈ [0, c̄). It, when combined with equation (12) , also
implies that Sis continuous. Therefore, for almost all c ∈ [0, c),

S0(c) = 1− e−βδPS [S(c)] > 0

becauseW 0
S (c) = −PS [S(c)]. This, together with the continuity of S, establishes

that S is strictly increasing for all c ∈ [0, c).¥

Claim 5 p = v = c = S(0) = B (v+) and p̄ = c = v̄ = B(1) = S (c̄−).

Proof. Given that S is strictly increasing, S (0) = c is the lowest offer any
seller ever makes. A buyer with valuation v < c does not enter the market
because he can only hope to trade by submitting a bid at or above c and such
a bid would be above his valuation. S is continuous by claim 4, so a buyer with
valuation v > c will enter the market with a bid B (v) ∈ (c, v) because he can
make profit with positive probability. Therefore limv→c+B (v) = v = c.
By definition c ≡ supc {c|WS (c) > 0}. Equation (12) and continuity of WS

therefore imply that S (c−) = c. A seller with cost c > v̄ = B (1) will not
enter the market, so c ≤ B (1). Suppose c = S (c−) < v̄ ≡ B (1) . Then a
seller with cost c0 ∈ (c,B (1)) can enter and, with a positive probability, earn
a profit with an offer S (c0) ∈ (c,B (1)). This, however, is a contradiction:
supc {c|WS (c) > 0} ≥ c0 > c ≡ supc {c|WS (c) > 0}. Therefore S (c−) =
c = v̄ = B (1).¥
These findings are summarized as follows.
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Proposition 6 Suppose that {B,S} is a stationary equilibrium. Then S and
B are strictly increasing over [0, c̄) and (v, 1]. Additionally S is continuous and,
for almost all c ∈ [0, c),

S0(c) = 1− e−βδPS [S(c)] > 0.

The strategies also satisfy the boundary conditions p = v = c = S(0) = B (v+)
and p̄ = c = v̄ = B(1) = S (c̄−). Finally, S (c) = N for c ∈ [c̄, 1] and B (v) = N
for v ∈ [0, v].

The strict monotonicity of B and S allows us to define their inverses, V and C,
on the domain [p, p̄]: V (λ) = inf {v : B(v) > λ} and C(λ) = inf {c : S(c) > λ}.
These functions are used frequently below.

3.3 Explicit formulas for the probabilities of trading

Focus on a seller of type c who in equilibrium has a positive probability of
trade. In a given period she is matched with zero buyers with probability ξ0
(recall definition 2 in section 2) and with one or more buyers with probability
ξ̄0 = 1−ξ0. Suppose she is matched and v∗ is the highest type buyer with whom
she is matched. Since by proposition 6 each buyer’s bid function B is increasing,
she accepts his bid if and only if B (v∗) ≥ λ where λ is her reservation price.
The distribution from which v∗ is drawn is F ∗B: for v ∈ [v, 1],

F ∗B(v) =
1

ξ̄0

∞X
i=1

ξi [FB (v)]
i (15)

=
1

ξ̄0

∞X
i=1

ζi

eζj!
[FB (v)]

i

=
eζFB(v) − 1
eζ − 1

where FB is the steady state distribution of buyer types and {ξ0, ξ1, ξ2, . . .} are
the probabilities (defined in equation 2) with which each seller is matched with
zero, one, two, or more buyers.18 Note that this distribution is conditional on
the seller being matched. Thus if a seller has reservation price λ, her probability
of trading in a given period is

ρS (λ) = ξ̄0 [1− F ∗B(V (λ))] . (16)

A similar expression obtains for ρB (λ), the probability that a buyer sub-
mitting bid λ successfully trades in any given period. In order to derive this

18This formula follows from the facts that:
∞

i=1

xi

i!
= ex − 1 and ξ̄0 =

∞

i=1

ξi =
eζ − 1
eζ

.
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expression, we need a formula for ωk, the probability that the buyer is matched
with k rival buyers. If TB is the mass of active buyers and TS is the mass of
active sellers, then ωkTB , the mass of buyers participating in matches with k
rival buyers, equals k + 1 times ξk+1TS , the mass of sellers matched with k + 1
buyers:

ωkTB = (k + 1) ξk+1TS .

Solving, substituting in the formula for ξk+1, and recalling that ζ = TB/TS
shows that ωk and ξk are identical:

ωk =
(k + 1)

ζ
ξk+1 =

(k + 1)

ζ

ζk+1

(k + 1)! eζ
= ξk. (17)

The implication of this is that the distribution of bids from other buyers that a
buyer must beat is exactly the same distribution of bids that each seller receives
when she is matched with at least one buyer.19

Turning back to ρB , a buyer who bids λ and is the highest bidder has prob-
ability FS(C (λ)) of having his bid accepted. This is just the probability that
the seller with whom the buyer is matched has a low enough reservation price
so as to accept his bid. If a total of j + 1 buyers are matched with the seller
with whom the buyer is matched, then he has j competitors and the probability
that all j competitors bid less than λ is [FB (V (λ))]

j . Therefore the probability
that the bid λ is successful in a particular period is

ρB (λ) = FS (C (λ))
X∞

j=0
ωj [FB (V (λ))]

j

= FS (C (λ))
X∞

j=0
ξj [FB (V (λ))]

j

= FS (C (λ))
X∞

j=0

ζj

eζ j!
[FB (V (λ))]

j

= FS (C (λ)) e
−ζFB(V (λ)).

where the fourth equality follows from Σ∞j=0x
j/j! = ex.

3.4 Necessary conditions for strategies and steady state
distributions

In this subsection the goal is to write down a set of necessary conditions that are
sufficiently complete so as to form a basis for calculating section 4.1’s example
and, also, to create a foundation for section 5’s proof of theorem 1.
The necessary conditions apply only to active trader types, i.e. for v ∈ (v, 1]

and c ∈ [0, c). We first derive fixed point conditions that traders’ strategies
must satisfy. Consider sellers first. Substituting (13),

WS (c) =

Z c̄

c

PS(S(x))dx (18)

19The congruence of these distributions is a consequence of the number of sellers being
Poisson. See Myerson’s discussion (1998) of games in which the number of participants is
uncertain.
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into (12) gives a fixed point condition sellers’ strategies must satisfy:

S (c) = c+ e−βδ
Z c̄

c

PS(S(x))dx. (19)

Turning to buyers, we have from (11):

WB(v) =

Z v

v

PB [B(x)] dx. (20)

But also,

WB(v) = max
λ∈[0,1]∪{N}

(v − λ)PB(λ) = (v −B(v))PB (B (v)) .

Substituting (20) into this and solving gives a fixed point condition buyers’
strategies must satisfy:

B(v) = v − 1

PB [B(v)]

Z v

v

PB [B(x)] dx. (21)

In our model, the distributions {FB , FS} are endogenously determined by
traders’ strategies. In any steady state, the numbers of entering and leaving
traders must be equal. This gives rise to three necessary conditions. First, in
the steady state, for each type v ∈ (v, 1], the density fB must be such that the
mass of buyers entering equals the mass of buyers leaving:

aδgB(v) = TBfB (v)
©
ρB [B (v)] + ρ̄B [B (v)]

¡
1− e−µδ

¢ª
(22)

where the left-hand side is the measure of type v buyers of who enter each period
and the right-hand side is the measure of type v buyers who exit each period.
Note that it takes into account that within each period successful traders exit
prior to traders who exit for exogenous reasons. It also takes into account that
TB is defined to be the measure of buyers who are active immediately after entry
has occurred within the period. Second, the analogous steady state condition
for the density fS is, for c ∈ [0, c̄),

δgS (c) = TSfS (c)
©
ρS [S (c)] + ρ̄S [S (c)]

¡
1− e−µδ

¢ª
. (23)

Third, trade always occurs between pairs consisting of one seller and one buyer.
Therefore, given a cohort of buyers and sellers who enter during a given unit of
time, the mass of those buyers who ultimately end up trading must equal the
mass of sellers who ultimately end up trading:

a

Z 1

v

P̃B (v) gB (v) dv =

Z c̄

0

P̃S (c) gS (c) dc. (24)

where P̃B (v) and P̃S (c) are, respectively, the ultimate trading probabilities for
a type v buyer and a type c seller. Notice the distinction between PB and P̃B.
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The former is the discounted ultimate probability of trade while the latter is
the undiscounted ultimate probability of trade. Examination of the derivation
of PB (equation 7) shows that the formulas for P̃B (v) and P̃S (c) are

P̃B (λ) =
ρB (λ)

1− e−µδ + e−µδρB (λ)
≥ PB (λ) (25)

and

P̃S (λ) =
ρS (λ)

1− e−µδ + e−µδρS (λ)
≥ PS (λ) . (26)

Together the fixed point conditions (19 and 21), the expected utility formulas
(18 and 20), the steady state conditions (22 and 23), and the overall mass
balance equation (24) form a useful set of necessary conditions for equilibria of
our model.

4 Discussion

4.1 A computed example

These necessary conditions (18-24) supplemented with boundary conditions en-
able us to compute an illustrative example of an equilibrium for our model and
to show how, as δ is reduced, the equilibrium converges towards the perfectly
competitive limit. The boundary conditions are

S (0) = c, S (c̄−) = c̄, WS (c̄−) = 0

B (v+) = v, B (1) = v̄, WB (v+) = 0

where c = v̄ = p̄ and v = c = p. Our computation specifies that traders’ private
values are drawn from the uniform distribution (gS (c) = gB (v) = 1) on the unit
interval, the mass of buyers entering each unit of time exceeds the mass of sellers
entering by 10% (a = 1.1), the exit rate is one per unit time (µ = 1.0), and the
discount rate is zero (r = 0.0). The Walrasian price for these parameter values
is pW = 0.524. We computed the equilibrium by fitting sixth degree Chebyshev
polynomials to the set of conditions using the method of collocation.20

Figure 1 graphs equilibrium strategies S,B and steady state densities fS , fB
for these parameter values.21 The left column of the figure graphs strategies and
densities for period length δ = 0.2; the right column does the same for period
length δ = 0.1. Visual inspection of these equilibria shows the flattening of
strategies that occurs as the period length shortens and each trader’s option to
wait another period for a better deal becomes more valuable. Thus, as δ is cut in
half, the trading range [p, p̄] narrows from [0.387, 0.570] down to [0.449, 0.550],
which is almost a halving of its width from 0.182 to 0.100. In both equilibria
the buyer-seller ratio is ζ = 1.570. Observe that for both period lengths the
trading range includes the Walrasian price. Inspection of the densities shows

20See Judd (1998).
21We do not know if this equilibrium is unique.
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Figure 1: This figure graphs two equilibria for the case in which gS and gB are
uniform, a = 1.1, µ = 1.0, and r = 0.0. The lower and upper curves in each top
panel graph the bidding strategy B (v) and the offer strategy S (v) respectively.
Each lower panel graphs the densities of types in the market: the increasing
curve is the sellers’ type density FS (c) and the decreasing curve is the buyers’
type density FB (v) . The two panels on the left side illustrate an equilibrium
with period length δ = 0.20. It has relative inefficiency I = 0.095 and masses
of active traders TS = 0.201 and TB = 0.316. The two panels on the right side
illustrate an equilibrium with period length δ = 0.10. It has relative inefficiency
I = 0.0513 and masses of active traders TS = 0.106 and TB = 0.166.
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that, as the period length shortens, sellers with costs just below c̄ and buyers
with values just above v tend to accumulate within the market.
Relative inefficiency is the expected gains that the traders would realize if

the market were perfectly competitive divided into the expected gains that the
traders fail to realize in the equilibrium of the double auction market. Compar-
ing these two computed equilibria, cutting δ in half cuts the relative inefficiency
I of the equilibrium by slightly less than half: I = 0.106 for δ = 0.2 and
I = 0.056 for δ = 0.1. Thus the decrease in relative inefficiency appears to be
roughly linear with respect to δ. The driver of this rate is the exit rate µ that
forces δµ proportion of each trader type to leave the market discouraged, irre-
spective of their potential gains from trade. If as δ is reduced traders’ strategies
were to remain invariant–an increasingly good approximation as δ becomes
small–then cutting δ in half reduces by half the waste that exit before trade
generates.22

4.2 Sources of inefficiency

Figure 1 highlights how this paper’s model with its friction of an exogenous
exit rate creates equilibrium inefficiency First, traders may have to wait before
trading. This happens in several ways: a seller may fail to be matched with
any buyers, a buyer may fail to outbid competing buyers, and a seller may set a
reservation price higher than the highest bid she receives. Whatever the cause, a
trader who fails to trade in the current period has 1−e−δµ probability of exiting
rather than carrying over to the next period. This wastes the gains from trade
that he would have realized if he had not exited. Second, in any equilibrium the
set of seller types who enter intersects with the set of buyer types who enter:

[0, c̄δ) ∩ (vδ, 1] 6= [pδ, p̄δ].

This means that in every equilibrium trades occur between types that would
not occur in a competitive equilibrium, e.g., a type v buyer and type c seller
may trade even though v > c > pW . Note that in some equilibria (including
both that are graphed in Figure 1) pW ∈ [pδ, p̄δ] so that every type who should
enter does enter.23 In such equilibria these two sources of inefficiency are the
only sources of inefficiency.
This may be compared with the sources of inefficiency in our participation

cost paper (Satterthwaite and Shneyerov, 2006). In that model’s “full trade
equilibria” every match results in a trade.24 Nevertheless there are again two
sources of inefficiency. As in this paper’s model inefficiencies in matching occur
when a seller fails to match with any buyer, when a buyer is outbid by other
buyers, and when a seller sets her reservation price higher than the best bid any
22As δ is reduced from 0.2 to 0.1 the relative inefficiency is not quite reduced by half. An

important reason for this is that reducing δ has no effect on the gains from trade that are
realized by traders who succeed in trading the very period they enter.
23We have not been able to rule out that equilibria exist in which pW /∈ [p

δ
, p̄δ].

24They prove the existence of full trade equilibria and computationally construct examples of
them. They, however, have been unable to rule out the existence of other classes of equilibria.
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buyer submits to her. All such traders carry over to the next period, incurring
wasteful participation costs δκ where κ is cost of participating in the market
per unit time. The cumulative participation costs this waiting generates is
analogous to the waste that exit without trade generates in this paper’s model.
Additionally, in the participation cost model’s full trade equilibria a gap

necessarily exists between c̄δ, the highest cost seller who enters, and vδ, the
lowest value seller who enters:

[0, c̄δ) ∩ (vδ, 1] = ∅.

The Walrasian price necessarily falls within this gap: pW ∈ (c̄δ, vδ). Therefore
potential sellers with types c ∈ (c̄δ, pW ) and potential buyers with types v ∈
(pW , vδ) should enter and trade, but do not. Their potential gains from trade
are lost.
The conclusion from this comparison is that while both the exogenous exit

rate model and the participation cost model generate equilibrium inefficiency
as a result of waiting, each has a distinct source of inefficiency that the other
does not share: too much entry in the case an exogenous exit rate and too little
entry in the case of participation costs.

4.3 Mechanisms of convergence

Law of one price. As mentioned in the introduction, option value forces the
trading range [p

δ
, p̄δ] to collapse to a single price as δ → 0. A basic intuition for

this is straightforward. Let

WB (v, ρB , δ) =
∞X
i=0

¡
e−βδρ̄B (λ

∗)
¢i
ρB (λ

∗) (v − λ∗) ; (27)

it is the expected present value of a type v buyer who, facing period length δ
and current period trading probabilities ρB, makes the bid λ∗ that is optimal.
Note that WB (v, ρB, δ) is decreasing in δ.
Consider an equilibrium when the period length is δ0 > 0. A type v active

buyer selects his current period bid λ0 = Bδ0 (v) that maximizes his expected
net present value:

Bδ0 (v) ∈ arg max
λ∈[0,v]

h
ρBδ0 (λ) (v − λ) + ρ̄Bδ0 (λ) e

−βδ00WB
¡
v, ρBδ0 , δ

0¢i .
The product e−βδ

0
WB

¡
v, ρBδ0 , δ

0¢ is his opportunity cost–his option value–of
successfully trading in the current period.
Now, suppose that the period length shortens to δ00 < δ0, every buyer real-

izes this is so, but every buyer continues to act as if the trading probabilities
remain unchanged at ρδ0 . This increases his opportunity cost of trading now,
e−βδ

00
WB

¡
v, ρBδ0 , δ

00¢ > e−βδ
0
WB

¡
v, ρBδ0 , δ

0¢ , and causes him to revise his bid
downward to λ00 < Bδ0 (v) . That is, every buyer type revises his bid downward
towards the bottom of the original trading range [p

δ
, p̄δ]. In particular, a type
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1 buyer bids less than Bδ0 (1) = v̄δ0 = p̄δ0 , which chops off the top of the trad-
ing range. A symmetric argument implies that as δ shrinks Sδ (0) = cδ = p

δ

increases. Together these two arguments suggest that as δ decreases to δ00 from
δ0 the trading range [p

δ
, p̄δ] gets shortened at both ends and forces the trading

range to converge to a single price.
This intuition is incomplete, for it neglects the effect that reducing δ has (i)

on the trading probabilities ρSδ and ρBδ and (ii) the endogenous, steady state
distributions FSδ and FBδ of active traders’ types. If, as δ shrinks, active buyers
as a whole increasingly make bids that are accepted only by sellers whose costs
relative to all active sellers are low, then low cost sellers rapidly exit from the
market while high cost sellers accumulate. This tendency is apparent in the
bottom row of Figure 1. The density of low cost sellers and high value buyers
decreases slightly as δ decreases. More noticeably, the density of high cost sellers
and low value buyers increases dramatically as δ decreases. These endogenous
changes decrease the incentive of buyers to bid aggressively low and sellers to
set their reservation values aggressively high. Conceivably, this skewing of FSδ
and FBδ could cancel the option value effect and stall convergence. However,
the proof of proposition 7 shows that this can not happen. Moreover with only
moderate customization this proof applies both to this paper’s model and to our
participation cost model (Satterthwaite and Shneyerov, 2006). The conclusion is
that in our matching and bargaining models the option value of waiting increases
as the per period friction decreases and drives convergence towards one price.
This intuition is useful in considering the possible effects of a plausible

modification of our model. We assume in our model that a trader chooses
his bid/offer to maximize unconditionally his expected gains over all possi-
ble match sizes. It would arguably be a more attractive assumption to fol-
low Dagan, Serrano, and Volij (2000) and allow buyers and sellers to tailor
their strategies to whatever match is realized, i.e., each trader would condition
his bid/reservation cost on the realization of the number of buyers compet-
ing within his match. If we adopted this change, then in a given equilibrium
each seller and each buyer’s strategy would be an infinite sequence of functions:©
S1δ (c) , S

2
δ (c) , . . . , S

k
δ (c) , . . .

ª
and

©
B0
δ (c) , B

1
δ (c) , . . . , B

c
δ (c) , . . .

ª
where k is

the number of buyers with whom the seller is matched with and c is the number
of other buyers with whom the buyer is bidding against.
Our belief is that doing this would, in the end, make no difference in our

result even while considerably increasing the complexity of our notation and
proof. The reason is that, as δ becomes small, the discount factor e−δβ =
e−δ(µ+r) approaches one, waiting becomes cheap and, exactly as above, traders
will only accept a small difference between the best possible price and the price
available in the current match. To be more specific, suppose that the trading
range [p

δ
, p̄δ] does not shrink to a point as δ approaches to zero, i.e., limδ→0(p̄δ−

p
δ
) = ε > 0 where now p̄δ = supc/∈{0,1,2,...}{B0

δ (1) , B
1
δ (1) , B

2
δ (1) , . . .}An active

buyer’s maximization problem is:

Bδ (v) = arg max
λ∈[0,1]

PBδ (λ) (v − λ).
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Formula (7) for the discounted ultimate probability of trade has the property
that if ρBδ (λ) > 0, no matter how small, limδ→0 PBδ (λ) = 1. This means that, if
δ is small, then an active type v buyer can wait, with only a very small chance of
exiting before trading, for the conjunction of two favorable, independent events:
a match in which (i) he is the only buyer bidding for the seller’s unit of supply
and (ii) the seller has a cost that is close to zero. His option value driven, optimal
bid is therefore, for sufficiently small δ and all possible match sizes c, to set Bc

δ (v)
very close to p

δ
(i.e., less than ε above p

δ
) because ρBδ

¡
Bc
δ (v)

¢
> 0 whenever

Bc
δ (v) > p

δ
. But then p̄δ = supc/∈{0,1,2,...}{B0

δ (1) , B
1
δ (1) , B

2
δ (1) , . . .} < p

δ
+ ε,

which contradicts limδ→0(p̄δ − p
δ
) = ε. Thus, it appears, in the model in which

traders condition on the number of other traders in the match, option value
causes the trading range to be progressively truncated from both ends as δ
approaches zero, just as it does in our model in which traders do not condition
on the match size.
Convergence to the Walrasian price. The necessity of supply to equal demand

in the steady state causes the trading range [p
δ
, p̄δ] to converge to pW . To

see this, suppose it converges to a price p∗ less than pW . This attracts more
buyers into the market, i.e., potential buyers with values in the interval (p, pW )
who would not enter in a competitive equilibrium find it worthwhile to enter.
This excess entry of buyers requires that there be a compensating increased
probability of exit prior to trading; otherwise the measure of buyers who are
active would increase and the market would not be in steady state.
Let δ be small so that the length of [p

δ
, p̄δ] is small. Consider a type v0 buyer

whose value falls approximately midway in the interval [p̄δ, 1] so that p̄δ <<
v0 << 1. Necessarily this buyer’s ultimate probability of trading, PBδ (Bδ (v)) ,
is less than one. But by increasing his bid from Bδ (v

0) = λ < p̄δ to λ0 = p̄δ
he can increase his probability of ultimately trading from PBδ (Bδ (v

0)) to one.
Given that δ is small, this increase in bid from λ to λ0 increases the price that he
pays only a tiny bit even as it guarantees that he will trade with certainty. The
reason is that λ, λ0 ∈ [p

δ
, p̄δ] and the interval [pδ, p̄δ] is narrow. Therefore, for

small enough δ, it pays the type v buyer to deviate upward from his equilibrium
bid, contradicting the hypothesis that in the sequence of equilibria the trading
range shrinks to p∗ < pW .
This intuition underlies the construction of claim 8’s proof that limδ→0 v̄δ ≥

pW . A tighter rendition of this intuition follows. Consider the following hypo-
thetical equilibrium that we have crafted to illustrate this mechanism. The
distributions GB and GS of potential entrants’ types are uniform on [0, 1].
The Walrasian price for the market is pW = 0.5, but suppose as δ shrinks
to zero the prices at which transaction take place converge to p∗ = 0.25, i.e.,
limδ→0 v̄δ = limδ→0 vδ = p∗. Further suppose that when the period length is
δ0 the range of transaction prices is [vδ0 , v̄δ0 ] = [0.23, 0.27]. Can this putative
equilibria with its narrow trading range actually be an equilibrium?
No! To show this we choose a type v0 = 0.35 buyer and show that this trading

range implies upper and lower bounds on the discounted ultimate probability
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of trade, PBδ0 (Bδ0 (v
0)) , that are mutually inconsistent. The upper bound is

PBδ (Bδ (v
0)) ≤ GS (v̄δ)

aḠB (v0)
(28)

where ḠB (v
0) ≡ 1−GB (v

0) .We establish this by first recalling (25) , PBδ (Bδ (v
0)) ≤

P̃BδBδ (v
0), i.e., the discounted probability of trade is no more than the undis-

counted probability of trade. To prove (28) it is therefore sufficient to show
P̃Bδ (Bδ (v

0)) ≤ GS (v̄δ) /aḠB (v
0) or, rewritten,

aP̃Bδ (Bδ (v
0)) ḠB (v

0) ≤ GS (v̄δ) . (29)

Observe that aḠB (v
0) is the measure of buyers that (i) enter each period

and have valuation at least v0 and (ii) P̃Bδ (Bδ (·)) is non-decreasing because
P̃Bδ is non-decreasing and Bδ is increasing. Therefore the measure of buyers
with valuations v > v0 who enter each period and ultimately trade is at most
aP̃Bδ (Bδ (v

0)) ḠB (v
0)), i.e., it is a lower bound on demand. Supply is the mea-

sure of sellers who enter each period and and ultimately trade. It is bounded
above by GS (v̄δ) , the measure of traders who enter each period and who may
or may not trade. Mass balance, equation (24) , states that demand must equal
supply in a steady state equilibrium. Its satisfaction requires that the lower
bound on demand must be less than the upper bound on supply, which is ex-
actly inequality (29). Upper bound (28) is therefore established.
The lower bound on PBδ (Bδ (v

0)) follows from a revealed preference argu-
ment. In equilibrium the type v0 buyer must prefer bidding Bδ (v

0) to bidding
Bδ (1):

PBδ (Bδ (v
0)) (v0 −Bδ (v

0)) ≥ PBδ (B (1)) (v
0 −Bδ (1)) .

Observe that PBδ (B (1)) = 1 because every period every buyer is matched with
a seller and a type 1 buyer is never outbid. Therefore a lower bound on PBδ (v

0)
is

PBδ (Bδ (v
0)) ≥ (v0 −Bδ (1))

(v0 −Bδ (v0))
≥ v0 − v̄δ

v0 − vδ
,

where the second inequality is a consequence of Bδ (1) = v̄δ and Bδ (v
0) ∈

[vδ, v̄δ] .
We now apply these bounds to the type v0 = 0.35 buyer. Recall that GB

and GS are uniformly distributed on [0, 1]. Computation for the putative δ0

equilibrium gives an upper bound,

PBδ0 (Bδ0(0.35)) ≤
GS (v̄δ0)

ḠB (v0)
=
0.27

0.65
= 0.42,

that is less than the lower bound,

PBδ0 (Bδ0(0.35)) ≥
.35− .27

.35− .23
= 0.67.

Therefore the hypothesized sequence of equilibria in which the trading range
converges to p∗ < pW can not exist.
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4.4 Existence of equilibria

While we have been unable to prove that in general an equilibrium exists for
our model, we have been able to prove existence whenever the type distribution
GS is concave.25This class of distributions does include the uniform distribution
that we used for construction of our example above, but except for constructing
examples concavity is not an economically plausible assumption to impose on
type distributions. This proof, which parallels Athey (2001), is both long and
tedious. Given its length and lack of generality we decided not to include it
here. We do point out that our participation cost paper, Satterthwaite and
Shneyerov (2007), does include a satisfactory existence result. Moreover the
recent working papers of Shneyerov and Wong (2007a) and of Atakan (2007a,
2007b) also include existence results.

5 Proof of the theorem

5.1 The law of one price

In this subsection we prove that the trading range converges to a single price
as the period length approaches zero: limδ→0(p̄δ − p

δ
) = 0. As the discussion

above indicates, this is driven by option value–when the period length is short
a trader can wait until he or she draws a favorable price–complicated by the
fact that distributions FS and FB of active traders costs/values is endogenous.
This proof is based on the proof of Lemma 10 in Satterthwaite and Shneyerov
(2007). The differences, which occur in step 1, stem from the market friction
here being the exogenous exit rate rather than being a participation cost.

Proposition 7 Consider any sequence of equilibria for which δn → 0. Then
limδ→0(p̄δ − p

δ
) = limδ→0(v̄δ − vδ) = limδ→0(c̄δ − cδ) = 0.

Proof. The proof is by contradiction: pick a small ε and suppose p̄δ−pδ >
ε > 0 along a subsequence for which δ → 0. Define

b0δ = p̄δ −
1

3
ε, (30)

b00δ = p̄δ −
2

3
ε.

and note that b00δ > p
δ
+ ε

3 . Also define two probabilities. First

φδ = FSδ (Cδ (b
0
δ))

25Adam Szeidl collaborated with us on this proof.
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is the equilibrium probability that a randomly chosen active seller would accept
a bid that is equal to b0δ. Second, let

ψδ =
∞X
k=0

ξkδ [FBδ (Vδ (b
0
δ))]

k

=
∞X
k=0

ωkδ [FBδ (Vδ (b
0
δ))]

k
.

The first series is the equilibrium probability that a seller receives either no
bid or the highest bid she receives is less or equal to b0δ (see equations 15 and
16). The second series is the probability that a buyer who bids b0δ outbids all
other buyers who are matched with the same seller. The equality of these two
probabilities follows from the equality ξkδ = ωkδ that equation (17) established.
Given these definitions the proof consists of three steps.
Step 1. The fraction of sellers for whom Sδ (c) ≤ b0δ does not vanish as

δ → 0, i.e., φ ≡ limδ→0φδ > 0.

Pick a single period t. Let m+
δ be the mass of sellers who enter the market

at the beginning of period t and for whom b00δ ≤ Sδ (c) ≤ b0. Partition this mass
of sellers into three masses:

• m−δ is the mass of sellers within m+
δ who exit by trading during period t.

• m=
δ is the mass of sellers withinm

+
δ who for exogenous reasons exit without

trading during period t.

• m0
δ is the mass of sellers within m+

δ who do not exit during period t.

Finally, let mδ be the steady state mass of active sellers for whom b00δ ≤ Sδ (c) ≤
b0δ.
Suppose step 1’s conclusion is not true. Then φδ → 0 along a subsequence.

Fix this subsequence. The hypothesis that φδ → 0 implies that the mass of sell-
ers entering each period who offer no more than b0δ approaches zero.

26 Therefore
mδ → 0 as δ → 0. We show now that mδ → 0 entails cδ → b00δ . This establishes
a contradiction because proposition 6 states that cδ = p

δ
and by construction

b00δ > p
δ
+ ε

3 .

In the mass m+
δ pick a seller c

00
δ for whom

Sδ (c
00
δ ) = b00δ .

Note that her reservation price is as low as any other seller in m+
δ . Such a

seller c00δ always exists because Sδ is continuous (see proposition 6) and g is a
lower bound on the density of entering sellers. Her probability trading within
period t is ρSδ (b

00
δ ) ; it is as high as the trading probability of any other seller

26 If it were possible for the steady state mass TS of sellers to be infinite, then φδ → 0 would
not imply mδ → 0. But TS must be finite because the mass of potential sellers per unit time
is 1 and the exogenous exit rate per unit time µ, is positive.
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in m+
δ because ρSδ is non-increasing. Therefore ρSδ (b

00
δ ) is at least as great as

m−Nδ/m
+
δ , which for any seller in m

+
δ is the ex ante probability of trading within

period t. Thus

ρSδ (b
00
δ ) ≥

m−δ
m+
δ

. (31)

Now make the trivial observation PSδ (b00δ ), the discounted ultimate trading prob-
ability of a type c00δ seller who trades either in period t or after, is greater than
ρSδ (b

00
δ ). Therefore

PSδ (b
00
δ ) ≥ ρSδ (b

00
δ ) ≥

m−δ
m+
δ

. (32)

If counterfactually in period t no sellers in the mass m+
δ traded, then in

period t the mass that would exit for exogenous reasons would be
¡
1− e−µδ

¢
m+
δ

because
¡
1− e−µδ

¢
is the probability that an active trader who has not traded

in a period will exit for exogenous reasons. But some some sellers within mass
m+
δ do successfully trade; therefore m

=
δ ≤

¡
1− e−µδ

¢
m+
δ . By definition m+

δ =

m−Nδ +m=
Nδ +m0

Nδ, which implies that

m+
δ ≤ m−Nδ +

¡
1− e−µδ

¢
m+
δ +m0

Nδ

≤ m−Nδ +
¡
1− e−µδ

¢
m+
δ +mδ

where the last inequality follows from the fact that the surviving mass m0
δ from

period 1 cannot exceed the steady state mass mδ of sellers who make offers in
the interval [b00δ , b

0
δ]. Solving gives

m−δ ≥ e−µδm+
δ −mδ.

Substitute into (32) to get:

PSδ (b
00
δ ) ≥

m−Nδ

m+
δ

≥
µ
e−µδ − mδ

m+
δ

¶
. (33)

Remember that m+
δ is the mass of sellers who enter the market in period 1

and for whom b00δ ≤ Sδ (c) ≤ b0. The slope of Sδ is at most one (see the formula
in proposition 6), the mass of potential entering sellers each period is 1, and the
density gS has lower bound g. Consequently

m+
δ ≥

ε

3
g

because m+
δ is minimized when the slope of Sδ is maximal, the density gS is

minimal, and b0δ − b00δ = ε/3. Substituting this into (33) gives the lower bound
we need:

PSδ (b
00
δ ) ≥ e−µδ − mδ

ε
3g

. (34)
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Recall that this step’s argument is based on the hypothesis that φδ → 0 as
δ → 0. Further recall that φδ → 0 implies that mδ → 0 as δ → 0. Therefore

lim
δ→0

PSδ (b
00
δ ) ≥ lim

δ→0

∙
e−βδ − mδ

ε
3g

¸
= 1,

i.e., the type c00δ seller’s discounted probability of trade approaches 1 from below.
Proposition 6 states that, for almost all c ∈ [0, c̄),

S0δ (c) = 1− e−βδPSδ [Sδ (c)] .

Since PSδ (Sδ (c)) ≥ PSδ (b
00
δ ) for c ≤ c00δ and Sδ is increasing on [0, c̄), it follows

that, for all seller types c ∈ [0, c00δ ], PSδ [Sδ (c)]→ 1 and

lim
δ→0

S0δ (c) = 0.

Consequently, because Sδ is continuous,

cδ = Sδ (0)→ b00δ .

This, however, is a contradiction, for cδ = p
δ
by proposition 6 and b00δ > p

δ
+ε/3

by construction. Therefore it cannot be that φδ → 0.
Step 2. If the ratio of buyers to sellers ζδ is bounded away from 0, then

the probability ψδ that the highest bid in a given meeting is less than b0δ is also
bounded away from 0. Proof of this step stands alone and does not depend on
step 1’s result.
Formally, if limδ→0ζδ > 0, then ψ ≡ limδ→0 ψδ > 0. Suppose not. Then

ψδ → 0 and ζδ → ζ > 0 along a subsequence. Fix this subsequence and recall
that by construction

b00δ > p
δ
+

ε

3
. (35)

First, we show that the seller with cost c00δ such that S (c
00
δ ) = b00δ prefers to

enter. Since ζδ → ζ and ψδ → 0, for all δ sufficiently small, the probability
that she meets a buyer for whom B (v) ≥ b0δ = b00δ + ε/3 is at least 12

¡
1− e−ζ

¢
.

This is because, with ψδ → 0, (i) almost every bid she receives is greater than
b0δ and (ii) her probability of getting at least one bid is approaching 1 − e−ζ ,
i.e., limδ→0 ρSδ (b

0
δ) = 1 − e−ζ . Therefore, using formula (8) , her discounted

probability of trading with a buyer for whom Bδ (v) ≥ b0δ approaches 1:

lim
δ→0

PSδ (b
0
δ) = lim

δ→0

ρSδ (b
0
δ)

1− e−βδ + e−βδρSδ (b
0
δ)
= 1.

Consequently, the type c00δ seller’s profit as δ → 0 is at least ε/3 and she chooses
to enter.
Second, since she chooses to enter, it must be that c00δ ≤ c̄δ = p̄δ. Therefore

the slope of S for c ∈ [0, c00δ ) satisfies

S0 (c) = 1− e−βδPSδ (c)→ 0
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since PSδ (Sδ (c)) ≥ PSδ (Sδ (c
00
δ )) and PSδ (Sδ (c

00
δ )) → 1. Therefore cδ → b00δ , a

contradiction of inequality (35) and proposition 6’s conclusion that cδ = p
δ
.

Step 3. For small enough δ, a buyer for whom v = 1 prefers to deviate to
bidding b0δ instead of p̄δ. There are two cases to consider.
Case 1. limδ→0ζδ > 0. We show, using both steps 1 and 2 of this proof, that

bidding p̄δ cannot be equilibrium behavior for a type 1 buyer. Recall that φδ is
the probability that a seller will accept a bid less than b0δ and that, according
to step 1, φ = limδ→0 φδ > 0. Additionally, recall that ψδ is the probability
that the maximal rival bid a buyer faces in a given period is no greater than
b0δ and that, according to step 2, limδ→0 ψδ = ψ > 0. For small enough δ > 0,
this second probability is bounded from below by (1/2)ψ. It follows that, for
small enough δ, the buyer who bids b0δ (i) wins over all his rival buyers with
probability greater than (1/2)ψ, and (ii) has his bid accepted by the seller with
probability greater than (1/2)φ. Thus, for small enough δ, ρSδ (b

0
δ) > ψφ/4

and, again using formula (8) , limδ→0 PSδ (b
0
δ) = 1. Consequently deviating to b

0
δ

gives the type 1 buyer a profit of at least 1−b0δ, which is greater than 1− p̄δ, the
profit he would make with his equilibrium bid B (1) = p̄δ. Therefore deviation
to b0δ is profitable for him.
Case 2. limδ→0ζδ = 0. Fix a subsequence such that ζδ → 0. The proof

of this case relies only on the result in step 1 of this proof. The probability
of meeting no rival buyers in a given period is e−ζδ and, since ζδ → 0, this
probability is at least 1/2 for sufficiently small δ. Therefore in any given period,
for a type 1 buyer and for all small δ, (i) the probability of meeting no rivals is
at least 1/2 and (ii) the probability of meeting a seller who would accept the bid
b0δ is at least (1/2)φ > 0. It follows that as δ → 0, his discounted probability
of trading, PSδ (b0δ) , approaches 1. Therefore deviating to b

0
δ gives him a profit

of at least 1− b0δ > 1− p̄δ, which proves that a deviation to b0δ is profitable for
him. This completes step 3’s proof.
Step 3 completes the proof that limδ→0(p̄δ−pδ) = 0 because it contradicts the

hypothesis that limδ→0(p̄δ − p
δ
) = ε > 0. That limδ→0(p̄δ − p

δ
) = limδ→0(v̄δ −

vδ) = limδ→0(c̄δ − cδ) = 0 then follows directly from proposition 6.¥

5.2 Convergence of the trading range to the Walrasian
price

The Walrasian price pW is the solution to the equation GS (pW ) = aḠB(pW ).
Recall from the beginning of section 2 that pW ∈ (0, 1) . In this subsection we
prove three claims: limδ→0 v̄δ ≥ pW , limδ→0 cδ ≤ pW , and limδ→0 PSδ(Sδ (c)) =
1 c ∈ [0, c̄). Together with propositions 6 and 7’s results that [p

δ
, p̄δ] = [cδ, c̄δ] =

[vδ, v̄δ] and limδ→0(p̄δ − p
δ
) = 0 these results immediately imply that the the

trading range collapses to the Walrasian price.

Claim 8 limδ→0v̄δ ≥ pW .

Proof. Let v∗ = limδ→0v̄δ and assume, contrary to the statement in the
claim, that v∗ < pW . For the remainder of this proof, fix a subsequence v̄δ → v∗.
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Let ṽδ = v̄δ +
√
v̄δ − vδ. Proposition 7’s conclusion that limδ→0 (v̄δ − vδ) = 0

implies that ṽδ ∈ (v̄δ, 1] for all small enough δ. Revealed preference implies that

πB (Bδ (ṽδ) , ṽδ) ≥ πB (Bδ (1) , ṽδ)

[ṽδ −Bδ (ṽδ)] PBδ [Bδ (ṽδ)] ≥ [ṽδ −Bδ (1)] PBδ [Bδ (1)] .

Therefore

PBδ [Bδ (ṽδ)] ≥
ṽδ −Bδ (1)

ṽδ −Bδ (ṽδ)
PBδ [Bδ (1)] (36)

≥ ṽδ −Bδ (1)

ṽδ − vδ
PBδ [Bδ (1)] ,

where the second inequality follows from Bδbeing strictly increasing and, as a
result, Bδ (ṽδ) ≥ Bδ (vδ) = vδ. Note that

ṽδ −Bδ (1)

ṽδ − vδ
=

ṽδ − v̄δ
ṽδ − vδ

(37)

=

√
v̄δ − vδ√

v̄δ − vδ + v̄δ − vδ
,

where the first equality follows from Bδ (1) = v̄δ and the second follows from
the definition ṽδ = v̄δ +

√
v̄δ − vδ. Combining (36) and (37) gives

PBδ [Bδ (ṽδ)] ≥
√
v̄δ − vδ√

v̄δ − vδ + v̄δ − vδ
PBδ [Bδ (1)] . (38)

Mass balance, equation (24) above, states thatZ 1

vδ

agB(x)P̃Bδ [Bδ (x)] dx =

Z v̄δ

0

gS(x)P̃Sδ [Sδ (x)] dx. (39)

Given that P̃Bδ [Bδ (·)] is non-decreasing and ṽδ > v,Z 1

vδ

agB(x)P̃Bδ [Bδ (x)] dx ≥ P̃Bδ [Bδ (ṽδ)]

Z 1

ṽδ

agB(x)dx

= P̃Bδ [Bδ (ṽδ)] aGB(ṽδ).

Because P̃Sδ [Sδ (c)] ≤ 1 for all c,Z v̄δ

0

gS(x)P̃Sδ [Sδ (x)] dx ≤ GS (v̄δ) .

Therefore it follows from (39) that

P̃Bδ [Bδ (ṽδ)] aGB(ṽδ) ≤ GS (v̄δ)
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and, because PBδ [λ] ≤ P̃Bδ [λ] for all λ,

PBδ [Bδ (ṽδ)] aGB(ṽδ) ≤ GS (v̄δ) .

Then, by (38),

a

√
v̄δ − vδ√

v̄δ − vδ + v̄δ − vδ
PBδ [Bδ (1)]GB(ṽδ) ≤ GS (v̄δ) . (40)

A type v = 1 buyer always trades immediately because B (1) = v̄ = c̄ = S (c̄) ;
therefore PBδ [Bδ (1)] = 1. Consequently

a

√
v̄δ − vδ√

v̄δ − vδ + v̄δ − vδ
GB(ṽδ) ≤ GS (v̄δ) .

Taking limits as δ → 0 and invoking continuity of GS and GB, we obtain

a lim
δ→0

⎛⎝ 1

1 +
v̄δ−vδ√
v̄δ−vδ

⎞⎠GB

µ
lim
δ→0

ṽδ

¶
≤ GS

µ
lim
δ→0

v̄δ

¶
. (41)

By definition ṽ = v̄δ+
√
v̄δ − vδ; proposition 7’s result that limδ→0(v̄δ− vδ) = 0

therefore implies limδ→0 ṽδ = v̄δ. Additionally, by hypothesis, limδ→0 v̄δ = v∗.
Therefore (41) reduces to

aGB(v∗) ≤ GS (v∗) .

This, however, is a contradiction because the maintained assumption that v∗ <
pW implies that aGB(v∗) > aGB(pW ) = GS (pW ) > GS (v∗).¥

Claim 9 limδ→0 PSδ(Sδ (c)) = 1 for all c < pW .

Proof. Recall that Sδ (0) = cδ, and Sδ (c̄δ) = c̄δ. The mean slope of Sδ over
its domain [0, c̄δ] is

1

c̄δ

Z c̄δ

0

S0δ (x) dx =
c̄δ − cδ
c̄δ

(42)

Proposition 6 implies that

PSδ(Sδ (c)) = eβδ (1− S0δ (c)) a.e. on [0, c̄δ] ,

so the average probability of ultimate trade is

1

c̄δ

Z c̄δ

0

PSδ(Sδ (c))dx = eβδ
µ
1− 1

c̄δ

Z c̄δ

0

S0δ (x) dx

¶
= eβδ

µ
1− c̄δ − cδ

c̄δ

¶
. (43)
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Taking limits shows that the average discounted probability of ultimate trade
converges to 1:

lim
δ→0

1

c̄δ

Z c̄δ

0

PSδ(Sδ (c))dx = lim
δ→0

eβδ
µ
1− c̄δ − cδ

c̄δ

¶
= 1

because limδ→0 (c̄δ − cδ) = 0 (proposition 7), c̄δ = v̄δ (claim 5) and limδ→0v̄δ ≥
pW (claim 8). PSδ (Sδ (c)) ≤ 1 for all c ∈ [0, 1]. therefore PSδ (Sδ (c)) = 1
for all c ∈ limδ→1[0, c̄δ) = [0, pw) because PSδ(Sδ (c)) is non-increasing and the
limiting average probability can not equal 1 if PSδ(Sδ (c)) < 1 for any interval
in [0, pw].¥

Claim 10 limδ→0cδ ≤ pW .

Proof. Verification of this claim follows the same logic as that of claim 8. It
does, however, require claim 9’s result that limδ→0 PSδ[Sδ(0)] = 1 . Define c∗ =
limδ→0cδ and suppose, contrary to the statement in the claim, that c∗ > pW . For
the remainder of this proof, fix a subsequence cδ → c∗. Let ecδ = cδ −

√
cδ − cδ,

noting that proposition 7 implies ecδ ∈ [0, cδ) for all small enough δ. A seller
who offers Sδ (v) and succeeds in trading does not realize Sδ (v) as her revenue.
She realizes something more because the bid she accepts is at least as great as
Sδ (v) . Therefore, for each δ sufficiently small, a function φδ : [cδ, c̄δ]→ [cδ, c̄δ]
exists that maps, conditional on consummating a trade, the seller’s offer into
her expected revenue from the sale. Thus φδ [Sδ (c)] is a type c seller’s expected
revenue given that she offers Sδ (c) . Take note that φδ [Sδ (c)] ∈ [Sδ (c) , c̄δ]
because the expected revenue can be neither less than the seller’s offer Sδ (c)
nor more than the type 1 buyer’s bid.
Revealed preference implies that

πS (Sδ (c̃δ) , c̃δ) ≥ πS (Sδ (0) , c̃δ)

[φδ [Sδ (c̃δ)]− c̃δ] PSδ [Sδ (c̃δ)] ≥ [φδ [Sδ(0)]− c̃δ] PSδ [Sδ(0)] . (44)

Solving,

PSδ [Sδ (c̃δ)] ≥
φδ [Sδ(0)]− c̃δ
φδ [Sδ (c̃δ)]− c̃δ

PSδ [Sδ(0)] (45)

≥ cδ − c̃δ
cδ − c̃δ

PSδ [Sδ(0)]

=

√
cδ − cδ

cδ − cδ +
√
cδ − cδ

PSδ [Sδ(0)]

where the second line follows from the fact that φδ [Sδ(c)] ∈ [cδ, c̄δ] for all active
sellers and the third line follows by substituting in the definition for ecδ.
As in the proof of claim 8, the mass balance equation (39) must hold:Z 1

cδ

agB(x)P̃Bδ [Bδ (x)] dx =

Z cδ

0

gS(x)P̃Sδ [Sδ (x)] dx. (46)
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Since PSδ [Sδ (·)] is decreasing and PBδ [Bδ (·)] ≤ 1,Z cδ

0

gS(x)P̃Sδ [Sδ (x)] dx ≥ P̃Sδ [Sδ (c̃δ)]

Z c̃δ

0

gS(x)dx

= P̃Sδ [Sδ (c̃δ)]GS(c̃δ)

and Z 1

cδ

agB(x)P̃Bδ [Bδ (x)] dx ≤ aḠB(cδ).

Therefore (46) and the inequality P̃Sδ [Sδ (c̃δ)] ≥ PSδ [Sδ (c̃δ)] imply that

aGB(cδ) ≥ P̃Sδ [Sδ (c̃δ)]GS(c̃δ)

≥ PSδ [Sδ (c̃δ)]GS(c̃δ).

Substituting this into inequality (45) gives

aGB(cδ) ≥
√
cδ − cδ

cδ − cδ +
√
cδ − cδ

PSδ [Sδ(0)]GS(c̃δ). (47)

Taking limits as δ → 0 and invoking continuity of GS and GB, we obtain

aḠB

µ
lim
δ→0

cδ

¶
≥ lim

δ→0

⎛⎝ 1

1 +
cδ−cδ√
cδ−cδ

⎞⎠ lim
δ→0

(PSδ [Sδ(0)])GS

µ
lim
δ→0

c̃δ

¶
. (48)

Remember that limδ→0 (cδ − cδ) = 0 by proposition 7, limδ→0 c̃δ = c∗ by con-
struction, limδ→0 cδ = c∗ by hypothesis, and limδ→0 (PSδ [Sδ(0)]) = 1 by claim
9. Inequality (48) reduces to

aGB(c∗) ≥ GS (c∗) .

This, however, is a contradiction because the maintained assumption c∗ > pW
implies aGB(c∗) < aGB(pW ) = GS (pW ) < GS (c∗).¥

Proposition 11 Consider any sequence of equilibria for which δn → 0. Then
limδ→0 p̄δ = limδ→0 pδ = limδ→0 v̄δ = limδ→0 vδ = limδ→0 c̄δ = limδ→0 cδ = pW .

Proof. Proposition 7, claim 8, and claim 10 immediately imply this.¥

5.3 Convergence of the equilibrium allocation to the per-
fectly competitive allocation

All that remains to prove our main result, theorem 1, is to show that convergence
of the trading range, [p

δ
, p̄δ], to the Walrasian price pW is sufficient to guarantee

the efficient, competitive allocation. Doing so requires proof of one preliminary
claim followed by a straightforward calculation of each traders utility in the
limit as δ → δ.
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Claim 12 limδ→0 PBδ (Bδ (v)) = 1 for all v > pW .

Proof. Pick a buyer type v for which v > pW and an arbitrarily small
ε > 0 such that v > pW + 3ε. For small enough δ, v > v̄δ, |v̄δ − pW | < ε, and,
by proposition 7, v̄δ − vδ < ε. Therefore v − Bδ (v) < v − pW + 2ε because
Bδ (v) ∈ [vδ, v̄δ] . If instead type v deviates to the bid λ0δ = pW + 3

2ε,then
v > λ0δ > v̄δ and he is certain to trade immediately: ρBδ

¡
λ0δ
¢
= PBδ

¡
λ0δ
¢
= 1.

By revealed preference

PBδ [Bδ (v)] (v −Bδ (v)) ≥ PBδ
¡
λ0δ
¢
(v − pW −

3

2
ε)

PBδ [Bδ (v)] (v − pW + 2ε) ≥ 1(v − pW −
3

2
ε)

PBδ [Bδ (v)] ≥
(v − pW − 3

2ε)

(v − pW + 2ε)
.

Obviously PBδ [Bδ (v)] ≤ 1. Therefore

1 ≥ lim
δ,ε→0

PBδ [Bδ (v)] ≥ lim
ε→0

(v − pW − 3
2ε)

(v − pW + 2ε)
= 1,

which proves the claim.¥

Proposition 13 Consider any sequence of equilibria for which δn → 0. Then
each trader’s interim expected utility converges for sellers to

lim
δ→0

WSδ (c) = max [0, pW − c]

and for buyers to
lim
δ→0

WBδ (v) = max [0, v − pW ] .

Proof.In the perfectly competitive outcome any trader for whom trading at
pW is profitable can do so instantly; therefore in a competitive marketWB (v) =
max [v − pW , 0] and WS (c) = max [pW − c, 0] . To show that that this is in fact
the limiting equilibrium outcome for buyers, employ formula (11) for WB and
let δ → 0 :

lim
δ→0

WBδ(v) = lim
δ→0

½
WBδ (0) +

Z v

0

PBδ [Bδ (x)] dx

¾
= lim

δ→0

(
max

"
0,WBδ (0) +

Z v

vδ

PBδ [Bδ (x)] dx

#)

= max

(
0,

Z v

limδ→0 vδ

lim
δ→0

{PBδ [Bδ (x)]} dx
)

= max

½
0,

Z v

pW

1 dx

¾
= max {0, v − pW } .
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The second line follows from proposition 6: WBδ (0) = 0 and, for all v <
vδ, PBδ [Bδ (v)] = 0. The fourth line follows from proposition 11 and claim 12:
limδ→0 vδ = pW and limδ→0 PBδ [Bδ (v)] = 1. An exactly parallel argument
shows that limδ→0WSδ(c) = max {0, pW − c} .¥
Proof of theorem. Propositions 11 and 13 together imply theorem 1.¥

6 Conclusions
In this paper we consider a simple, dynamic matching and bargaining market
in which both sellers and buyers have incomplete information and risk being
forced to exit at any moment due to an exogenous exit rate. We show that
this market converges to the Walrasian price and competitive allocation as the
length of the matching period goes to zero .This is significant for two reasons.
First, given the ubiquity of private information, extension of the full information
dynamic matching and bargaining models in this direction is critical because it
shows that a decentralized market in which matching frictions are small can
elicit private values and costs sufficiently well so as to allocate almost perfectly
the market supply to the traders who most highly value that supply. Complete
information is not necessary for efficiency in these models. Second, taking a
broader perspective, this paper shows that in the presence of private information
a fully decentralized market such as the one we model can deliver the same
economic efficiency as a centralized market such as the k-double auction that
Satterthwaite and Williams (1989, 2002) and Rustichini, Satterthwaite, and
Williams (1994) studied.
In relation to our participation cost paper (Satterthwaite and Shneyerov,

2006) this paper indicates, first, that option value considerations drive conver-
gence to a single price irrespective of whether the friction is an exogenous exit
rate or a participation cost. The difference in the two papers is that this paper
identifies a supply-demand mechanism that forces the price to which the mar-
ket converges to be the Walrasian price. Our proof shows how, for example, if
the market were to converge to a price below the Walrasian price, then buyers
would be rationed and therefore have an incentive to deviate to a price closer
to the Walrasian price. This, it appears, is a general argument that applies
whenever the trading range converges to a single price. Our participation cost
paper does not identify this mechanism because a simpler argument applies
there. Together the two papers show why, even in the presence of incomplete
information, matching and bargaining markets are robust with respect to the
source of the market friction.
Nevertheless our model is a specific, not general, model of trade and there-

fore immediately raises a raft of further questions. Four stand out in our minds.
First, existence of equilibria in which each potential trader has an ex ante pos-
itive probability of trade needs to be established in more generality than we
have been able to do so. Second, it would be quite interesting to allow for fi-
nite numbers of traders as opposed to continua. Such a model, which would be
substantially more realistic, would force us to look at transient distributions of
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types around the steady state distributions because each entry cohort would be
a finite sample of types that would not replicate the underlying continuous type
distributions GS and GB. Third, we would like to know if our results generalize
to both correlated costs/values and to interdependent values with a common
component and affiliated private signals as has been done in the case of static
double auctions by Cripps and Swinkels (2006), Fudenberg, Mobius, and Szeidl.
(2007), and Reny and Perry (2006).Showing this would be particularly signifi-
cant if the stochastic process generating traders’ cost and values resulted in a
time varying Walrasian price. Convergence to that price as the period length
approached zero would establish that fully decentralized dynamic matching and
bargaining markets can effectively follow–and reveal–an unknown and chang-
ing competitive price. Fourth, an important complication of this question, which
Wolinsky (1990) has explored in an imperfect information model, would be to
allow some traders to enter with more accurate information than other traders
about the underlying common component of traders’ costs and valuations.
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