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About 43 million US domestic flights operated on routes that were serviced consistently by the same airlines

from 1997 to 2017. The scheduled duration of these flights, as posted on computerized reservation systems,

increased on average by 8.1% over the 21-year span. Where did the time go? Building on Deshpande and

Arıkan (2012), we develop a multi-period newsvendor model of how airlines decide their posted duration and

show that the model can be reduced to a series of single-period newsvendor problems. The model explains

more than 99% of the variation among the 43,062,886 posted flight durations in our data. We use structural

estimation and counterfactual analysis to establish that more than 45% of the increase in posted duration

stems from airlines strategically padding their schedule to achieve higher on-time performance. We also

provide evidence that decreased airline competition on a route is associated with increased strategic padding.

Key words : Time, empirical newsvendor, structural estimation, airline operations.

1. Introduction

Forty three million US domestic flights operated on routes that were serviced consistently by

the same airlines from 1997 to 2017. These flights constitute about one-third of all US domestic

flights over the same time span. The scheduled duration of these flights, as posted on computerized

reservation systems, increased by 8.1% from 1997 to 2017. This 8.1% increase reflects a cumulative

increase of 3.449 million hours in posted flight duration, or 341 million passenger hours assuming

an average flight occupancy of 99 passengers.1 Where did the time go? In other words, what drives

the increasingly longer posted flight duration in the U.S. domestic airline industry?

This paper studies the drivers of this increase in posted flight duration. There are three takeaways

from the analysis. First, more than 50% of the increase in posted duration stems from airlines

1 The Bureau of Transportation Statistics (BTS) reports that there were 965 million passengers on
the 9.7 million US domestic flights in 2017 implying an average occupancy of 99 passengers per-
flight. (https://www.bts.gov/newsroom/2017-traffic-data-us-airlines-and-foreign-airlines-us-flights accessed on Au-
gust 2018.)
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increasing their schedule padding rather than from increased ground- or air-time. Second, more

than 95% of the increase in padding is due to airlines strategically padding their schedule to achieve

higher on-time performance. Put differently, the increase in posted duration stems to a large extent

from changes in airlines’ strategic decision making and not from physical constraints. Third, the

amount of strategic padding is negatively associated with the intensity of competition on a route

as measured by the number of airlines servicing that route.

Airlines typically schedule their flights and determine the posted flight duration several months

ahead of the actual flight date. When deciding their posted flight durations, airlines may use the

average historical flight duration on the same route as a baseline and add additional time on top of

this baseline to improve their on-time performance, a practice called schedule padding.2 Schedule

padding may in turn be affected by both how much variance there is in the historical flight duration

distribution, which we call variability padding, and how conservative the airline is in its targeted

on-time performance, which we refer to as strategic padding. If the variance of historical flight

duration increases, the airline needs to add more time on top of the baseline to ensure the same

on-time performance. If the airline becomes more conservative, then it needs to add more time on

top of the baseline to achieve higher on-time probability, even if the distribution of historical flight

duration does not change.

In order to understand the contribution of historical flight duration, variability padding and

strategic padding to the increase of posted flight duration, we consider a multi-period model in

which airlines optimize posted flight duration to maximize their long-run average profit. The main

trade-off in the model is between the overage and underage costs of posted flight duration. On

one hand, if an airline posts a longer flight duration for a particular route, the airline may incur

higher overage costs due to consumers’ opportunity costs and the airline’s duration-dependent

cost (e.g., crew wages). On the other hand, if an airline posts a shorter flight duration, it may

experience consumer backlash due to arrival delays which may affect the airline’s future demand.

We demonstrate that despite the multi-period nature of the model, its solution follows a classic

single-period newsvendor logic: airlines post the flight duration corresponding to the critical fractile

of the distribution of historical flight duration to balance underage and overage costs.

We use flight-level data from the Bureau of Transportation Statistics (BTS) to estimate the

model parameters. The data includes about 43 million flights operated on routes that were serviced

consistently by the same airlines from 1997 to 2017. These flights constitute about one-third of

all US domestic flights in this time period. For each flight, we observe several characteristics of

2 Some practitioners use schedule padding to refer to padding on top of the minimum (instead of the average) flight
duration on a route. We refer to schedule padding as padding on top of the average flight duration on a route since
it is more consistent with the newsvendor model.
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its time-line including its posted departure and arrival times as well as its actual departure and

arrival times.

The model performs well in describing airlines’ posted flight duration. The in-sample R-square

of the model is about 99.3% even though we use only two continuous parameters per-route, with

each parameter taking about 1000 values, to explain about two million posted durations in any

given year.

We use structural estimation and counterfactual analysis to decompose the 8.1% increase in

posted flight duration from 1997 to 2017 into its four possible drivers according to the model:

an increase in historical air-time, an increase in historical ground-time, an increase in variability

padding, and an increase in strategic padding. We establish that the two main drivers of the increase

in posted duration are the increase in strategic padding and the increase in ground time with

each of them contributing roughly 45% to the increase in posted duration. Air-time and variability

padding neither significantly increased, nor affected the increase of posted flight duration. Thus,

a main force behind the increased posted flight duration is a change in airlines’ strategic decision

making: airlines aim to improve their on-time performance by increasing their posted duration

rather than streamlining their operations.

A possible driver of changes in strategic padding is competition on a route. The number of airlines

servicing a given route may influence airlines’ strategic padding decision. If consumers care more

about posted duration (i.e., how long the flight is) than about the likelihood that the flight arrives

on-time (i.e., on-time performance), an increase in the number of airlines servicing a route may

lead to a decrease in strategic padding. In contrast, if consumers care more about the likelihood of

on-time arrival, then an increase in the number of airlines servicing a route may lead to an increase

in strategic padding. We utilize an event-study framework to analyze how the entry or exit of an

airline on a route affects other airlines’ posted flight duration on the same route. We estimate that

the entry of an airline is associated with a decrease in posted duration of other airlines on the same

route, whereas the exit of an airline is associated with an increase in the posted flight duration of

other airlines on the same route. These findings hint at the possibility that merger activity from

1997 to 2017 is a relevant driver of the increased strategic padding.

2. Literature Review

Our paper follows a literature that structurally estimates parameters in classic operations models

using data. Olivares et al. (2008) started this literature by structurally estimating the overage

and underage costs in a newsvendor model from operating room scheduling data. Subsequently,

Deshpande and Arıkan (2012) structurally estimate a newsvendor model using airlines schedule

data from 2005 to 2007 and conclude that the posted flight duration of the majority of airlines
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is longer than average historical duration. Arıkan et al. (2013) extend this analysis to consider

multi-leg flights and identify the bottleneck airports in the US air-travel infrastructure. Akşin et al.

(2013) and Yu et al. (2016) extend the structural estimation methods to queuing models where

they model customers’ decisions to join or leave a queue as a single-agent dynamic model, following

Rust (1987). Bray et al. (2017) develop a dynamic discrete choice model to estimate the level of

ration gaming and bullwhip effect using transaction-level data from a supermarket supply chain.

Our paper is mostly related to Olivares et al. (2008), Deshpande and Arıkan (2012) and Arıkan

et al. (2013) since we also structurally estimate a newsvendor model. We contribute to this litera-

ture in four ways. First, we extend the single-period newsvendor model in Olivares et al. (2008) and

Deshpande and Arıkan (2012) to a multi-period newsvendor model that links an airline’s dynamic

scheduling decisions with consumer demand. We show that these yearly scheduling decisions, de-

spite their dynamic nature, still have closed-form newsvendor solutions. Second, we analyze how

the structural parameters of airlines’ scheduling decisions evolve over 21 years. Third, we decom-

pose the increase in airlines’ padding, which is responsible for the majority of the increase in posted

duration, into an increase in variability padding and an increase in strategic padding. We use coun-

terfactual analysis to show that more than 96% of the increased schedule padding over 21 years

is due to increased strategic padding. Finally, we provide suggestive evidence on the relevance of

decreased airline competition on a route to the increase in strategic padding.

Since we study the inter-temporal changes of airlines’ posted flight duration, our work also relates

to the large literature in economics and operations management focusing on airline scheduling

and delays (Shumsky 1995, Hebert and Dietz 1997, Mueller and Chatterji 2002, Mayer and Sinai

2003a,b, Deshpande and Arıkan 2012, Deshpande et al. 2018). Shumsky (1995) is one of the early

papers that proposes a forecasting algorithm to generate accurate forecasts of gate delays. Mayer

and Sinai (2003b) demonstrate that a significant amount of travel time can be explained by network

benefits due to hubbing since airlines try to cluster their flights in short time spans to provide

passengers as many potential connections as possible with minimum waiting time. Based on airline

time traffic data from 1988 to 2000, Mayer and Sinai (2003a) show that most airlines choose a

posted flight duration that is very close to the minimum allowed under federal regulations to

minimize wage costs. Based on the same data source but spanning 2005 to 2007, Deshpande and

Arıkan (2012), however, demonstrate that the posted duration of more than 66% of all US domestic

flights is longer than their average historical flight duration.

We contribute to this literature by providing a dynamic model of how an airline decides its

posted flight duration and a corresponding structural estimation procedure. Moreover, our empir-

ical analysis spans 1997 to 2017 to focus on the inter-temporal changes of airlines’ posted flight

duration decisions. We demonstrate that airlines post increasingly longer flight duration while the
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actual air-time in 2017 is virtually unchanged relative to 1997. This result reconciles and extends

the findings from Mayer and Sinai (2003a) and Deshpande and Arıkan (2012): before 2000, most

flight durations were not padded relative to historical durations; in 2007, about two thirds (66%)

of durations were padded; and in 2017, most (i.e., 88%) durations were padded.

Last, we contribute to a growing literature in empirical operations management focusing on the

airline industry (Ramdas and Williams 2006, Deshpande and Arıkan 2012, Ramdas et al. 2013,

Nicolae et al. 2016, Cui et al. 2018). Ramdas and Williams (2006) is the first paper that empirically

studies the trade-off between aircrafts’ capacity utilization and their on-time performance. Nicolae

et al. (2016) uses publicly available data to demonstrate that the implementation of checked bag

fees from 2007 to 2009 significantly increases the on-time departure performance of airlines and has

a positive spillover on airlines serving the same route. Cui et al. (2018) uses proprietary data to

study the impact of introducing additional cabin classes on airlines’ price distribution and revenue.

3. Data

This section first provides background on airlines’ schedule development process. It then describes

our data source and how we group flights in the analysis. It concludes with providing preliminary

evidence about the evolution of posted flight duration from 1997 to 2017.

3.1. Background

Airlines’ schedule development process consists of four stages: (1) service planning, (2) schedule

generation, (3) resource allocation, and (4) execution scheduling. The service planning phase in-

volves forming a service plan that specifies the frequency of flights offered in each market and the

desired time window (e.g., 5pm–6pm) and aircraft type (e.g., wide or narrow body) for each flight.

In the schedule generation stage, this service plan is transformed to an actual passenger schedule

taking into account constraints such as the total number of available aircraft and flight crews.

The resulting passenger schedule includes the exact departure and arrival times of each flight. The

resource allocation stage involves various resource allocation decisions such as assigning aircraft

with specific tail numbers to appropriate aircraft rotations taking into account constraints such as

maintenance and other operational requirements. Finally, the execution scheduling stage involves

implementing the developed schedule by taking exceptions into account.

In the United States, airlines are required to report their passenger schedule, including scheduled

departure and arrival times, to the Bureau of Transportation Statistics (BTS) and the Federal

Aviation Administration (FAA) several months prior to the departure date. After a flight lands,

airlines report several additional statistics to the BTS and the FAA which we describe next.
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Figure 1 The BTS data contains the scheduled and actual time-line of each flight.

Airline Flight Time, Quotation Time and Gate-
to-gate Time

Actual Arrival 
Time (ArrTime)

Scheduled Departure 
Time (CRSDepTime)

Scheduled Arrival 
Time (CRSArrTime)

Actual Departure 
Time (DepTime)
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Time (WheelsOff)

Wheels-on
Time (WheelsOn)

Posted Duration (CRSElapsedTime)

Actual Duration (ActualElapsedTime)

Actual Air Time (AirTime)

Departure Delay 
(DepDelay)

Arrival Delay
(ArrDelay)

3.2. Data Source

We obtain flight data from the Airline On-Time Performance data set, which is downloadable

from the BTS website (henceforth, the BTS data). The BTS data includes more than 129 million

domestic flights between 1995 and 2017, with 385 origin airports, 388 destination airports, 9,334

routes (origin-destination pairs), and 26 airlines.

For every flight i, we use the following variables from the BTS data in the analysis (see Figure 1

and Table 1 for a summary of these and other variables):

• CRSDepTimei and CRSArrTimei are the Computerized Reservation System (CRS)’s sched-

uled departure (push-off from the departure gate) and arrival (push-in to the arrival gate) times

of flight i. Airlines report these times to the BTS several months prior to flight i’s departure date.

• DepTimei and ArrTimei are the realized departure and arrival times of flight i, where departure

and arrival are defined as in the previous bullet point.

• WheelsOffi and WheelsOni correspond to when flight i’s wheels leave the ground during takeoff

and when flight i’s wheels touch the ground during landing, respectively.

• CRSElapsedTimei is the posted duration of flight i:

CRSElapsedT imei =CRSArrT imei−CRSDepT imei,

which is the posted gate-to-gate duration that passengers observe on computerized reservation

systems.

• ActualElapsedTimei is the actual gate-to-gate duration of flight i:

ActualElapsedT imei =ArrT imei−DepT imei.

• AirTimei is the time between takeoff and landing:

AirT imei =WheelsOni−WheelsOffi.
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Table 1 Variables contained in the dataset

Flight Characteristics Flight Timeline

Variable Name Variable Description Variable Name Variable Description

FlightDate Flight date CRSDepTime Scheduled departure time

DayofMonth Day of month ArrTime
Actual arrival gate-push-in
time

DayOfWeek Day of week DepTime Actual gate-push-off time

AirlineID
An identification number to
identify a unique airline

ArrTime
Actual arrival gate-push-in
time

OriginAirportID
Origin airport identification
number

WheelsOff
Actual departure wheels-off
time

DestAirportID
Destination airport
identification number

WheelsOn Actual arrival wheels-on time

Distance Distance between airports CRSElapsedTime Scheduled gate-to-gate time

ActualElapsedTime Actual gate-to-gate time

AirTime
Difference between actual
wheels-on and wheels-off time

From these variables, we compute two additional variables relevant to our analysis—

DepGroundTimei and ArrGroundTimei—which are, respectively, the ground time of flight i from

pushing-off the gate until taking-off during departure and from landing until pushing-in to the gate

during arrival:

DepGroundT imei =WheelsOffi−DepT imei

ArrGroundT imei =ArrT imei−WheelsOni.

3.3. Persistent ODAs

When studying the inter-temporal evolution of posted flight durations, we first assign the flights

in the data to cohorts, called persistent ODAs. We then analyze the evolution of posted durations

within each persistent ODA, and aggregate the results across the ODAs.

An ODA stands for Origin-Destination-Airline, and includes all flights with the same origin and

destination airports operated by the same airline. Fixing the origin and destination airports is

important because distance and airport identities determine to a large extent the air- and ground-

time of any flight. Fixing the airline is important because the airline decides how to map air- and

ground-time to posted duration.

A persistent ODA is an ODA that has at least one flight per-year from 1995 to 2017. Focusing

on persistent ODAs enables us to track the evolution of posted duration from 1997 to 2017. The

data from 1995 and 1996 is used to compute the historical distributions of actual flight duration

that airlines may consider in determining their posted duration in 1997.

When two airlines merge, we have to decide which ODAs will be considered persistent. For

example, United Airlines (UA) and Continental Airlines (CO) started to report jointly under

UA in January 2012. Before the merger, there were two ODAs corresponding to flights from Los
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Figure 2 Annual number of US domestic flights (total and from persistent ODAs) and number of US operating

airlines in the data from 1995 to 2017
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Notes. This figure presents the change in the number of airlines and flights from 1997 to 2017 for all ODAs and

persistent ODAs.

Angeles (LAX) to San Francisco (SFO), denoted by LAX-SFO-UA and LAX-SFO-CO. After the

merger, the data has only one ODA denoted by LAX-SFO-UA. In principle, either LAX-SFO-CO,

LAX-SFO-UA, or both could be considered as persistent ODAs in this case because it is unclear

which scheduling system is used post-merger. The analysis treats the post-merger ODA (LAX-SFO-

UA in the example) as persistent and the other one (LAX-SFO-CO) as not. Our results remain

qualitatively similar if we consider both ODAs as persistent.

3.4. Initial evidence

There are 1,038 persistent ODAs in the data, and they come from five airlines: American Airlines,

Alaska Airlines, Delta Airlines, Southwest Airlines and United Airlines. Persistent ODAs account

for 43,062,886 million flights, or about one-third of the flights in the data.

Figure 2 illustrates that there is a minor inter-temporal decrease in number of flights in persistent

ODAs, while the total number of flights fluctuates across years. The figure also illustrates that the

fluctuation in the total number of flights co-moves with the number of reporting airlines in the

data. For example, there was a change in the BTS reporting rules in the early 2000s that led to

an increase in the number of reporting airlines in the data, which in turn led to an increase in

the total number of flights around that time. In contrast, merger activity leads to a reduction in
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Table 2 Summary Statistics for the 1,038 Persistent ODAs (All times reported in minutes)

Statistic Mean St. Dev. Min Max

Panel A: Year 1997

Number of Flights 2,136 1,638 40 13,522
Average Air Time 120.629 72.481 11.298 447.979
Average Posted Duration 142.459 77.141 18.689 496.417
Average Actual Duration 140.852 75.868 20.317 474.837
Average Departure Delay 10.007 3.800 0.640 33.900
Average Arrival Delay 11.653 3.909 2.745 33.500
Average Departure Ground Time 14.466 4.779 5.820 36.019
Average Arrival Ground Time 5.765 2.523 1.957 14.525
Average Distance (miles) 902.623 627.550 31 3,784

Panel B: Year 2017

Number of Flights 1,710 1,182 31 6,729
Average Air Time 121.916 74.295 10.740 476.904
Average Posted Duration 150.588 79.061 22.416 515.138
Average Actual Duration 145.240 77.584 23.237 507.812
Average Departure Delay 11.263 4.286 2.540 37.784
Average Arrival Delay 11.238 4.384 2.364 38.081
Average Departure Ground Time 15.894 4.224 7.282 34.280
Average Arrival Ground Time 7.439 3.166 2.803 22.586
Average Distance (miles) 902.606 627.592 31.000 3,784.000

Figure 3 Posted flight duration has increased more than actual flight duration from 1997 to 2017

99.4%
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Notes. This figure presents the average posted flight duration and average actual flight duration from 1997 and 2017

across all flights belonging to persistent ODAs, as a percentage of that ODA’s average posted flight duration in 1997.

the number of reporting airlines and often to a reduction in the number of flights for the merged

airline.
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Table 2 compares several statistics of the 1,038 persistent ODAs between 1997 and 2017. An

average persistent ODA has 2,136 flights per year in 1997 relative to 1,710 in 2017. On average,

actual flight duration has increased by less than five minutes from 141 minutes in 1997 to 145

minutes in 2017, whereas posted flight duration has increased by more than 8 minutes from 142

minutes to 151 minutes. To give a concrete example of the changes in duration, consider the ODA

ABQ-ARL-DL, i.e., the Delta route from Albuquerque to Atlanta. In 1997, this ODA had 942

flights, average posted flight duration was 167 minutes, and average actual flight duration was

170 minutes. In 2017, the number of flights in this ODA went down to 865, actual flight duration

increased by 4 minutes to 174 minutes, and the posted duration increased by 16 minutes to 183

minutes.

Figure 3 provides a more detailed description of the evolution of the average posted duration

and the average actual duration from 1997 to 2017 across persistent ODAs, as a fraction of the

relevant ODA’s posted duration in 1997. For each year and each type of duration, the duration

of each flight is first normalized by the ODA’s average posted duration in 1997. The figure then

reports the average of these normalized flight durations. For example, suppose there was only one

ODA with average posted duration in 1997 of 120 minutes, and it had two flights in 2008 with

actual durations 125 and 127 minutes. Then, the normalized flight durations are 125
120

= 104.2% and

127
120

= 105.8%, and the figure would report the average (104.2 + 105.8)/2 = 105%.

Two patterns emerge from Figure 3. First, posted flight duration has increased by 8.1% from 1997

to 2017. Second, this increase cannot be explained only by the increase in actual flight duration

given that the increase in actual flight duration is about half of the increase in posted duration.

To appreciate the magnitude of the 8.1% increase in posted duration, Figure 4 plots the increase

in posted duration, measured in hours, of all flights in a given year from 1998 to 2017. Summing

over all years, the cumulative increase in hours of posted duration is 3.449 million hours. Because

the BTS data does not provide the actual number of passengers on each flight, we cannot translate

this number directly to total passenger hours. The BTS, however, reports that in 2017, there were

965 million passengers on 9.7 million US domestic flights representing an average occupancy of 99

passengers per domestic flight. Thus, as a rough approximation, the 3.449 million hours translate

to 99 × 3.449 ≈ 341 million passenger hours. Recall that this analysis considers only persistent

ODAs, which represent one-third of all domestic flights, so that the 341 million hours estimate is

probably conservative.

4. Model and Validation

To identify the drivers of the increase in posted flight duration, we consider a dynamic newsven-

dor model, and estimate its structural parameters. The model and the estimation build on the

contributions of Olivares et al. (2008) and Deshpande and Arıkan (2012).
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Figure 4 The 8.1% increase in posted flight duration represents a cumulative increase of 3.449 million hours of

posted flight duration from 1997 to 2017
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4.1. Model

There are N periods. In the beginning of period 1, an airline decides on the posted durations

T1, . . . , TN of one given flight for the next N periods taking into account the effect of the posted

duration on consumer demand for the flight and the airline’s operations costs.

Consumer demand. There is a continuum of consumers and their per-period valuations for the

flight are distributed uniformly on the [0,1] interval. The utility of a consumer with valuation θ

from taking the flight in period n> 1 is:

un(θ,Tn, Tn−1, tn−1, pn) = θ− cnTn− ln(tn−1−Tn−1)
+− pn, (1)

where cn is the consumer’s opportunity cost at period n, tn−1 is the actual flight duration in prior

period n−1, ln reflects the aversion of consumers to delays in period n, and pn is the flight’s price.

Thus, the posted duration influences consumer utility through two channels. First, consumers

experience a disutility cn from any additional unit (i.e. minute) of posted duration at period n.

This is because consumers plan their schedule around the posted duration and a longer duration

implies less time for other activities. Second, consumers experience a disutility ln from any unit of
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delay relative to the posted duration in period n− 1. This disutility aims to capture the idea that

consumers take the past performance of the airline into account in their decision making.3

In the first period n= 1, customers do not have information on prior airline performance so that

their utility becomes u1 = θ− c1T1− p1.

Consumers purchase a flight ticket if their utility is larger than their outside option, which is

assumed to be 0. Thus, the demand for the flight in period n is:

Dn(Tn, Tn−1, tn−1, pn) =

∫
1{un(θ,Tn, Tn−1, tn−1, pn)> 0}dθ= 1− cnTn− ln(tn−1−Tn−1)

+− pn.

Operations costs. In addition to consumer demand, the posted flight duration Tn also affects

airlines’ operations cost Cn(Tn) in period n. We model this cost as follows:

Cn(Tn) = conTn + lon(tn−Tn)+,

where con is the operations cost of another minute of posted duration in period n, which includes

for example pay to crew, and lon is the per-minute operations cost of flight delay, which includes

for example rescheduling costs.

The Airline’s Optimization Problem. Based on the demand and operations cost, the airline

chooses a posted flight duration vector ~T = (T1, T2, ..., TN) and a price vector ~p= (p1, p2, ..., pN) to

optimize its expected N -periods average profit:

π(~T , ~p) =E~t[
1

N

N∑
n=1

Dn(Tn, Tn−1, tn−1, pn)pn−Cn(Tn)]

where ~t= (t1, t2, ..., tN) is the vector of actual flight durations.4

We assume that the airline does not jointly optimize posted durations and prices. Rather, it

optimizes durations with respect to some distribution of prices with expected price p, and then, at

a later time, optimizes prices. This seems to be the case in practice. Airlines schedule their flights

and report the schedule to the BTS and the FAA several months prior to the flight date, while

they change their prices dynamically until the day of the flight based on various factors such as

seat availability.

Thus, the airline wishes to optimize:

max
~T
π(~T , p). (2)

We denote a solution to this optimization problem by ~T ∗ = (T ∗
1 , . . . , T

∗
N).

3 There are, of course, other ways to measure the past performance of the airline. For example, consumers may use
several past periods to evaluate performance.

4 The profit specification assumes that the marginal cost of serving a consumer is 0.
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Optimal Posted Duration. Even though the optimization problem in (2) is an N -period dynamic

programming problem, it can be decomposed into N single-period newsvendor problems by “shift-

ing” the consumers’ past experience expression, ln(tn−1 − Tn−1)
+, from period n to period n− 1.

This is the content of the following lemma.

Lemma 1. [Decomposition] For any period n < N , the optimal posted duration in this period,

T ∗
n , solves the following newsvendor problem:

min
Tn

Etn [(cn +
con
p

)Tn + (ln+1 +
lon
p

)(tn−Tn)+].

We can now use standard newsvendor logic to find the optimal posted duration T ∗
n in every

period n as a function of the period-dependent cost parameters and probability distribution:

Proposition 1. [Optimal Posted Duration] The optimal posted flight duration T ∗
n in period

n<N solves:

Pr(tn <T
∗
n) = min{0,

ln+1 + lon
p
− cn− con

p

ln+1 + lon
p

}. (3)

The left-hand-side of equation (3) specifies the targeted on-time probability, which we will denote

by f∗
n and refer to as the targeted on-time performance because it corresponds to the fraction of

flights that are on time. Note that this targeted on-time performance has a simple closed-form

expression in terms of the cost parameters and the expected price. In addition, when the actual

flight duration tn is normally distributed with mean µn and variance σ2
n the optimal posted duration

also has a closed-form solution:

T ∗
n = µn + z∗nσn where z∗n = Φ−1(f∗

n) (4)

where Φ(·) denotes the CDF of the standard normal distribution.

Proposition 1 demonstrates that it is optimal for an airline to pad its schedule when it perceives

the distribution of actual flight duration as normal and the targeted on-time performance is greater

than 50%. That is, the optimal posted duration in this case augments the mean flight duration µn

by an “optimal padding” term z∗nσn.

The padding term itself can be decomposed into (1) variability padding due to the unpredictabil-

ity of actual flight duration, which is measured by the standard deviation σn of the actual flight

duration, and (2) strategic padding due to the airline’s targeted on-time performance f∗
n. Targeted

on-time performance is a strategic objective of the airline, hence the name strategic padding. The

targeted on-time performance is optimally connected to the cost parameters of consumers and the

airline. In what follows, we will say that an airline is more “conservative” when it increases its

targeted on-time performance.
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4.2. Estimation

Assuming airlines perceive the flight duration as normally distributed, we can use Equation (4) to

recover the targeted on-time performance by: (1) estimating the mean and standard deviation of

the flight duration in an ODA from historical data, and then (2) using the estimated mean and

standard deviation, and the posted duration to recover the targeted on-time performance.5

Specifically, fixing a persistent ODA j and year t, let µ̄jt denote the average historical flight

duration of this ODA in years t− 1 and t− 2:

µ̄jt =
1

Njt−2 +Njt−1

(

Njt−1∑
i=1

ActualElapsedTimeijt−1 +

Njt−2∑
i=1

ActualElapsedTimeijt−2),

where Njt denotes the number of flights in ODA j at year t, and ActualElapsedTimeijt is the actual

flight duration of flight i in ODA j at year t.

Similarly, let σ̄jt denote the standard deviation of historical flight duration in ODA j in year t:

σ̄jt =

√√√√ 1

Njt−2 +Njt−1

[

Njt−1∑
i=1

(ActualElapsedTimeijt−1− µ̄jt)2 +

Njt−2∑
i=1

(ActualElapsedTimeijt−2− µ̄jt)2].

Given the values of µ̄jt and σ̄jt, we estimate the targeted on-time performance of flight i in ODA

j at year t, f̂ijt, by using the formula:

f̂ijt = Φ(
CRSElapsedTimeijt− µ̄jt

σ̄jt

), (5)

where CRSElapsedTimeijt is the posted flight duration of flight i in ODA j at year t.

4.3. Model Validation

Before proceeding to study the drivers for the increase in posted duration over time, we examine

how well our model, and in particular Equation (4), fits the data. Specifically, we regress posted

flight duration on the estimated mean and standard deviation for the relevant ODA, and examine

the in-sample R-square.

Consider the following linear regression:

CRSElapsedTimeijt = β0
t µ̄jt +β1

t σ̄jt + εijt.

According to the model, the estimated β0
t should be around 1, and β1

t should correspond to the

estimated strategic padding term. Note that this regression model is restricted to use the same

strategic padding term for all ODAs in a given year.

5 It is also possible to estimate f∗
n without making assumptions on the distribution of actual flight duration by using

the empirical distribution of historical actual flight duration. Our main results do not change qualitatively if we use
this alternative estimation approach.



Zhang, Salant and Van Mieghem: Where did the time go?
15

Table 3 In-sample Validation of the Newsvendor Model

Panel A: Model Validation without Fixed Effects

β0 β1 Num of Observations R-square Adjusted R-square

1997 1.018∗∗∗ −0.055∗∗∗ 2209635 0.993 0.993
1998 1.017∗∗∗ −0.016∗∗∗ 2215525 0.993 0.993
1999 1.017∗∗∗ −0.01∗∗∗ 2250152 0.993 0.993
2000 1.019∗∗∗ −0.007∗∗∗ 2266218 0.993 0.993
2001 1.018∗∗∗ −0.023∗∗∗ 2198063 0.993 0.993
2002 1.015∗∗∗ −0.054∗∗∗ 2098559 0.993 0.993
2003 1.015∗∗∗ −0.002∗∗∗ 2039793 0.993 0.993
2004 1.016∗∗∗ 0.038∗∗∗ 2119071 0.993 0.993
2005 1.022∗∗∗ −0.087∗∗∗ 2059561 0.994 0.994
2006 1.021∗∗∗ −0.084∗∗∗ 1971466 0.993 0.993
2007 1.019∗∗∗ −0.031∗∗∗ 1957842 0.993 0.993
2008 1.019∗∗∗ 0.004∗∗∗ 1894371 0.992 0.992
2009 1.019∗∗∗ 0.077∗∗∗ 1759449 0.992 0.992
2010 1.021∗∗∗ 0.058∗∗∗ 1736754 0.993 0.993
2011 1.018∗∗∗ 0.077∗∗∗ 1727082 0.993 0.993
2012 1.018∗∗∗ 0.166∗∗∗ 1740537 0.993 0.993
2013 1.015∗∗∗ 0.205∗∗∗ 1739950 0.993 0.993
2014 1.016∗∗∗ 0.164∗∗∗ 1731232 0.994 0.994
2015 1.014∗∗∗ 0.385∗∗∗ 1755878 0.994 0.994
2016 1.01∗∗∗ 0.386∗∗∗ 1783375 0.994 0.994
2017 1.012∗∗∗ 0.383∗∗∗ 1775095 0.993 0.993

Average 1.017 0.08 1953791 0.993 0.993

Panel B: Model Validation with Fixed Effects

β0 β1 Num of Observations R-square Adjusted R-square

1997 1.017∗∗∗ −0.153∗∗∗ 2209635 0.994 0.994
1998 1.02∗∗∗ −0.079∗∗∗ 2215525 0.993 0.993
1999 1.019∗∗∗ −0.098∗∗∗ 2250152 0.994 0.994
2000 1.017∗∗∗ −0.127∗∗∗ 2266218 0.994 0.994
2001 1.015∗∗∗ −0.178∗∗∗ 2198063 0.994 0.994
2002 1.013∗∗∗ 0.019∗∗∗ 2098559 0.994 0.994
2003 1.015∗∗∗ 0.084∗∗∗ 2039793 0.994 0.994
2004 1.02∗∗∗ 0.011∗∗∗ 2119071 0.994 0.994
2005 1.019∗∗∗ −0.072∗∗∗ 2059561 0.995 0.995
2006 1.016∗∗∗ −0.127∗∗∗ 1971466 0.994 0.994
2007 1.016∗∗∗ −0.074∗∗∗ 1957842 0.994 0.994
2008 1.013∗∗∗ 0.081∗∗∗ 1894371 0.994 0.994
2009 1.022∗∗∗ −0.106∗∗∗ 1759449 0.994 0.994
2010 1.018∗∗∗ −0.035∗∗∗ 1736754 0.994 0.994
2011 1.016∗∗∗ 0.068∗∗∗ 1727082 0.994 0.994
2012 1.013∗∗∗ 0.171∗∗∗ 1740537 0.994 0.994
2013 1.01∗∗∗ 0.169∗∗∗ 1739950 0.995 0.995
2014 1.018∗∗∗ 0.013∗∗∗ 1731232 0.995 0.995
2015 1.018∗∗∗ 0.122∗∗∗ 1755878 0.994 0.994
2016 1.017∗∗∗ 0.143∗∗∗ 1783375 0.995 0.995
2017 1.017∗∗∗ 0.12∗∗∗ 1775095 0.994 0.994

Average 1.016 0.00 1953791 0.994 0.994

Note: ∗p < 0.10;∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01. Standard errors are robust and clustered at the ODA level.

Note: This table shows the regression results of posted flight duration on historical average and standard deviation

of actual flight duration from the same ODA. Panel A does not control for any additional fixed effects. Panel B

controls for the airline fixed effect, the origin airport fixed effect, the destination airport fixed effect and the date

fixed effect.
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Table 3 reports the estimates of β0
t and β1

t as well as the R-square for every year from 1997 to

2017 for two different specifications: Panel (A) in the table reports the estimates without controlling

for any additional co-variates; Panel (B) augments this specification with airline fixed effect, origin

and destination airports fixed effects, and date fixed effects.

Three patterns emerge from the table. First, the restricted two-variable specification in Panel

(A) fits the data remarkably well: the R-square and the adjusted R-square are between 99.3% and

99.4% despite the fact that we use about 1,000 different levels of historical averages and standard

deviations every year to explain about two million posted durations. Second, adding another 626

variables (i.e, 5 unique airlines, 128 unique origin airports, 128 unique destination airports, and

365 unique dates) in Panel (B) only improves the R-square by 0.1%. Third, the estimate of β0
t

in both specifications is close to 1 for each year, in conformance with the model. These patterns

suggest that the restricted and simple two-variable model in Equation (4) fits the data well.

5. Results

The estimation equation for flight i in ODA j at year t is:

CRSElapsedTimeijt = µ̄jt + Paddingijt, (6)

where µ̄jt is the average historical flight duration in ODA j at years t− 1 and t− 2 and

Paddingijt = σ̄jt×Φ−1(f̂ijt)

is the estimated padding term, which is the product of variability padding (as captured by σ̄jt, the

historical standard deviation in ODA j at years t−1 and t−2) and strategic padding (as captured

by the targeted on-time performance f̂ijt computed using Equation (5)).

Historical flight duration can be further decomposed into historical air- and ground-time. Hence,

letting µ̄A
jt and µ̄G

jt denote the average historical air- and ground-time in ODA j at years t− 1 and

t− 2, we can rewrite equation (6) as

CRSElapsedTimeijt = µ̄A
jt + µ̄G

jt + Paddingijt. (7)

In this section, we first quantify the contribution of each of the three factors in Equation (7) to

the increase in posted duration. We then decompose the increase in padding into the increase in

strategic padding and variability padding, and study how each of these sources of padding have

evolved over the 21 year data span.
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5.1. Padding Relative to Historical Duration

To quantify the contribution across ODAs of historical air-time, historical ground-time, and

padding to the increase in posted duration, we transform Equation (7) into an equation about

differences normalized by 1997 posted duration at the ODA level.

Specifically, let CRSElapsedTimej1997 and Paddingj1997 denote the average posted duration and

the average padding in ODA j at year 1997. Then, by Equation (7):

CRSElapsedTimej1997 = µ̄A
j1997 + µ̄G

j1997 + Paddingj1997. (8)

Subtracting equation (8) from equation (7), we obtain the equation about differences:

∆CRSElapsedTimeijt ≡CRSElapsedTimeijt−CRSElapsedTimej1997

= (µ̄A
jt− µ̄A

j1997) + (µ̄G
jt− µ̄G

j1997) + (Paddingijt−Paddingj1997)

= ∆µ̄A
jt + ∆µ̄G

jt + ∆Paddingijt.

Dividing by CRSElapsedTimej1997, we obtain the breakdown of the percentage change of posted

duration of flight i relative to 1997 into a percentage change of air-time, ground-time, and padding:

%∆CRSElapsedTimeijt = %∆µ̄A
jt + %∆µ̄G

jt + %∆Paddingijt

=
∆µ̄A

jt + ∆µ̄G
jt + ∆Paddingijt

CRSElapsedTimej1997

Figure 5 decomposes the average percentage increase in posted flight duration across all flights

in persistent ODAs over a 21-year span into the average percentage increase in historical air-time,

historical ground-time, and padding, where changes are evaluated relative to posted duration in

1997. Two patterns emerge from the figure. First, the increase in padding is responsible for slightly

more than half of the increase in posted duration in 2017 relative to 1997. Second, the increase in

average historical flight duration, which is responsible for slightly less than half of the increase in

posted duration, is mostly due to an increase in ground-time but not air-time. Put differently, the

two main drivers of the increase in posted duration are increased padding and increased ground-

time while airtime has been virtually unchanged.

Padding, as a fraction of posted duration, has increased significantly from 1997 to 2017. To see

this, we divide equation (6) by CRSElapsedTimeijt and re-arrange terms to obtain the percentage

contribution of padding to the posted duration of flight i in ODA j at year t:

Paddingijt

CRSElapsedTimeijt
= 1− µ̄jt

CRSElapsedTimeijt
. (9)

Averaging the contribution of padding over all flights in persistent ODAs in a given year yields

Figure 6. The figure illustrates that the contribution of padding to posted duration has more than

tripled from 1997 to 2017.
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Figure 5 About half of the increased posted flight duration stems from an increase in padding while less than

10% is due to increased historical airtime µ̄A.
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Notes. Using our model, the graph decomposes the increase in average posted flight duration (relative to 1997) into

three causes and shows the fraction of the posted duration increase that is due to an increase in (1) historical airtime

µ̄A (blue); (2) historical ground time µ̄G (grey); and (3) padding (yellow).

5.2. Strategic padding relative to variability padding

The significant increase in padding may result from an increase in strategic padding (as captured

by the targeted on-time performance f̂ijt) or variability padding (as captured by the historical

variability σ̄jt). To quantify the contribution of these two types of padding to the overall increase

in padding, we consider two counterfactual scenarios. In the first, we compare the evolution of

padding in the data to how padding would have evolved if targeted on-time performance had not

changed from 1997 to 2017 and historical variability had evolved according to the data. In the

second, we compare the evolution of padding in the data to how padding would have evolved

if targeted on-time performance had changed from 1997 to 2017 according to our estimates and

historical variability remained constant.

For the first scenario, let f̂j1997 denote the average estimated targeted on-time performance across

all flights in ODA j in year 1997 and let

∆Paddingijt = Paddingijt− σ̄j1997×Φ−1(f̂j1997)

measure the increase in padding of flight i in ODA j at year t relative to the 1997 padding term

evaluated with respect to σ̄j1997 and f̂j1997.
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Figure 6 Padding, as a fraction of posted flight duration, has tripled over 20 years.
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Notes. Using our model, the graph shows the average over all flights i in ODA j of the fraction of Paddingijt relative

to the posted duration CRSElapsedTimeijt.

The counterfactual padding Padding
1

ijt of flight i in ODA j at year t is:

Padding
1

ijt = σ̄jt×Φ−1(f̂j1997), (10)

which is the product of the historical variability in year t and the padding term of year 1997. Note

that this counterfactual padding does not depend on the flight but only on the flight’s ODA.

The percentage contribution of strategic padding to the increase in padding, denoted by

StrategicPaddingPerc1ijt, is the difference between the estimated padding for flight i at year t and

the counterfactual padding for flight i at year t divided by ∆Paddingijt:

StrategicPaddingPerc1ijt =
Paddingijt−Padding

1

ijt

∆Paddingijt

.

The percentage contribution of variability padding, denoted by VariabilityPaddingPerc1ijt, is then:

VariabilityPaddingPerc1ijt = 1−StrategicPaddingPerc1ijt.

For the second scenario, the counterfactual padding Padding
2

ijt of flight i in ODA j in year t is:

Padding
2

ijt = σ̄j1997×Φ−1(f̂ijt),



Zhang, Salant and Van Mieghem: Where did the time go?
20

Figure 7 About 90% of the increase in padding is due to an increase in airline conservatism.
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Notes. The graph shows the two counterfactual analyses to estimate the increase in padding due to (1) an increase in

travel time variability (i.e., assuming the airline kept its critical fractile constant over 20 years) and (2) an increase in

airline conservatism (i.e., an increase in critical fractile assuming flight time variability was constant over 20 years).

which is the product of 1997 historical variability and the estimated targeted on-time performance

of flight i at year t. The percentage contribution of variability and strategic padding to the increase

in padding are then:

VariabilityPaddingPerc2ijt =
Paddingijt−Padding

2

ijt

∆Paddingijt

StrategicPaddingPerc2ijt = 1−VariabilityPaddingPerc2ijt.

Figure 7 presents the results of the two counterfactual scenarios. For each scenario and for

each year, we plot the average contribution of strategic and variability padding of all flights in

all persistent ODAs. It is evident that in both counterfactual scenarios, the increase in strategic

padding is responsible for about 90% of the increase in padding. The estimate of the strategic

padding contribution is systematically lower in all years under the second counterfactual scenario.

This is because the first scenario uses the historical standard deviation in years t > 1997 to evaluate
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the contribution of strategic padding, while the second scenario uses the standard deviation in

1997, and the historical standard deviation in any year t > 1997 is on average slightly larger than

that in 1997, which slightly increases the contribution estimate.

6. Strategic Padding and Competition

Section 5 demonstrates that more than half of the increase in posted duration over the 21-year

data span is due to an increase in padding, and that most of the increase in padding is due to an

increase in strategic padding. Strategic padding in turn decreases—according to our model—in the

cost ratio
cn + con

p

ln+1 + lon
p

.

Thus, the increase in strategic padding is driven by either an increase in the l parameters or a

decrease in the c parameters.

Another possible driver of changes in targeted on-time performance that is not captured by model

is competition. The number of airlines serving a given route (an origin-destination (OD) pair) may

influence airlines’ strategic padding decision. If consumers care more about posted duration (how

long the flight is) than about the likelihood that the flight arrives on-time (on-time performance),

an increase in the number of airlines serving a route may lead to an decrease in strategic padding.

In contrast, if consumers care more about the likelihood of on-time arrival, then an increase in

the number of airlines serving a route may lead to an increase in strategic padding. This section

investigates the association between the intensity of competition on a route and strategic padding.

To do so, we consider routes that experienced an increase or a decrease in the number of airlines

operating on that route. We refer to an increase as an (airline) entry and a decrease as an (airline)

exit, and examine the association between entry and/or exit in year t− 2 and airlines’ targeted

on-time performance in year t on the same route.6 Specifically, we use the following empirical

event-study specification:

f̂jkt = γ0 + γ1Entryk,t−2 + γ2Exitk,t−2 + γ3Xjkt + εjkt, (11)

where j denotes the ODA; k denotes the route (OD) that corresponds to ODA j; t denotes the

year; f̂jkt = f̂jt; Entrykt = 1 if route k has an entry in year t, and is zero otherwise; Exitkt = 1

if route k has an exit in year t, and is zero otherwise; and Xjkt consists of year, origin airport,

destination airport, and airline fixed effects as well as the number of airlines serving the route at

year t.

6 If airline entry and exit decisions are independent of their strategic padding decisions, then our analysis provides
causal evidence. This independence, however, is not testable with the data we have.
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Table 4 The effect of entry and exit on targeted on-time performance

Dependent variable:

Targeted on-time performance: f̂jkt (%)

(1) (2) (3) (4) (5)

Entry −4.497∗∗∗ −3.935∗∗∗ −3.057∗∗∗

(0.474) (0.482) (0.481)
Exit 3.850∗∗∗ 3.093∗∗∗ 2.728∗∗∗ 5.650∗∗∗

(0.488) (0.496) (0.494) (0.725)
Distance 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.012∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.001)

Airline Fixed Effect Yes Yes Yes Yes Yes
Origin Fixed Effect Yes Yes Yes Yes Yes
Destination Fixed Effect Yes Yes Yes Yes Yes
Number of Airlines Fixed Effect Yes Yes Yes Yes Yes
Observations 22,800 22,800 22,800 19,484 5,509
Adjusted R2 0.444 0.443 0.445 0.497 0.373

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors are robust and clustered at the ODA level. The first two

columns consider the effect of only entry (column 1) or only exit (column 2) by one or more airlines on the on-time

performance of other airlines operating on the same route. Column (3) considers both entry and exit. Column (4)

focuses on ODAs with daily flights in prior two years. Column (5) focuses on ODA-and-year pairs with at least

one entry or exit.

We control for airline, origin airport and destination airport fixed effects to eliminate the time

homogeneous effects at the airline, origin and destination levels that may be correlated with entry

and exit decisions as well as with strategic padding decisions. We control for the number of airlines

on a route to eliminate the effect that exit is potentially more likely on more competitive routes

while entry is potentially more likely on less competitive routes.

Table 4 reports the results with different control specifications. The first specification estimates

entry decisions only (i.e., γ2 = 0 in regression equation (11)) and compares routes with entry to

routes without entry. Column (1) of Table 4 shows that an entry to a route is associated with a 4.5

percentage point decrease in the average estimated targeted on-time performance of other airlines

on that route. The second specification considers only exit decisions (i.e., γ1 = 0 in regression

equation (11)) and compares routes with exits to routes without exits. Column (2) shows that

an exit of airlines on a route is associated with a 3.9 percentage point increase in the average

estimated targeted on-time performance of other airlines on that route. The third specification

compares routes with entry and/or exit to routes that have neither entry or exit. It shows that

an entry (exit) on a route is associated with a 3.9 percentage point decrease (3.1 percentage point

increase) in the average estimated targeted on-time performance of other airlines on that route.

Our estimated targeted on-time performance in a given year depends on airlines’ historical flight

durations in the prior two years. This estimation may have a large sampling error when the number
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of historical flights is small. Therefore, Column (4) of Table 4 replicates the specification from

Column (3) but focuses only on ODAs that have at least daily flights in each of the prior two years.

Focusing on these more frequent ODAs, our estimates remain qualitatively the same. The fifth

specification restricts attention to routes with entry and routes with exit. Column (5) of Table 4

shows that the average estimated targeted on-time performance on routes with an exit is 5.650

percentage points higher than the on-time performance on routes with an entry. This result is

consistent with the combination of estimates in column (4) (2.728 + 3.057 = 5.785 ≈ 5.650) and

shows that the various specifications provide qualitatively similar results.

So far we coded entry and exit as binary events, while in practice multiple airlines may enter or

exit a route in a given year. Indeed, in the data, the largest number of airlines entering a route is

4 and so is the largest number of airlines exiting a route. In order to capture the effect of different

number of airlines entering or exiting a route, we use the following specification:

f̂jkt = α0 +α1NumAirlineDecreasek,t−2 +α2Xjkt + εjkt,

where NumAirlineDecreasek,t−2 is the decrease in the number of airlines serving route k from Year

t− 3 to Year t− 2.

Column (1) of Table 5 demonstrates that, without any controls, one less airline on a route is

associated with a 1.7 percentage point increase in the average estimated targeted on-time perfor-

mance of airlines on the same route. Column (2) shows that, controlling for airline, origin and

destination fixed effects, the coefficient changes to 3.2 percentage points. Column (3) shows that

the effect does not change qualitatively if we only focus on ODAs with daily flights, while Column

(4) shows that the effect does not change qualitatively if we only focus on routes with at least one

airline entering or exiting.

7. Conclusion

This paper considered four potential drivers of the increase in posted flight duration over a 21-year

span: an increase in average air-time, an increase in average ground-time, an increase in variability

padding, and an increase in strategic padding. We established that the increase in strategic padding

and in average ground time are the two key drivers of the increase in posted duration. Air-time

and variability padding neither significantly increased, nor affected the increase of posted flight

duration, over the 21-year span.

While the increase in ground time can be attributed to increased airport congestion, it is less clear

what drives the increase in strategic padding. We made modest progress in addressing this question

by studying the association between competition on a route and targeted on-time performance.

We established that an increase (decrease) in the number of airlines on a route is associated with a
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Table 5 The effect of the number of airlines entering and exiting on targeted on-time performance

Dependent variable:

Targeted on-time performance: f̂jkt (%)

(1) (2) (3) (4)

NumAirlineDecrease 1.728∗∗∗ 3.194∗∗∗ 2.660∗∗∗ 2.644∗∗∗

(0.333) (0.254) (0.254) (0.291)
Distance 0.0004 0.011∗∗∗ 0.010∗∗∗ 0.012∗∗∗

(0.0003) (0.0004) (0.0004) (0.001)

Airline Fixed Effect No Yes Yes Yes
Origin Fixed Effect No Yes Yes Yes
Destination Fixed Effect No Yes Yes Yes
Number of Airlines No Yes Yes Yes
Observations 22,800 22,800 19,484 5,509
Adjusted R2 0.008 0.446 0.498 0.376

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors are robust and clustered at the ODA level. Column (1)

considers the effect of decreasing by one the number of airlines serving a route on the remaining airlines’ targeted

on-time performance without any fixed effects. Column (2) adds fixed effect. Column (3) focuses on ODAs with

daily flights in the prior two years, and Column (4) focuses on ODAs that have at least one entry or exit in a

year.

decrease (increase) in targeted on-time performance. This finding hints at the potentially important

role of mergers, acquisitions, and bankruptcies in the evolution of strategic padding.

Studying other drivers of the increase in strategic padding is a task for future research. One

promising direction is to investigate the effect on strategic padding of the availability of informa-

tion about airlines’ historic on-time performance. The US department of Transportation publishes

monthly and yearly reports, entitled “Air Travel Consumer Report” ranking airlines according to

their historical on-time performance.7 These reports are often featured in the popular press. A pos-

sible effect of the availability of this information to consumers is that airlines will streamline their

operations to decrease the mean and/or variance of actual flight duration, so that they improve

their on-time performance. Such a response by airlines is expected to increase consumer welfare.

However, the availability of such information may also have unintended consequences: rather than

streamlining their operations, airlines may strategically increase their padding to improve their

ranking. Such a response by airlines would potentially reduce consumer welfare.
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A. Proof of Lemma 1

Proof. To prove this lemma, let us write down Period 1 and Period 2’s optimization problem in Equation 2:

Period 1 =Et1 [(

∫
(θ− p− c1T1)dθ)p− co1T1− lo1(t1−T1)+]

=

(
1− p− (c1 +

co1
p

)T1−Et1 [
lo1
p

(t1−T1)+]

)
p

Period 2 =Et2 [(

∫
(θ− p− c2T2− l2(t1−T1)+)dθ)p− co2T2− lo2(t2−T2)+]

=

(
1− p− (c2 +

co2
p

)T2−Et1 [l2(t1−T1)+]−Et2 [
lo2
p

(t2−T2)+]

)
p

Moving −
(

(c1 +
co1
p

)T1 +Et1 [
lo1
p

(t1−T1)+]
)
p from Period 1 to Period 2, we obtain

Period 1 = (1− p)p

Period 2 =

(
1− p− (c1 +

co1
p

)T1−Et1 [(l2 +
lo1
p

)(t1−T1)+]

)
p−

(
(c2 +

co2
p

)T2 +Et2 [
lo2
p

(t2−T2)+]

)
p

Similarly, moving −
(

(c2 +
co2
p

)T2 +Et2 [
lo2
p

(t2−T2)+]
)
p from Period 2 to Period 3 yields:

Period 2 =

(
1− p− (c1 +

co1
p

)T1−Et1 [(l2 +
lo1
p

)(t1−T1)+]

)
p

=

(
1− p−Et1 [(c1 +

co1
p

)T1 + (l2 +
lo1
p

)(t1−T1)+]

)
p,

Since T1 only exists in Period 2 after the transformation, the optimal solution of T1 solves:

max
T1

(
1− p−Et1 [(c1 +

co1
p

)T1 + (l2 +
lo1
p

)(t1−T1)+]

)
p,

which is equivalent to solving:

min
T1

Et1 [(c1 +
co1
p

)T1 + (l2 +
lo1
p

)(t1−T1)+].

Following a similar transformation (i.e., moving −
(

(cn +
con
p

)Tn−Etn [
lon
p

(tn−Tn)+]
)
p from Period n to

Period n+ 1) and induction, we can show that (a) each Tn only appears at Period n+ 1 for all n<N after

the transformation and (b) each Tn solves:

min
Tn

Etn [(cn +
con
p

)Tn + (ln+1 +
lon
p

)(tn−Tn)+].

B. Proof of Proposition 1

Proof. The optimization in Lemma (1) can be re-written as:

min
Tn

Etn [(cn +
con
p

)T + (ln+1 +
lon
p

)(tn−T )+]

= min
Tn

Etn [(cn +
con
p

)(T − tn)+ + (ln+1 +
lon
p

)(tn−T )+ + (cn +
con
p

)tn]

=(cn +
con
p

)tn + min
Tn

Etn [(cn +
con
p

)(T − tn)+ + (ln+1 +
lon
p

)(tn−T )+]
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This problem can be viewed as a classic newsvendor problem with overage cost (cn +
con
p

) and underage

cost (ln+1 +
lon
p

). Therefore, adopting the classic newsvendor solution (Petruzzi and Dada 1999), the optimal

solution is:

f∗
n = Pr(T ∗

n > tn) = min{0,
ln+1 +

lon
p
− cn− con

p

ln+1 +
lon
p

}.

And, if the flight time tn is normally distributed with mean µn and standard deviation σn, the optimal

solution has a closed-form solution in terms of the distribution’s moments:

T ∗
n = µn +σnΦ−1(f∗

n)
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