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Abstract

A decision maker (DM) contemplates whether to take a costly action. The DM does not

know the action’s value and relies on data and unbiased statistical inference to estimate it.

The data are Bernoulli experiments governed by the action’s value. A designer, who wishes

the DM to take the action, controls the size of the data, i.e., the sample size, available to

the DM. We establish that in many environments the designer’s optimal sample size is the

largest one satisfying that either a single — or a simple majority — of favorable realizations

would persuade the DM to take the action.
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1 Introduction

Decision makers (DMs) often rely on data and statistical inference to make choices. For example,

buyers may experiment with a product in order to estimate its value and then make a purchase

decision based on the estimate. Likewise, politicians use various statistics of polls and public

opinion surveys in their decision making. In both cases, an interested designer may control

the size of the data obtained by the DM but not necessarily its distribution. In the context

of product experimentation, it is the seller who decides how much experimentation to allow

potential buyers, and the buyers conduct the experiments themselves by interacting with the

product. And in the context of polls and surveys, some interested party (e.g., lobbyist, think

tank, or news agency) often decides how extensive a poll to commission, but exogenous factors

such as the politician’s own interests dictate the question and the subject population. The goal

of this paper is to study the designer’s optimal sample size in such settings.

We consider a designer who decides how large a sample about a payoff-relevant parameter to

provide to a decision maker (DM). The designer wishes to persuade the DM to take an action.

The DM is a statistician who uses the data and statistical inference to estimate the value of the

parameter, and takes the action if the parameter estimate is larger than his outside option.

The data are Bernoulli experiments governed by the underlying value of the parameter. For

example, in surveys, the parameter may be the proportion of individuals supporting a particular

issue, and each Bernoulli experiment corresponds to the opinion of a single survey respondent.

A similar setting is meetings where the DM relies on the opinions of participants to arrive at

a decision. Bernoulli experiments may also fit product experimentation when the product is a

platform with many small brands, the parameter is the fraction of brands that fit the buyer’s

taste, and each experiment corresponds to the DM experimenting with a single brand. Of

course, there are many other settings where an experiment can reveal more information about

the parameter value.

As for statistical inference, there are roughly speaking two classes of inference procedures:

those that rely only on the data (frequentist inference), and those that start with a prior belief

on the parameter value and Bayes-update it based on the sample (Bayesian inference). The

advantages of the frequentist approach are that it is prior-free, does not require knowledge of

conditional probabilities, and uses only objective data.1 As such, the frequentist approach fits

1The statistics literature has debated the merits of the two approaches for over a century. Efron (2005) is a
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environments in which the DM is less experienced, less knowledgeable about fundamentals, or

does not want prior beliefs to influence its decision making.

Among frequentist inference procedures, an important subclass is the class of unbiased infer-

ence procedures whereby the expected value of an estimate (which we allow to be a distribution

over possible parameter values) is identical to the proportion of successes in the sample. Leading

examples include maximum likelihood estimation, maximum entropy estimation, and Beta esti-

mation. Bayesian inference is not unbiased because the expected value of an estimate depends

on the prior. With the exception of Section 5.2 that discusses Bayesian inference, we focus on

unbiased inference procedures throughout the paper.

Our first main result is about environments in which the designer believes the distribution

of the payoff-relevant parameter is decreasing. We establish that the designer’s optimal sample

size is the largest one satisfying that even a single favorable realization would persuade the DM

to take the action. In other words, for every integer n, sample size n is optimal when the DM’s

outside option is between 1/(n+ 1) and 1/n.

This result has several implications. First, any possible sample size is optimal for a non-

trivial interval of the DM’s outside option. Second, as the DM’s outside option becomes more

attractive, so that the DM’s tendency to take the action decreases for any sample size, the

designer’s optimal sample size decreases. Third, for an outside observer, who has access to the

DM’s choices as a function of the data realizations, the DM’s choice behavior may seem to

exhibit “strong” preference for taking the action. This is because the DM chooses to take the

action unless there is unanimity against doing so. To be sure, the DM is an unbiased statistician

whose preference for taking the action is neither strong nor weak. Still, the designer’s optimal

choice of sample size creates the impression that the DM has a strong preference for taking the

action.

In the second type of environments we consider, the designer believes the distribution of the

payoff-relevant parameter is increasing and concave. We establish that when the value of the

outside option is not small (formally, larger than 1/2), the designer’s optimal sample size is the

largest odd sample size satisfying that a simple majority of successes would persuade the DM

to take the action. More specifically, for every integer m, sample size 2m − 1 is optimal when

the DM’s outside option is between (m + 1)/(2m + 1) and m/(2m − 1) so that 2m − 1 is the

nice recent discussion.

3



largest sample size satisfying the above condition.

Thus, similarly to the case of decreasing beliefs, any odd sample size is optimal for some

interval of the DM’s outside option, and the optimal sample size decreases as the value of the

DM’s outside option increases. In addition, an outside observer with access to the DM’s choices

may conclude that the DM uses a simple majority decision rule when choosing whether to take

the action. Put differently, simple majority arises endogenously in the setting with increasing

and concave beliefs.

A potential issue with our results is that a sophisticated DM may be able to strategically

infer something about the designer’s beliefs regarding the parameter from the designer’s choice

of sample size. The DM may then consider this information, together with statistical inference

from the data, when making a choice. We establish that a designer with such a concern would

choose some sample size satisfying that a simple majority of successes would persuade the DM

to take the action, thus shutting down this channel for strategic inference.

In the third environment we consider, there is a seller and a buyer. The seller is the owner

of a platform that offers many brands, some match a given buyer’s taste and some do not. The

seller decides how much experimentation with the platform to allow buyers prior to joining the

platform, a platform membership fee, and a platform usage fee that depends on the number

of brands consumed by the buyer after joining. Buyers use an unbiased inference procedure

to estimate the proportion of brands on the platform that match their taste, and then decide

whether to join the platform and pay the membership and usage fees.

We establish that the seller’s joint choice of experimentation amount and fees is to provide

the smallest possible amount of product experimentation to potential buyers, charge a monopoly

membership fee against the resulting demand, and charge no usage fee. Put differently, when the

designer can extract some of the DM’s estimated value from taking the action through transfers,

margin considerations dominate the volume considerations identified above.

This paper is related to two literatures. The first is the small game-theoretic literature on

sampling (Osborne and Rubinstein (1998, 2003)) and statistical inference (Salant and Cherry

(2020)). In Osborne and Rubinstein (1998)’s S(k)-equilibrium, players who do not know the

mapping from own actions to payoffs sample the payoff of each action k times and choose

the action with the highest sampled payoff. Osborne and Rubinstein (2003) is a subsequent

contribution in which players sample other players’ actions instead of own payoffs and best

respond to sample averages. Salant and Cherry (2020) consider players who obtain data on
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other players’ actions, use statistical inference to form an estimate about these actions, and best

respond to the estimate. Sethi (2000, 2019) and Mantilla, Sethi and Cárdenas (2020) study the

dynamic stability properties of S(1)-equilibria. Spiegler (2006a,b) studies competition between

firms that face consumers who sample their prices or another payoff-relevant parameter once.

This literature treats players’ sample size as a primitive of their decision making procedure or

a component of the solution concept. And with the exception of Salant and Cherry (2020), the

literature solves models with players who obtain very small samples. The focus of the current

paper is on a different question. We treat the sample size as a design parameter and solve for

the optimal sample size.

The second related literature is the literature on persuasion, which studies receiver-optimal

persuasion (Glazer and Rubinstein (2004)) and sender-optimal persuasion (Kamenica and Gentzkow

(2011)). We consider sender-optimal persuasion. A key assumption in models of sender-optimal

persuasion, or Bayesian persuasion, is that the set of tools available to the designer is rich: the

designer can choose any data-generating process that results in a distribution of posteriors whose

expectation equals the prior distribution. In contrast, the set of tools available to the designer in

our setup is very limited. Rather than choosing the data-generating process, the designer only

chooses how much data the DM obtains. As discussed above, this assumption seems plausible

when the experiments are conducted by the DM (product experimentation) or a third party,

or when the experimental question and subject population cannot be easily changed (polls and

surveys). On the technical side, the departure from the rich signal structure assumption requires

developing new tools and solution techniques.

We also depart from another important assumption of the Bayesian persuasion literature

whereby the designer and the DM are Bayesian and share a common prior. For most of the

analysis, we consider a designer who merely considers the prior to be monotone and a frequentist

DM.2 In this respect, our paper is related to a small literature on persuasion with non-Bayesian

DMs. Glazer and Rubinstein (2012) consider the receiver’s optimal persuasion protocol against

a sender who has limited abilities to find a persuasive message. In Levy, de Barreda and Razin

(2018), the DM makes updating mistakes because he fails to account for the correlation between

different information sources. In Eliaz, Spiegler and Thysen (2020), DMs who obtain a multi-

2Section 5.2 considers a Bayesian environment with a uniform prior and compares the optimal sample sizes

to those obtained for a frequentist DM.
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dimensional signal focus only on a subset of its dimensions, as directed by an informed designer,

and do not make inferences on other dimensions from the designer’s choice of dimensions. And

in Galperti (2019)’s model of changing world views, the DM rejects his original prior in favor of

a new prior when observing evidence that is inconsistent with the original prior.

We proceed as follows. Section 2 presents the model. Section 3 analyzes the optimal sample

size. Section 4 considers the application to platform experimentation and pricing. Section

5 concludes with (i) extending the analysis to include upper and lower bounds on the feasible

sample sizes, and (ii) comparing the predictions of unbiased inference to Bayesian inference from

a uniform prior. Appendix A contains proofs that do not appear in the main text. Appendix B

contains technical combinatorial Lemmas that are used in the proofs.

2 Model

A decision maker (DM) has to decide whether to take an action or keep the status quo. The

value t ∈ [0, 1] of keeping the status quo is known to the DM, and the value q ∈ [0, 1] of taking

the action is not. To make a decision, the DM estimates q using data and statistical inference,

and takes the action if the estimated value of q is weakly larger than t.

The data are independent Bernoulli experiments with success probability q, where a successful

experimental realization, or simply a success, is interpreted as a data point in favor of taking

the action. The size of the data is decided by a designer who wishes the DM to take the action.

The designer knows t and has a prior f on q.3 To avoid technical issues, we assume that the

designer can choose any data size or ∞, which is interpreted as fully revealing the value of q.

We consider lower and upper bounds on the size of the data in Section 5.1.

After the designer decides the data size, the Bernoulli experiments are carried out, and the

DM obtains their realizations. The DM’s sample is the pair (n, k) where n is the number of

experiments and k is the number of successful realizations. We will refer to n as the sample size

and to k/n as the sample mean.

An inference procedure describes how the DM makes inferences from samples about q.

Definition. An inference procedure G = {Gn,k} assigns a cumulative distribution function

3For most of the analysis, the designer need not have an exact prior on q, but rather believe the prior satisfies

some regularity condition.
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Gn,k, called an estimate, to every sample (n, k) such that:

(i) the estimate Gn,k̂ first-order stochastically dominates the estimate Gn,k when k̂ > k, and

(ii) the estimate Gn,n strictly first-order stochastically dominates the estimate Gn,0.4

An inference procedure is the analogue of an estimator in the statistics literature. It can be

used to describe a rich class of inferences from data. Here are a few examples.

Example 1 (Bayesian Inference). The DM has a non-degenerate prior on q. He uses Bayes

rule to update this prior based on the sample.

Example 2 (Maximum Likelihood Estimation (MLE)). The DM calculates the most likely pa-

rameter q to have generated the sample. It is easy to verify that this parameter is the sample

mean.

Example 3 (Beta Estimation). The DM wishes to conduct Bayesian updating relying as little

as possible on a prior belief. The DM starts with Haldane’s “prior” (Haldane (1932)), which is

not a proper prior, and updates it to the Beta(k, n − k) distribution after obtaining the sample

(n, k).5

To understand this procedure better, recall that the Beta distribution is a conjugate prior

for Binomial distributions: a DM with a Beta(a, b) prior on q, who obtains the sample (n, k)

and uses Bayesian updating, would arrive at the posterior Beta(a + k, b + (n − k)). One may

think about (a+ b) as measuring the weight the DM puts on the prior and about n as the weight

the DM puts on the sample. Haldane’s “prior” (Haldane (1932)) is the limit of the Beta(ε, ε)

distribution as ε→ 0, and the Beta(k, n− k) distribution is the limit of the resulting posteriors

after obtaining the sample (n, k). As ε → 0, the DM puts no weight on the prior and bases the

estimate only on the sample.

Example 4 (Maximum Entropy). The DM follows the Principle of Maximum Entropy. From

among all distributions with expected value equal to the sample mean, the DM searches for the

one with the maximal uncertainty in terms of entropy. By Conrad (2004), when the sample mean

is in (0, 1), this distribution is a truncated exponential distribution with density gn,k(q) = Ceαq.

The values of α and C are determined uniquely by the constraints that (1) gn,k is a density

4This definition is weaker than in Salant and Cherry (2020) because we require strict dominance only for Gn,n

and Gn,0.

5When the sample mean is 0 or 1, the DM concentrates the estimate on 0 or 1 respectively.
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function (i.e.,
∫ 1

0
gn,k(q)dq = 1), and (2) the expected value of the estimate is equal to the sample

mean (i.e.,
∫ 1

0
qgn,k(q)dq = k/n). For example, when the sample mean is 1/2, the unique α is

0, the unique C is C = 1, and the resulting estimate is the uniform distribution over [0, 1].6

Example 5 (Dogmatic Views). The DM believes q is distributed either according to the CDF

F0 or F1 that strictly first-order stochastically dominates F0. He uses the sample to decide which

distribution should be used in decision making. If k(n) or more realizations are successes, he

uses F1. Otherwise he uses F0.

Following the estimation of q, the DM uses the estimate to calculate the expected value of

q, and takes the action if this value is weakly larger than t. Because of the first-order stochastic

dominance property of an inference procedure, if the DM takes the action after obtaining the

sample (n, k) then the DM also takes the action after obtaining a sample (n, k̂) for k̂ > k. Let

P (n, k, q) =
n∑
j=k

(
n

j

)
qj(1− q)n−j =

n∑
j=k

b(n, j, q)

denote the corresponding probability of taking the action after obtaining ≥ k successes where

b(n, j, q) denotes the probability of obtaining j successes in n Bernoulli experiments governed

by q.

Let k(n,G, t) denote the smallest number of successes satisfying that a DM who uses the in-

ference procedure G takes the action after observing the sample (n, k(n,G, t)).7 The probability

that the DM takes the action is:

P (n,G, t, q) = P (n, k(n,G, t), q).

The objective of the designer is to maximize the expected value, according to f , of the

probability of taking the action, i.e. solve

arg max
n∈N∪∞

∫ 1

0

P (n,G, t, q)f(q)dq.

With the exception of Section 5.2, our analysis focuses on unbiased inference procedures.

6When the sample mean is 0 or 1, the unique distribution with expected value equal to the sample mean puts

a unit mass on the sample mean.

7It is possible that there are sample sizes n for which such k(n,G, t) ≤ n does not exist. Such sample sizes

are never optimal, and so we ignore them.
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Definition. An inference procedure G is unbiased if the expected value
∫ 1

0
qdGn,k of any esti-

mate Gn,k is equal to the sample mean k/n.

The MLE procedure is unbiased. The Beta Estimation and Maximum Entropy procedures

are also unbiased. Bayesian inference is not unbiased because the expected value of an estimate

depends on both the prior and the sample, whereas unbiasedness requires that the expected

value depends only of the sample.

For an unbiased inference procedure G, the smallest number of successes leading the DM to

take the action is k(n, t) = dtne. Because this number does not depend on the specifics of G,

we can write

P (n,G, t, q) = P (n, t, q) =
n∑

j=dtne

b(n, j, q) (1)

for any unbiased inference procedure.

3 Optimal sample size

This section studies the designer’s optimal sample size for unbiased inference procedures. Section

3.1 establishes a general lower bound on the optimal sample size. Section 3.2 analyzes the optimal

sample size when the designer’s prior is degenerate, i.e., assigns probability 1 to a particular q.

This case highlights many of the forces that would determine the optimal sample size when the

designer’s prior is non-degenerate. Section 3.3 studies the designer’s optimal sample size for

priors that are either monotone or symmetric.

3.1 Lower bound

To obtain a lower bound on the optimal sample size for any prior on q, it is helpful to consider

the case in which designer assigns probability 1 to some fixed q, which is smaller than t. In this

case, it may not be optimal for the designer to provide the least amount of information about q,

i.e., sample size 1, to the DM. This is because a DM, who knows more about q in the sense of

obtaining a larger sample, may take the action with a higher probability than a DM who knows

less about q. For example, if t < 1/2, then the probability of taking the action after obtaining

two data points P (2, t, q) = q2 + 2q(1 − q) is larger than the probability of taking the action

after obtaining a single data point P (1, t, q) = q for any q, implying that for t < 1/2 sample size
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1 would not be optimal. Observation 1 builds on this example to establish a lower bound on the

optimal sample size.

Observation 1. For any t and any prior on q, the optimal sample size is weakly larger than the

largest sample size satisfying that even a single success would trigger the DM to take the action.

In other words, for any integer n and any prior on q, the optimal sample size is weakly larger

than n when the value t of the outside option is in the interval (0, 1/n].

To obtain the lower bound in Observation 1, let n′ be the largest sample size that triggers the

DM to take the action after observing the sample (n′, 1). Then n′ = bt−1c. For any sample size

n ≤ n′, a single success would also trigger the DM to take the action because 1/n ≥ 1/n′ ≥ t.

Thus, the probability of taking the action is 1− (1− q)n for n ≤ n′. This probability increases

in n, and so sample size n′ dominates smaller sample sizes for any fixed q and, therefore, for any

prior on q.

3.2 Degenerate priors

When the designer assigns probability 1 to some fixed q, full revelation is optimal if and only if

q ≥ t. Indeed, with full revelation, the DM takes the action with probability 1 when q ≥ t and

with probability 0 when q < t, whereas the probability of taking the action is strictly between

0 and 1 for any finite sample size.

The more interesting case is q < t. Observation 1 implies that the optimal sample size is

weakly larger than bt−1c in this case. To see that larger sample sizes have the potential be

be optimal, let us consider sample sizes 1 and 3. When t ≤ 1/3, the discussion following the

statement of Observation 1 implies that sample size 3 dominates sample size 1. When t exceeds

the “critical point” 1/3, the probability P (3, t, q) “loses” the term b(3, 1, q) in the sum on the

right-hand side of Equation (1) because a single success no longer triggers the DM to take the

action for t > 1/3. This leads to a discrete drop in P (3, t, q). Note, however, that the marginal

increase in P (3, t, q) is larger than the marginal increase in P (1, t, q). For q < 1/2, sample size

1, which did not lose a term, dominates sample size 3. At q = 1/2, sample size 3 catches up with

sample size 1, and it dominates sample size 1 from that point until the next critical point at

2/3, i.e., for 1/2 < q < t ≤ 2/3. When t exceeds 2/3, P (3, t, q) loses another term, b(3, 2, q), and

sample size 1 dominates it again. The left Panel in Figure 1 provides a graphical illustration.

The right panel in Figure 1 illustrates a similar phenomenon for sample sizes 3 and 5.
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Figure 1: Probability of taking the action. Left panel depicts P (1, t, q) (dashed) and P (3, t, q)

(solid). Right panel depicts P (3, t, q) (solid) and P (5, t, q) (dashed).

More generally, the discrete drop in P (n, t, q) at critical points of the form k/n followed by a

continuous increase of P (n, t, q) as q moves toward t implies that larger sample sizes than those

identified in Observation 1 may be optimal. Theorem 1 establishes that this does not happen

when q is not too close to t. And Theorem 2 establishes that it does when q is close to t.

Theorem 1. For any t and q < (1 + bt−1c)−1, the optimal sample size is the largest one satis-

fying that even a single success would trigger the DM to take the action.

Put differently, for any integer n, sample size n is optimal when q < 1/(n + 1) < t ≤ 1/n.

The shaded rectangles in Figure 2 provide a graphical illustration.

Theorem 1 has several implications. First, for any sample size, there are non-trivial intervals

of parameter values for which this sample size is optimal. Clearly, providing the least amount of

information to the DM need not be optimal. Second, as Figure 2 illustrates, fixing the value q of

taking the action, as the status quo becomes more attractive, the optimal sample size gradually

decreases. In other words, the designer chooses to provide less information to the DM as the

DM’s ex-ante tendency to take the action becomes smaller. Third, consider an analyst who

observes the DM’s choices as a function of the data the DM obtains. The analyst will conclude

that the DM’s choice behavior is consistent with a very strong preference for taking the action:

The DM chooses to take the action unless all realizations are in favor of keeping the status quo.

These implications extend to the case in which the designer’s prior is decreasing in q, as Theorem

3 will establish.
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Figure 2: Optimal sample sizes for degenerate priors

Proof of Theorem 1. Fix an integer n′ and let q < 1/(n′ + 1) < t ≤ 1/n′. We establish the

optimality of sample size n′ in two steps. The first step identifies a collection of sample sizes D

(including sample size n′) that are candidates for optimality.

Step 1. For every k ≥ 1, let n(k) be the largest integer such that k/n(k) > 1/(n′ + 1). Then

n(k) = (n′ + 1)k − 1. Let D = {n(k) | k ≥ 1}. Then, any sample size n /∈ D is dominated by a

sample size in D.

Proof. Fix a sample size n /∈ D and let k be the minimal number of successes that trigger the

DM to take the action if he obtains the sample (n, k). Then k = dtne. By the definition of n(k),

we have that n < n(k). Applying the combinatorial identity

P (m+ 1, l, q) = P (m, l, q) + qb(m, l − 1, q) (2)

multiple times establishes the desired domination.

The second step establishes that sample size n′ dominates all other sample sizes in the set D

and concludes the proof.

Step 2. For q < 1/(n′ + 1) and k ≥ 2, sample size n′ dominates sample size n(k).

Proof. By Lemma 1 in Appendix B, there exists q∗ such that P (n′, 1, q) > P (n(k), k, q) for

q ∈ (0, q∗) and a reverse inequality holds for q ∈ (q∗, 1). By Lemma 2, P (n′, 1, 1/(n′ + 1)) ≥
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P (n(k), k, 1/(n′+ 1)) implying that q∗ ≥ 1/(n′+ 1). Thus, sample size n′ dominates any sample

size n(k) for q < 1/(n′ + 1).

Theorem 2 studies the optimal sample size when the value q of taking the action is close to

the value t of the outside option.

Theorem 2. For 1
2
< q < t, the optimal sample size is the largest odd sample size satisfying

that a simple majority of successes would trigger the DM to take the action.

The dotted trapezoids in Figure 2 illustrate the optimal sample sizes identified in Theorem

2.

Thus, similarly to Theorem 1, any odd sample size is optimal for some interval of parameter

values, and the optimal sample size decreases as the value of the status quo increases. In addition,

an analyst who observes the DM’s choices will conclude that the DM’s choice procedure is

consistent with simple majority: the DM takes the action when a majority of the realizations are

in favor of doing so. These implications continue to hold when the designer’s prior is increasing

and concave, as Theorem 4 will show.

The intuition for why the largest odd sample size satisfying the conditions of Theorem 2

dominates smaller sample sizes is as follows. Fix a sample size n′ = 2m − 1 and assume

m+1
2m+1

< t ≤ m
2m−1 , i.e., the value of the status quo is in the range in which sample size n′

should be optimal. For any sample size n ≤ 2m − 1, the DM takes the action when obtaining

a simple majority of successes. Since this number is the same for the even sample size 2l and

the odd sample size 2l + 1, the combinatorial identity (2) implies that even sample sizes are

dominated by odd sample sizes. Thus, it suffices to focus on odd sample sizes.

For any odd sample size n, we have P (n, 1/2, 1/2) = 1/2 because the binomial distribution

is symmetric around 1/2 when q = 1/2. We can thus write

P (n, t, q) = 1/2 +

∫ q

1/2

P ′(n, t, s)ds. (3)

where P ′ denotes the marginal increase in the probability of taking the action, and is equal

to k
(
n
k

)
q(k−1)(1− q)(n−k) where k = d(n+ 1)/2e. This marginal increase increases in n for

n ≤ 2m− 1 in the relevant range of t and q implying that sample size 2m− 1 dominates smaller

odd sample sizes.
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3.3 Non-degenerate priors

We now extend the analysis to monotone or symmetric priors.

Our first result establishes that the optimal sample size identified in Theorem 1 is also optimal

for decreasing priors where a prior is decreasing (increasing) if it weakly decreases (increases) in

q on [0, 1] and differs from the uniform prior on a non-zero measure.

Theorem 3. For any decreasing prior and any t, the optimal sample size is the largest one

satisfying that even a single success would trigger the DM to take the action.

Proof of Theorem 3. We first consider finite sample sizes. By Observation 1 and Step 1 in the

proof of Theorem 1, it suffices to show that sample size n′ = bt−1c dominates any sample size

of the form n = k(n′ + 1) − 1 where k ≥ 2, or, more specifically, that the expected probability

P (n′, 1) =
∫ 1

0
P (n′, 1, q)f(q)dq is strictly larger than P (k(n′ + 1) − 1, k) =

∫ 1

0
P (k(n′ + 1) −

1, k, q)f(q)dq where f is the designer’s prior. We show this domination in two steps. The first

step establishes that it suffices to examine the expected probabilities with respect to the uniform

prior.

Step 1. If P (n′, 1) ≥ P (k(n′+ 1)−1, k) for the uniform prior, then P (n′, 1) > P (k(n′+ 1)−1, k)

for a decreasing prior.

Proof. By Lemma 1, P (n′, 1, q) > P (k(n′ + 1) − 1, k, q) for q ∈ (0, q∗) and a reverse inequality

holds for q ∈ (q∗, 1) if q∗ < 1. The result follows because for a decreasing prior, the mass on

values in the interval (0, q∗) is strictly larger than under the uniform prior.

The second step examines the expected probabilities according to the uniform prior.

Step 2. For the uniform prior, P (n′, 1) = P (k(n′ + 1)− 1, k).

Proof. For the uniform prior, P (n, k) = 1− k
n+1

because (i) P (n, k, q) is equal to the incomplete

regularized Beta function Iq(k, n−k+1) and (ii) Iq(k, n−k+1) is the CDF of the Beta(k, n−k+1)

distribution with mean k
n+1

. Thus,

P (k(n′ + 1)− 1, k) = 1− k/k(n′ + 1) = 1− 1/(n′ + 1) = P (n′, 1).

14



As for full revelation, by using the reasoning of Step 1 above, it suffices to show that sample

size n′ dominates full revelation for the uniform prior. This is true because the expected value

of full revelation in this case is 1− t and t > 1/(n′ + 1).

We proceed to analyze increasing priors. We first identify a lower bound on the optimal

sample size that is tighter than the one obtained in Observation 1. We then show this bound

achieves optimality when the prior is also concave.

For a fixed t, let n′ = bt−1c and let ak = k/(k(n′+1)−1) where k ≥ 1. Because the sequence

{ak} decreases in k and converges to 1/(n′ + 1) < t as k tends to infinity, there exists a unique

k′ such that ak′+1 < t ≤ ak′ .

Proposition 1. For any increasing prior and any t, the optimal sample size is weakly larger

than k′(n′ + 1)− 1 where n′ = bt−1c and k′ is the unique integer satisfying ak′+1 < t ≤ ak′.

Proof. By definition, after obtaining the sample (k′(n′ + 1) − 1, k′), the DM takes the action.

Fix a sample size n < k′(n′ + 1)− 1. The minimal number of successes that trigger the DM to

take the action is k ≤ k′. By Step 1 in Theorem 1, sample size n is a candidate for optimality

only if has the form n = k(n′ + 1) − 1. An analogous argument to the one made is Step 1 of

Theorem 3 can be used to show that if k < k′ and P (k′(n′ + 1) − 1, k′) ≥ P (k(n′ + 1) − 1, k)

for the uniform prior, then P (k′(n′ + 1)− 1, k′) > P (k(n′ + 1)− 1, k) for increasing priors. The

inequality P (k′(n′ + 1)− 1, k′) ≥ P (k(n′ + 1)− 1, k) holds by Step 2 in Theorem 3.

Note that the lower bound identified in Proposition 1 is identical to the one identified in

Observation 1 for t ∈ (1/(n′ + 1/2), 1/n′]. However, for t ∈ (1/(n′ + 1), 1/(n′ + 1/2)], the

lower bound identified in Proposition 1 is tighter. For example, if t > 1/2, then the bound

of Observation 1 implies that any sample size can be optimal whereas Proposition 1 implies

that the smallest candidate for optimaility is the largest sample size satisfying that a simple

majority of successes would trigger the DM to take the action. The following result shows that

this candidate is indeed optimal when the prior is also concave.

Theorem 4. For any increasing and concave prior and any t > 1/2, the optimal sample size is

the largest one satisfying that a simple majority of successes would trigger the DM to take the

action.

Concavity is important for establishing Theorem 4. It guarantees that the prior does not

assign “too large a mass” to large values of q. When it does, very large sample sizes or full
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revelation may be optimal. To illustrate this point, fix some q′ and consider a prior that assigns

probability 0 to all q below q′. For this prior, full revelation is optimal for any t ≤ q′ because

the probability of taking the action for full revelation is 1 whereas it is strictly smaller than 1

for any finite sample size. Concavity precludes such priors.

Some lower bound on the value of the status quo is also important. (Note the difference

from Theorem 3 which holds for any value of t.) To see why, consider the probability of taking

the action for the linear prior h(q) = 2q. It can be shown that as t decreases, the probability

of taking the action for full revelation increases sufficiently fast so that full revelation becomes

uniquely optimal. Because the expectation operator is continuous, full revelation continues to

be optimal for nearby concave priors.

For increasing and convex priors, a stronger result on the optimaility of full revelation can

be obtained.

Proposition 2. For all increasing and convex priors with f(0) = 0, there exists a single t′ > 0

such that full revelation is optimal for all t ≤ t′.

The last class of priors that we consider is the class of symmetric priors.

Proposition 3. For any symmetric prior with a non-zero mass around 1/2 and any t > 1/2,

all odd sample sizes satisfying that a simple majority of successes would trigger the DM to take

the action are optimal.

Proof. We first observe that any even sample size 2n satisfies the combinatorial identity P (2n+

1, n+ 1, q) = P (2n, n+ 1, q) + qb(2n, n, q) and is thus dominated by sample size 2n+ 1.

Any odd sample size 2n+1 satisfies the equality P (2n+1, n+1, q) = 1−P (2n+1, n+1, 1−q).

Thus, for any symmetric prior f , the expected probability P (2n+ 1, n+ 1) is equal to F (1/2) =∫ 1/2

0
f(q)dq and is independent of n. This is because:

P (2n+ 1, n+ 1) =
∫ 1/2

0
P (2n+ 1, n+ 1, q)f(q)dq +

∫ 1

1/2
(1− P (2n+ 1, n+ 1, 1− q))f(q)dq

=
∫ 1/2

0
P (2n+ 1, n+ 1, q)f(q)dq +

∫ 1/2

0
(1− P (2n+ 1, n+ 1, q))f(q)dq

=
∫ 1/2

0
f(q)dq

where the first equality holds because P (2n + 1, n + 1, q) = 1 − P (2n + 1, n + 1, 1 − q) and

the second equality holds by the symmetry of f . Moreover, P (2n+ 1, n+ 1, q) is strictly larger

than P (2n + 1, k, q) for k > n + 1. Because the probability of taking the action is equal to
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Figure 3: Optimal sample sizes for non-degenerate priors

P (2n + 1, n + 1) only for n’s such that a simple majority of successes triggers the DM to take

the action, we obtain that the corresponding sample sizes are the only candidates for optimality.

Finally, full revelation is dominated by these sample sizes. This is because (i) the symmetry

of the prior implies that the expected probability of taking the action for full revelation is∫ 1

t
f(q)dq =

∫ 1−t
0

f(q)dq = F (1 − t), and (ii) F (1 − t) < F (1/2) because t > 1/2 and the prior

has a positive mass in the neighborhood of 1/2.

Figure 3 summarizes the optimal sample sizes for monotone or symmetric priors. Decreasing

priors provide the lower envelope of the optimal sample sizes. Increasing and concave priors

provide the upper envelope for t > 1/2, and symmetric priors span the range between the lower

and upper envelopes for t > 1/2.

Figure 3 has two implications. First, it highlights that in many cases the designer does not

need to have an exact prior in order to identify the optimal sample size. Rather, knowledge

of more general properties such as monotonicity, concavity, or symmetry suffices. Second, for

t > 1/2, a designer, who does not want the sample size choice to reveal any information about

the prior, would choose a sample size satisfying that a simple majority of successes would trigger

the DM to take the action. To illustrate the second point more formally, consider a designer who

does not know whether — or does not want to reveal by the choice of sample size that — the

prior is decreasing, increasing and concave, or symmetric. This designer would choose a sample
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size as follows.

Corollary 1. For any t > 1/2, the optimal sample size is an odd sample size satisfying that a

simple majority of successes would trigger the DM to take the action.

To verify Corollary 1, let k′ be the largest integer such that t ≤ k′/(2k′ − 1). Then, the set

of candidates for optimaility according to Corollary 1 is D = {1, 3, · · ·, 2k′ − 1}. Consider some

sample size n /∈ D. If n is an even integer smaller than 2k′ − 1 then it is dominated by the odd

sample size just above it, which is in D. And if n is larger than 2k′ − 1 or n = ∞ then it is

dominated by some sample size in D as the proofs of Theorem 3, Theorem 4, and Proposition 3

establish.

4 An application

This section studies an application to a buyer-seller interaction in which transfers are allowed.

The seller’s product is a platform with a unit mass of brands. Each brand either matches a

given buyer’s taste in which case it generates a value of 1 to this buyer, or it does not in which

case it generates a value of 0 to the buyer.

There is a unit mass of risk-neutral buyers and each of them has to decide whether to join the

platform. Each buyer is characterized by two parameters. The first is the value of the buyer’s

outside option denoted by t ∈ [0, 1]. The value of the outside option is drawn from a CDF

H(t) and is known to the buyer. The second parameter is the taste parameter q, which is the

proportion of platform brands that match the buyer’s taste. The parameter q is drawn from a

CDF F (q). The buyer does not know q and uses an unbiased inference procedure to estimate

it. Absent any fees, a buyer joins the platform if the estimate of q is weakly larger than t.

The platform owner is a risk-neutral and profit-maximizing seller. She knows F and H

and chooses two objects. The first is how much experimentation n to allow buyers prior to

deciding whether to join the platform. The second is the post-experimentation two-part tariff

P = (PM , PU) where PM is a membership fee paid independently of platform usage and PU is a

usage fee paid every time the buyer uses a brand on the platform.

We make the following assumption on the distribution H of buyers’ outside options.

Assumption 1. The ratio H(t)/t increases on (0, 1].
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Clearly, any convex H satisfies Assumption 1. However, H need not be convex. For example,

Any S-shaped CDF such that the line segment connecting the points (0, 0) and (t,H(t)) lies

above the graph of H for any t satisfies the assumption.

By choosing the sample size n, the seller chooses the demand system she faces. For a given

q, this demand system is

D(n, PM , PU | q) =
n∑
j=0

H(j/n(1− PU)− PM)b(n, j, q). (4)

Indeed, for a given q, a buyer observes the sample (n, j) with probability b(n, j, q) and

estimates the expected value of joining the platform to be j/n − PM − j/nPU . He joins the

platform if this value is weakly above t. Because t is distributed according to H, the probability

of joining the platform conditional on the sample (n, j) is H(j/n(1−PU)−PM) where H(x) = 0

for x ≤ 0. Summing over all possible j’s gives the demand system.

The seller thus chooses (n, PM , PU) to solve

max

∫ 1

0

(PM + qPU)D(n, PM , PU | q)dF (q).

Proposition 4. The seller’s optimal choice is to provide buyers access to a single experiment,

charge no usage fee, and charge a profit-maximizing membership fee against the demand function

H(1− p).

In other words, the “volume” considerations identified in Section 3 are dominated by “mar-

gin” considerations. The platform owner prefers to provide as little data as possible to buyers

and target those who obtain a a favorable realization, rather than to provide more data to buyers

and possibly capture a larger volume by reducing price.

Proof. We first show that the demand system for sample size 1 is strictly larger than the demand

system for any larger sample size. To do so, fix q, PM , and PU . Let D(n|PM , PU , q) be the

corresponding demand for sample size n, and consider the function

Ĥ(x) =

0 if x(1− PU) ≤ PM

H(x(1− PU)− PM) otherwise.

By definition, Ĥ(x)/x < Ĥ(1). When 0 < x(1 − PU) ≤ PM , this is because Ĥ(x) = 0. And

for larger x’s, this is because if x > x′ ≥ PM/(1 − PU) then by Assumption 1, the inequality

Ĥ(x)/x ≥ K(Ĥ(x′)/x′) holds where K = (x(1−PU )−PM )x′

(x′(1−PU )−PM )x
> 1.
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The demand system for sample size n is a convex combination of the values of Ĥ at the

points {0, 1/n, . . . , 1}. Since Ĥ(x) < xĤ(1) as we just showed, we can write:

D(n|PM , PU , q) <
∑n

j=0(j/n)Ĥ(1)b(n, j, q)

= H(1− PU − PM)(
∑n

j=0(j/n)b(n, j, q))

= H(1− PU − PM)q

= D(1|PM , PU , q).

Thus, the seller’s optimal sample size choice is 1 and she chooses (PM , PU) to maximize∫ 1

0

(PM + qPU)H(1− PU − PM)qdF (q).

To obtain the optimal fees, consider a related problem in which the seller chooses prices for

a known q. If PU is positive, the seller can increase profit by reducing PU by a small δ and

increasing PM by qδ. Indeed, with these new prices, the overall fee PM + qPU remains the same

but demand increases to H(1 − PM − PU + (1 − q)δ)q. Thus, the seller optimally sets a usage

fee of 0 and a membership fee PM that maximizes PMH(1− PM)
∫ 1

0
qdF (q).

5 Concluding comments

This paper incorporated statistical inference into persuasion environments. We considered a

designer who wishes to persuade a DM to take an action and controls how much data about a

payoff-relevant parameter the DM sees prior to making a choice. The DM is an statistician who

uses the data and statistical inference to estimate the parameter and decide whether to take the

action.

5.1 Bounds on the sample size

The analysis characterized the designer’s optimal sample size when the set of feasible sample

sizes is the set of all integers. It is possible, however, that the designer may face exogenous

constraints when choosing the sample size.

One relevant constraint is an upper bound on the sample size. For example, in an ex-

perimental setting or a public opinion survey, the pool of potential participants may be small.

Incorporating such an upper bound is relatively straightforward. We demonstrate for the setting

of Theorem 3.
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Observation 2. For any decreasing prior and any upper bound n on the sample size, sample

size n is optimal for t ≤ 1/n, and the sample size identified in Theorem 3 is uniquely optimal

otherwise.

Clearly, for t > 1/n, the optimal sample size identified Theorem 3 is feasible and therefore

optimal. For t ≤ 1/n and sample size n ≤ n, even a single success would trigger the DM to take

the action. Thus, the probability of taking the action is 1− (1− q)n. This probability increases

in n, and the conclusion of Observation 2 for t ≤ 1/n follows.

Another relevant constraint is a lower bound n on the sample size. For example, the Food

and Drug Administration requires a minimal number of participants in clinical trials when a

pharmaceutical company applies for drug approval. Incorporating such a bound into the analysis

is more involved. We demonstrate again for the setting of Theorem 3.

Proposition 5. For any decreasing prior, t > 1/2, and an odd lower bound n on the sample

size, if simple majority triggers the DM to take the action for sample size n, then this sample

size is optimal. Otherwise, the optimal sample size is weakly smaller than 2n+ 1.

Proof. For sample size n, a simple majority triggers the DM to take the action if and only if

1/2 < t ≤ n+1
2
/n. Following the proof of Theorem 3 where (n′, 1) is replaced by (n, (n + 1)/2)

establishes the optimality of sample size n in this case

For t > n+1
2
/n, it suffices to show that any sample size n ≥ 2n+ 1 is dominated by a sample

size, which is “about half of it”, in order to establish the upper bound on the optimal sample

size. By Step 1 in Theorem 3, it suffice to establish this dominance for the uniform prior.

To establish the required dominance for the uniform prior, fix n and k = dtne. The following

table identifies, for every possible combination of even and odd n and k, a sample size n′ (on

left) and an integer k′ (on right) such that

(i) n′ is about half of n and n′ ≥ n (i.e., n′ is feasible)

(ii) k′/n′ ≥ k/n (i.e., k′ successes trigger the DM to take the action for sample size n′), and

(iii) P (n′, k′) = 1− k′/(n′ + 1) ≥ 1− k/(n+ 1) = P (n, k):

k even k odd

n even n/2, k/2 n/2− 1, (k + 1)/2− 1

n odd (k/n > 2/3) (n− 1)/2− 1, k/2− 1 (n+ 1)/2, (k + 1)/2

n odd (k/n ≤ 2/3) (n− 1)/2 + 2, k/2 + 1 (n+ 1)/2, (k + 1)/2

.
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Thus, for the decreasing prior, the optimal sample size cannot be more than about twice the

lower bound.

5.2 Bayesian inference

Another assumption that we made is that the DM is an unbiased statistician. An alternative

approach would be to consider a Bayesian DM who is endowed with a prior belief on the pa-

rameter value and uses the data to Bayes-update this prior. The optimal sample size would

then depend on the prior belief because the prior belief, together with the data, determine the

estimated value of the parameter. We conclude by extending the analysis to the case of Bayesian

inference from a uniform prior and comparing the designer’s optimal sample size to the case of

an unbiased statistician.

Suppose the designer and the DM have a uniform prior on q. For t ≤ 1/2, the DM would

take the action with probability 1 without any additional data. The designer would therefore

provide no data to the DM in this case. For t > 1/2, the DM would only take the action if

the designer provides additional data to the DM. The following result identifies the designer’s

optimal sample size in this case.

Theorem 5. Suppose t > 1/2. The smallest sample size n′ such that only a unanimity of

successes would trigger the DM to take the action is optimal. For l ≥ 2, if the sample (l(n′ +

1)− 1, ln′) triggers the DM to take the action, then sample size l(n′ + 1)− 1 is also optimal.

The left panel in Figure 4 provides a graphical illustration for t ∈ (2/3, 3/4]. The smallest

sample size such that only a unanimity of successes would trigger the DM to take the action is

2 because the expected value of q after obtaining the sample (1, 1) is E(1, 1) =
∫ 1

0
qdG1,1 = 2/3

and the corresponding expected value for the sample (2, 2) is E(2, 2) = 3/4.8 Thus, sample size

2 is optimal in this interval. The next candidate for optimality is sample size 5, and the relevant

sample is (5, 4). Because E(5, 4) = 5/7, sample size 5 is optimal for t ≤ 5/7. Similarly, sample

size 8 is optimal for t ≤ 7/10 and so on.

8To see why this and the other calculations below hold, recall that the uniform prior is a Beta(1, 1) distribution

and that the Beta distribution is a conjugate prior with respect to the Binomial distribution. Therefore, the

DM’s estimate after obtaining the sample (n, k) is Gn,k = Beta(k + 1, n− k + 1) with mean (k + 1)/(n + 2).
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Figure 4: Bayesian inference with a uniform prior. Left panel depicts the optimal sample size

between 2/3 and 3/4. Right panel depicts the comparison to unbiased inference.

The right panel in Figure 4 compares the optimal sample sizes for unbiased and Bayesian

inference. For t < 1/2, the optimal sample size is larger for unbiased inference than for Bayesian

inference. This is because the prior triggers the DM to take the action without obtaining any

data. For t > 2/3, the reverse ranking holds. This is because the designer has to provide a

Bayesian DM with additional data (relative to unbiased inference) in order to overcome the

effect of the prior. For 1/2 < t ≤ 2/3, the set of optimal sample sizes when facing an unbiased

statistician is “larger” than when facing a Bayesian statistician in the sense that the former

set (characterized in Proposition 3) includes all sample sizes in the latter set (characterized in

Theorem 5) plus one that is strictly larger. The intuition is that for both unbiased and Bayesian

inference, any sample size that triggers the DM to take the action when a simple majority of the

realizations are successes is optimal. For unbiased inference, sample sizes 1 and 3 would qualify,

for example, when 3/5 < t ≤ 2/3. But for Bayesian inference, only sample size 1 would qualify

for t in this interval because the prior “pushes” the posterior in the direction of 1/2.
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A Proofs of theorems

Proof of Theorem 2. Fix an integer m ≥ 1. By the discussion following the statement of

Theorem 2, it suffices to show that sample size 2m − 1 dominates larger sample sizes for t ∈(
m+1
2m+1

, m
2m−1

]
. For sample size n ≥ 2m− 1, let

k[n] =

{
dnte | t ∈

(
m+ 1

2m+ 1
,

m

2m− 1

]}
(1)

denote the set of all integers k satisfying that there exists t in the relevant interval for which k is

the smallest integer such that the DM takes the action after obtaining the sample (n, k). Let κ(n)

denote the minimal integer in k[n]. By definition, k[2m− 1] is a singleton with κ(2m− 1) = m,

and κ(2m) = m+ 1.

Figure 5 illustrates construction of the set k[n] for n = 3, . . . , 13 and m = 2. For m = 2, the

relevant range of t is (3/5, 2/3]. Dots in the figure (solid and striped) correspond to k/n’s and

they are circled when k ∈ k[n]. For example, k[8] = {5, 6} and therefore the corresponding dots

are circled, while 7 /∈ k[9] and therefore the corresponding dot is not circled. Circled stripped

dots correspond to κ(n)
n

. For example, κ(8) = 5 and therefore the corresponding dot is striped.

Fix a sample size n > 2m − 1 and k ∈ k[n]. Let ∆n,k(q) = P (2m − 1,m, q) − P (n, k, q).

We need to show that ∆n,k(q) > 0 for q ∈ (0, b(n, k)] where b(n, k) = min
{
k
n
, m
2m−1

}
. Lemma
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Figure 5: Construction of k[n] and D in Theorem 2 for m = 2

Note: Dots correspond to k/n’s. Circled dots correspond to k
n for k ∈ k[n]. Circled striped dots correspond κ(n)

n .

Dots circumscribed by diamonds correspond to κ(n)
n for n ∈ D. Arrows point in the direction of domination in

the set D.

1 implies that ∆n,k(q) > 0 in a neighbourhood of q = 0 and changes its sign at most once on

(0, 1). To complete the proof, it thus remains to show that ∆n,k(b(n, k)) > 0.

Let D be a set of all sample sizes n satisfying that κ(n)
n

< κ(n1)
n1

for every n1 with 2m − 1 ≤

n1 < n. In Figure 5, sample sizes 3, 8 and 13 belong to set D and the corresponding dots

are circumscribed by diamonds. We first prove that for any sample size n ∈ D\{2m − 1},

∆n,κ(n)(b(n, κ(n))) > 0. This domination is shown by solid arrows in Figure 5. We then prove

that ∆n,k(b(n, k)) > 0 for all other pairs (n, k) with n > 2m− 1 and k ∈ k[n].

Fix a sample size n ∈ D\{2m − 1}. Lemma 3 implies that n = n(l) = (2m + 1)l − 2 for

some l ≥ 2. By definition, κ(n) = (m + 1)l − 1. Since b(n, κ(n)) = κ(n)/n in this case, we

need to prove that ∆(l) = ∆n(l),κ(n(l)) (κ(n(l))/n(l)) > 0 for any l ≥ 2. Lemma 5 establishes this

inequality for l = 2, and Lemma 6 for l ≥ 3.

Fix any of the remaining pairs (n, k) with n > 2m − 1 and k ∈ k[n]. By Lemma 4, there

exists n1 ∈ D that satisfies n1 ≤ n, κ(n1)
n1
≤ k

n
, and n1 − κ(n1) ≤ n − k. The following series of

inequalities implies that ∆n,k(b(n, k)) > 0:

P
(
n, k, k

n

)
< P

(
n1, κ(n1),

κ(n1)
n1

)
< P

(
2m− 1,m, κ(n1)

n1

)
< P

(
2m− 1,m, k

n

)
.

The left inequality holds by the Lemma below, the middle one was proved in the previous
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paragraph, and the right one follows from the monotonicity of P (·, ·, q) in q.

Lemma. Suppose n1 < n, n1 − k1 ≤ n − k and k1
n1
≤ k

n
. Then P (n, k, k1

n1
) < P (n1, k1,

k1
n1

) and

P (n, k, k
n
) < P (n1, k1,

k
n
).

Proof. It suffices to prove that P (n, k, k
n
) < P (n1, k1,

k1
n1

) because P (·, ·, q) increases in q.

This inequality follows from:

P
(
n, k, k

n

)
≤ P

(
n1 + k − k1, k, k

n1+k−k1

)
< P

(
n1, k1,

k1
n1

)
.

The left inequality is obtained by applying (n−n1)− (k− k1) times the inequality P
(
n, k, k

n

)
≤

P
(
n− 1, k, k

n−1

)
(Anderson and Samuels (1967), Theorem 2.3). The right inequality is obtained

by applying k − k1 ≥ 0 times the inequality P
(
n, k, k

n

)
< P

(
n− 1, k − 1, k−1

n−1

)
(Anderson and

Samuels (1967), Theorem 2.2).

Proof of Theorem 4. Fix an integer m ≥ 1 and let t ∈
(
m+1
2m+1

, m
2m−1

]
. The largest sample size

such that a simple majority of successes triggers the DM to take the action is 2m− 1.

We first consider finite sample sizes. By Proposition 1, it suffices to show that sample size

2m− 1 dominates larger sample sizes. So fix a sample size n > 2m− 1 and k ∈ k[n], where k[n]

is defined as in Equation (1). The following two steps establish that P (2m− 1,m) > P (n, k).

The first step establishes that it suffices to examine the expected probabilities with respect

to the linear prior h(q) = 2q.

Step 1. If P (2m − 1,m) > P (n, k) for the linear prior then P (2m − 1,m) > P (n, k) for an

increasing and concave prior.

Proof. By Lemma 1, P (2m − 1,m, q) > P (n, k, q) for q ∈ (0, q∗) and a reverse inequality holds

for q ∈ (q∗, 1) if q∗ < 1. Consider the linear function fh(q) = f(q∗)
q∗

q created by extending the

secant between (0, 0) and (q∗, f(q∗)) until q = 1. This function either reduces the mass on q < q∗

or increases the mass on q > q∗ implying that if P (2m − 1,m) > P (n, k) for fh (which is not

necessarily a prior), then P (2m− 1,m) > P (n, k) for f . Because fh(q) = f(q∗)
2q∗

h(q), it suffices to

prove the inequality for h.

The second step examines the expected probabilities with respect to h.

Step 2. For the linear prior, P (2m− 1,m) > P (n, k).
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Proof. For any n and k, we have:

P (n, k) = [P (n, k, q)q2]
1
q=0 −

∫ 1

0
P ′(n, k, q)q2dq

= 1− k(n
k)

(k+2)(n+2
k+2)

∫ 1

0
P ′(n+ 2, k + 2, q)dq = 1− k(k+1)

(n+1)(n+2)

where the first equality follows from integration by parts, and the second equality follows from

P ′(n, k, q) = k
(
n
k

)
q(k−1)(1− q)(n−k). Thus, P (2m− 1,m) = 1− (m+1)

2(2m+1)
.

Thus, it suffices to show that k(k+1)
(n+1)(n+2)

> (m+1)
2(2m+1)

, which holds if (i) k+1
n+1

> m+1
2m+1

and (ii)

k
n+2
≥ 1

2
. Inequality (i) holds because k+1

n+1
≥ k

n
and t > m+1

2m+1
.

To prove (ii), it suffice to consider whether (ii) holds for κ(n), and to do that, we define the

set D as in Theorem 2. If n ∈ D\{2m− 1}, Lemma 3 implies that n = (2m + 1)l − 2 for some

l ≥ 2. By definition, κ(n) = (m+ 1)l− 1. Thus, κ(n)/(n+ 2) ≥ 1/2. If n /∈ D, Lemma 4 implies

that there exists n1 ∈ D that satisfies n1 ≤ n and κ(n1)
n1
≤ κ(n)

n
. These two inequalities imply

that κ(n) ≥ κ(n1), which in turn implies that κ(n)/(n+ 2) > κ(n1)/(n1 + 2) ≥ 1/2.

As for the full revelation, by Step 1, it suffices to show that sample size 2m − 1 dominates

full revelation for the linear prior. This holds because the expected value of the full revelation

is 1− t2 and t > m+1
2m+1

.

Proof of Proposition 2. Let PF =
∫ 1

0
1{q≥t}f(q)dq denote the expected probability of taking

the action for full revelation. We want to show that there exists t′ > 0 such that for any t ≤ t′

the expected probability P (n, dtne) is smaller than PF for any integer n.

We do so in two steps. The first establishes that it suffices to examine the expected proba-

bilities with respect to the linear prior h(q) = 2q.

Step 1. If PF > P (n, k) for the linear prior, then PF > P (n, k) for a convex prior with f(0) = 0.

Proof. The inequality P (n, k, q) > 1{q≥t} holds for q < t and a reverse inequality holds for q > t.

An analogous argument to Step 1 in Theorem 4 now implies the result.

The second step establishes that full revelation is optimal with respect to the linear prior

when t ≤ 2/7.

Step 2. For the linear prior and t ≤ 2/7, PF > P (n, k).

Proof. Let k[n] = {dnte | 0 < t ≤ 2/7} denote the set of all integers k satisfying that there exists

t in the relevant interval for which k is the smallest integer such that the DM takes the action
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after obtaining the sample (n, k). Let κ(n) denote the maximal integer in k[n]. We wish to show

that P (n, k) = 1− k(k+1)
(n+1)(n+2)

is smaller than PF = 1− t2 for k ∈ k[n].

If k = κ(n), the combinatorial identity (2) implies that it suffices to consider the largest

sample size n(k) such that k/n(k) ≥ 2/7. This sample size is b7k
2
c. Because the maximal t for

which κ(n) successes trigger the DM to take the action is given by t = 2/7, full revelation is

optimal if k(k+1)
(n(k)+1)(n(k)+2)

> (2/7)2. This inequality holds for k ≥ 1.

If k 6= κ(n) then we must have n ≥ 4 because for smaller sample sizes, k[n] = {κ(n)} is a

singleton. By definition, (κ(n)− 1)/n < 2/7 and therefore k/n < 2/7. The maximal t for which

k successes trigger the DM to take the action is given by t = k/n. Therefore, we need to prove

that 1− (k/n)2 > P (n, k) which holds if k/n < n/(3n+2). The sequence {n/(3n+ 2)} increases

in n. Because n/(3n+ 2) = 2/7 for n = 4, the result follows.

Proof of Theorem 5. Fix t > 1/2 and let n′ = d(1− t)−1e − 2. For any sample size n, let

k = dt(n+ 2)e − 1 be the minimal number of successes that trigger the DM to take the action

after obtaining the sample (n, k). Since n′/(n′ + 1) < t ≤ (n′ + 1)/(n′ + 2), the integer n′ is the

smallest sample size such that only a unanimity of successes triggers the DM to take the action.

As argued in Step 2 in the proof of Theorem 3, the expected probability P (n, k) for the

uniform prior equals 1− k
n+1

. For sample size n′, the value of the objective function is P (n′, n′) =

1 − n′/(n′ + 1). It is larger than the corresponding value 1 − t for full revelation because

t > n′/(n′ + 1). All sample sizes n < n′ are dominated because the DM will not take the action

after obtaining the sample (n, n).

For larger sample sizes, fix l ≥ 2. The DM takes the action after obtaining the sample

(n, n− l+ 1) if n′

n′+1
< t ≤ n−l+2

n+2
, i.e. if n > l(n′+ 1)− 2. Because n is an integer, the smallest n

that satisfies this condition is n = l(n′+ 1)− 1. For this n, the value of the objective function is

1− k/(n+ 1) = 1− n′/(n′ + 1)

which is equal to the value of the objective function for sample size n′. For larger n’s, this value

is smaller than for sample size n′ because (n − l + 1)/(n + 1) is larger. Thus, sample size n′

dominates all sample sizes with the exception of those given by n = l(n′+ 1)− 1, which are also

optimal for t ≤ (n− l + 2)/(n+ 2), as in the statement of the Theorem.
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B Mathematical appendix

Lemma 1. Let n′ ≤ n, k′ ≤ k, and n′ + k′ < n + k. Then, there exists q∗ > 0 such that

P (n′, k′, q) > P (n, k, q) for q ∈ (0, q∗). If q∗ < 1 then P (n, k, q) > P (n′, k′, q) for q ∈ (q∗, 1).

Proof. By definition, P (n′, k′, 0) = P (n, k, 0) = 0. The inequality P ′(n′, k′, q) > P ′(n, k, q) holds

for some ε and q ∈ (0, ε) if and only if

r(q) ≡ P ′(n, k, q)

P ′(n′, k′, q)
=

k
(
n
k

)
k′
(
n′

k′

)q(k−k′)(1− q)(n−k−n′+k′) < 1.

The function r(q) is continuous in q and approaches 0 from above as q approaches 0 from above.

The desired inequality follows.

By definition, P (n′, k′, 1) = P (n, k, 1) = 1. Thus, to conclude the proof, it suffices to

show that there is at most one interior point of intersection of the two functions. Assume

to the contrary that there are two interior points q1 and q2 > q1 that satisfy P (n′, k′, qi) =

P (n, k, qi).
9 Because P (n, k, q) is below P (n′, k′, q) in a neighborhood of 0 (see above), we have

that P ′(n, k, q1) > P ′(n′, k′, q1) implying that r(q1) > 1. Analogously, P ′(n, k, q2) < P ′(n′, k′, q2)

implying that r(q2) < 1, and P ′(n, k, 1) > P ′(n′, k′, 1) (because P (n′, k′, 1) = P (n, k, 1) = 1)

implying that r(1) > 1. Thus, r(q) has at least two interior extremums in contradiction to the

fact that by definition r(q) has at most one interior extremum.

Lemma 2. For k ≥ 2, P (n, 1, 1
n+1

) ≥ P (k(n+ 1)− 1, k, 1
n+1

).

Proof. Let q = 1
n+1

. We prove that P (k(n+ 1)−1, k−1) ≥ P (n, 0) where P (n, l) = 1−P (n, l+

1, q). Suppose k = 2. Then,

P (2(n+ 1)− 1, 1)− P (n, 0) = (1− q)n
(

3n+ 1

n+ 1
(1− q)n − 1

)
is non-negative if and only if 3n+1

n+1
≥
(
1 + 1

n

)n
. This inequality can be verified numerically for

n ≤ 6. And for n ≥ 7, we observe that 3n+1
n+1

> e together with the combinatorial inequality

e ≥
(
1 + 1

n

)n
imply the desired inequality.

Suppose k ≥ 3. By adding and subtracting terms of the form P ((n + 1)i + n, i) for i ∈

{1, 2, · · ·, k − 1}, we obtain:

P (k(n+ 1)− 1, k − 1)− P (n, 0) =
∑k−1

i=1 P ((n+ 1)i+ n, i)− P ((n+ 1)(i− 1) + n, i− 1)

=
∑k−1

i=1 ∆i.

9The proof for three or more interior points of intersection is analogous.
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We can further expand each ∆i by adding and subtracting n expressions of the form P ((n +

1)i+ n− j − 1, i) as follows:

∆i =
∑n

j=0

δj︷ ︸︸ ︷(
P ((n+ 1)i+ n− j, i)− P ((n+ 1)i+ n− j − 1, i)

)
+ P ((n+ 1)i− 1, i)− P ((n+ 1)(i− 1) + n, i− 1)︸ ︷︷ ︸

α

=
n∑
j=0

δj + α (2)

To complete the proof, it suffices to show that α
n+1
≥ −δj for every j. Standard combinatorial

identities imply that −δj = q
(
(n+1)i+n−j−1

i

)
qi(1− q)(ni+n−j−1), and α =

(
(n+1)i−1

i

)
qi(1− q)(ni−1)

by definition. We thus need to show that(
(n+1)i−1

i

)
≥
(
(n+1)i+n−j−1

i

)(
n

1+n

)(n−j)
,

which holds because the LHS is a constant whereas the RHS increases in j and is equal to the

LHS for j = n.

Lemma 3. Fix an integer m ≥ 1. If n ∈ D then n = n(l) = (2m+ 1)l − 2 for some l ≥ 1.

Proof. Fix l ≥ 1 and consider sample sizes n1 = (2m + 1)l − 2 and n2 = (2m + 1)(l + 1) − 2.

By definition, κ(n1) = (m + 1)l − 1 and κ(n2) = (m + 1)(l + 1) − 1. Thus, κ(n2)
n2

< κ(n1)
n1

. To

complete the proof, it suffices to show that κ(n1)
n1
≤ κ(n)

n
for any n1 < n < n2.

Any such n satisfies κ(n) = (m + 1)l + j for some 0 ≤ j ≤ m because κ(n) > κ(n1)

(this follows from κ(n1)
n1+1

≤ m+1
2m+1

) and κ(n) ≤ κ(n2). Fix j and consider the set of all n’s with

κ(n) = κ(j) = (m+1)l+j. Since the ratio κ(n)
n

decreases in n, it suffices to verify that κ(n1)
n1
≤ κ(n)

n

for the largest n in the set. We denote this maximal n as n(j). Then n(j) = (2m+ 1)l+ 2j − 1

for 0 ≤ j ≤ m − 1 because it satisfies the inequality κ(j)
n(j)+1

≤ m+1
2m+1

< κ(j)
n(j)

, and n(m) = n2 − 1.

Verifying that κ(n1)
n1
≤ κ(j)

n(j)
completes the proof.

Lemma 4. Fix an integer m ≥ 1. For any n > 2m − 1 and k ∈ k[n] there exists n1 ∈ D such

that (i) n1 ≤ n, (ii) κ(n1)
n1
≤ k

n
, and (iii) n1 − κ(n1) ≤ n− k.

Proof. Fix n > 2m− 1 and k ∈ k[n]. Let n ≤ n be a weakly smaller sample size with n− k + 1

terms in P (n, κ(n), q). Such a sample size exists because the number of terms in P (n, κ(n), q)

is greater or equal to n− k + 1, and the number of terms in P (n′, κ(n′), q) is either the same or

larger by 1 than the number of terms in P (n′ − 1, κ(n′ − 1), q). By the proof of Lemma 3, the

maximal n ∈ D that is smaller than n satisfies the desired properties.
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Lemma 5. For any integer m ≥ 1, ∆(2) > 0.

Proof. Fix integer m ≥ 1. Then ∆(2) is equal to:

P

(
2m− 1,m,

2m+ 1

4m

)
− P

(
4m, 2m+ 1,

2m+ 1

4m

)
.

We first observe that

P (2m− 1,m, 2m+1
4m

) =
∫ 2m+1

4m

0
P ′(2m− 1,m, q)dq

= 1
2

+
∫ 2m+1

4m
1
2

m
(
2m−1
m

)
qm−1(1− q)m−1dq

≥(1)
1
2

+ 1
4

(
2m−1
m

)(
2m+1
4m

)m−1(2m−1
4m

)m−1
=(2)

1
2

+ 1
24m−1

(
2m
m

)(
4− 1

m2

)m−1
where inequality (1) holds because P ′(2m− 1,m, q) decreases in q over, and we use the identity(
2m−1
m

)
= 1

2

(
2m
m

)
to obtain equality (2).

We also observe that

P (4m, 2m+ 1,
2m+ 1

4m
) <(1) P (4m− 2, 2m− 1,

1

2
) =

1

2
+

1

24m−1

(
4m− 2

2m− 1

)
where inequality (1) is obtained by applying twice the inequality P

(
n, k, k

n

)
< P

(
n− 1, k − 1, k−1

n−1

)
(Anderson and Samuels (1967), Theorem 2.2).

To prove the result, it thus suffices to show that

(
2m
m

)(
4− 1

m2

)m−1 ≥ (4m−2
2m−1

)
.

For m = 1, the inequality holds with equality. For m ≥ 2, we use the identity
(
2(n+1)
n+1

)
= 4n+2

n+1

(
2n
n

)
to rewrite the RHS as(

4m− 2

2m− 1

)
=

(
2m

m

)(
4− 2

2m− 1

)
·
(

4− 2

2m− 2

)
· ... ·

(
4− 2

m+ 1

)
and observe that (4− 1

m2 ) is larger than any of the m−1 terms on the RHS of the last identity.

Lemma 6. For any integer m ≥ 1, ∆(l) > 0 for l ≥ 3.

Proof. Fix integers m, l ≥ 1. Then ∆(l) is equal to:

P
(

2m− 1,m, (m+1)l−1
(2m+1)l−2

)
− P

(
(2m+ 1)l − 2, (m+ 1)l − 1, (m+1)l−1

(2m+1)l−2

)
.
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We observe that

P
(

(2m+ 1)l − 2, (m+ 1)l − 1, (m+1)l−1
(2m+1)l−2

)
<(1) P

(
2ml − 2,ml − 1, ml−1

2ml−2

)
= 1

2
+ 1

22(ml−1)+1

(
2ml−2
ml−1

)
≤(2)

1
2

+ 1
2

1√
π(ml−1+ 1

4
)

where inequality (1) is obtained by applying the identity P
(
n, k, k

n

)
< P

(
n− 1, k − 1, k−1

n−1

)
for

l times, and inequality (2) holds because
(
2n
n

)
≤ 4n√

π(n+ 1
4)

. Thus,

∆(l) > P
(

2m− 1,m, (m+1)l−1
(2m+1)l−2

)
− 1

2
− 1

2
1√

π(ml−1+ 1
4
)
≡ d(l).

To complete the proof we treat l as a continuous variable on [3,∞) and show that d′(l) ≥ 0 and

d(3) > 0.

The derivative d′(l) is positive if and only if

((2m+1)l−2)2

(4ml−3)
3
2
√
π
≥ (2m−1

m )
2

(
((m+1)l−1)(ml−1)

((2m+1)l−2)2

)m−1
. (3)

The RHS is bounded above by 2√
π(4m+1)

. This is because
(
2m−1
m

)
= 1

2

(
2m
m

)
,
(
2m
m

)
≤ 4m√

π(m+ 1
4)

and ab
(a+b)2

≤ 1
4

where a = (m + 1)l − 1 and b = ml − 1. The LHS of inequality (3) increases

in l. Thus, to verify that d′(l) is positive, it suffices to verify that d′(3) is positive, which holds

because the inequality ((2m+1)3−2)2

(12m−3)
3
2
≥ 2√

4m+1
holds for m ≥ 1.

It remains to show that d(3) > 0 for m ≥ 1. For m = 1 we directly verify the inequality. For

m ≥ 2, we start by obtaining a lower bound on

P (2m− 1,m, 3m+2
6m+1

) =
∫ 3m+2

6m+1

0 P ′(2m− 1,m, q)dq

= 1
2

+
∫ 3m+2

6m+1
1
2

m
(
2m−1
m

)
qm−1(1− q)m−1dq

≥(1)
1
2

+ 3m
2(6m+1)

(
2m−1
m

)(
3m+2
6m+1

)m−1(3m−1
6m+1

)m−1
≥(2)

1
2

+
√

3
π(3m+1)

3m
(6m+1)

(
(6m+4)(6m−2)

(6m+1)2

)m−1
.

Inequality (1) holds because P ′(2m − 1,m, q) decreases on
(
1
2
, 3m+2
6m+1

)
. We use the identity(

2m−1
m

)
= 1

2

(
2m
m

)
and the inequality

(
2m
m

)
≥ 4m√

π(m+ 1
3)

to obtain (2).

Thus, it suffices to prove that(
(6m+4)(6m−2)

(6m+1)2

)m−1
> 6m+1

3m

√
(3m+1)
3(8m−3) .

Because the LHS of the above inequality attains its minimum at m = 2 and the RHS decreases

in m ≥ 2, we complete the proof by verifying it for m = 2.
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