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Distributions with an increasing generalized failure rate (IGFR) have useful applications in pricing and supply chain
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1. Introduction
Let X be a nonnegative random variable with distribu-
tion �, and let ����� = 1−����. We assume that � has
density �. Let ���	� for 0 � � < 	 � � be the support
of X. h���=����/����� is the failure rate of X. X has an
increasing failure rate (IFR) or, equivalently, � is an IFR
distribution if h��� is weakly increasing for all � such that
���� < 1. Lariviere and Porteus (2001) define the general-
ized failure rate of X as

g���= �h����

X has an increasing generalized failure rate (IGFR) and
� is an IGFR distribution if g��� is weakly increasing for
all � such that ���� < 1. Decreasing failure rate (DFR)
or decreasing generalized failure rate (DGFR) distributions
can be defined analogously. Clearly, if X is IFR it is also
IGFR, but the reverse need not hold; many DFR distribu-
tions are IGFR.
Pricing a service illustrates the use of IGFR distribu-

tions. One customer arrives per period, and service takes
one period. The cost of service is zero. Customers privately
observe their valuations, which are independent and identi-
cally distributed according to ����. A firm posting price p
then faces demand D�p� = ���p� and sets p to maximize
revenue, ��p�= pD�p�. An optimal price p∗ must solve

� ′�p∗�=D�p∗�+p∗D′�p∗�= ���p∗��1− g�p∗��= 0�

The uniqueness of p∗ depends on the generalized failure
rate g���. In particular, if g��� is increasing, it can equal
one at only a single point, and the unique p∗ must solve
g�p∗�= 1.

This analysis assumes lim�↓� g��� � 1 and lim�↑	 g���
> 1. Fortunately, g��� has an economic interpretation
that offers guidance when these assumptions fail: g�p� =
−pD′�p�/D�p�, so the generalized failure rate is also the
elasticity of demand. If lim�↓� g��� > 1, demand is always
elastic, and one is best off charging p∗ = � and serving
all customers. If lim�↑	 g��� < 1, demand is always inelas-
tic, and a price increase always increases profits. Hence,
p∗ = 	. Realistic problems must have g��� > 1 for all � > y
for some finite y. Section 3 gives a mild condition guaran-
teeing the existence of such a y.
The above is a simplification of Ziya et al. (2004a) and

has a direct analogue in the supply chain contracting litera-
ture (Lariviere and Porteus 2001). Ziya et al. (2004b) com-
pares the IGFR assumption with other commonly imposed
conditions for unimodality.
The IGFR property is useful, but often difficult to ver-

ify. Here, we examine alternative characterizations of IGFR
distributions that simplify checking that X is IGFR. We
then relate the limit of the generalized failure rate to the
moments of a distribution.

2. Alternative Characterizations of
IGFR Distributions

Let �L���, �L���, and hL��� denote the distribution, den-
sity, and failure rate of XL = log�X�. ��L���= 1−�L���.
Nonnegative random variables X1 and X2 with failure rates
h1��� and h2��� are ordered in the hazard rate order with
X1 being smaller �X1 �hr X2� if h1���� h2��� for all � � 0
(Ross 1983). A function f ��� is log-concave if log�f ����
is concave. A function f �x� y� is totally positive of order 2
(TP2) if for x1 < x2 and y1 < y2,

f �x1� y1�f �x2� y2�− f �x1� y2�f �x2� y1�� 0�
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Theorem 1. The following statements are equivalent:
1. X is IGFR.
2. XL is IFR.
3. X �hr �X for �� 1.
4. f ��� ��= ����/�� is TP2.

Proof. Because ��L��� = ���e�� and �L��� = e���e��,
hL���= g�e�� and h′

L���= e�g′�e��, which establishes the
equivalence of parts 1 and 2. To link parts 1 and 3, note
that the generalized failure rate of �X is g����= g��/��.
Finally, XL is IFR if and only if fL��� �� = ��L�� − �� is
TP2 (Barlow and Proschan 1965), which is equivalent to
part 4. �

Remark 1. Assuming that XL is IFR is thus sufficient for
revenue ��p� to be unimodal. To reach this conclusion
directly, let pL = log�p� so the firm’s objective becomes
�L�pL�=��epL�= epLD�epL�= epL ���epL��

Log-concavity of �L�pL� is sufficient for unimodality, but
�L�pL� is log-concave if and only if ��L��� is log-concave,
which is equivalent to XL being IFR (Barlow and Proschan
1965).

Remark 2. Keilson and Sumita (1982) show the equiva-
lence of 2 and 3. Ma (1999) links 3 and 4 and applies the
characterization given by 3 in a reliability setting. Part 3
implies that as the market scales up in pricing problems, a
supplier selling to a newsvendor sells more (Lariviere and
Porteus 2001), while a service provider charges more (Ziya
et al. 2004a).

Most importantly, Theorem 1 allows us to exploit prop-
erties of IFR distributions. For example, if XL is IFR, so
is �+ �XL for constants ��� > 0. Thus, if X is IGFR, so
is �X� (Paul 2005). (The IGFR property is not generally
preserved by shifts. One can show that if X is IGFR but
DFR, there exists a � such that X+ � is not IGFR.)
The theorem also simplifies verifying the IGFR property.

Suppose that X has a lognormal distribution. It then has a
nonmonotone failure rate and is not obviously IGFR. How-
ever, XL is normally distributed and hence IFR; X must
be IGFR. The following corollary presents two means of
determining whether X is IGFR.

Corollary 1. If either of the following conditions hold,
then X is IGFR.
1. ��e�� is log-concave.
2. ����� is increasing.

Proof. Log-concavity of �L��� or concavity of ��L���
implies that XL is IFR (Barlow and Proschan 1965). The
former reduces to ��e�� being log-concave; the latter to
d�����/d� > 0. �

Note that neither condition requires a closed-form
expression for the cumulative distribution. We apply the
corollary to the beta distribution,

����= ��a+ b�

��a���b�
�a−1�1− ��b−1

for a�b > 0 and 0< � < 1. The first part gives that a beta
distribution is IGFR if b� 1 because
d2 log���e���

d�2
=−�b− 1��e�/2− e−�/2�−2�

Clearly, d�����/d� > 0 for b < 1, and hence all beta dis-
tributions are IGFR.
Theorem 1 also leads to a preservation property.

Corollary 2. Suppose that both X1 and X2 are IGFR.
Then, X1X2 is IGFR.

3. The Moments of IGFR Distributions
IFR distributions have finite moments of all orders (Barlow
and Proschan 1965). This result is derived through a com-
parison to the exponential distribution, which has a con-
stant failure rate. Analogously, IGFR distributions must be
compared to the Pareto ����� = kSk�−k−1 for k > 0 and
� � S > 0�, for which g���= k for � � S. If Xk is a Pareto
random variable with parameter k, the nth moment of Xk

is defined only if k > n.

Theorem 2. Suppose that X is IGFR with support �����
and that lim�→� g��� = $, where $ is possibly infinite.
Ɛ%Xn& for n> 0 is then finite if and only if $> n.

Proof. If $ > n, there exists a y < � such that g��� >
n + ' for all � � y, where 0 < ' < $ − n. Note that
Ɛ%Xn&= Ɛ%Xn �X � y&��y�+ Ɛ%Xn �X > y&���y�. The first
term is finite because Ɛ%Xn �X � y& < yn+1. Define Xy as
X conditional on X being greater than y. Letting hy��� be
the failure rate of Xy , we have hy��� = h��� for � > y�
Further, h��� > �n + '�/� for � > y from the definition
of y. Because �����= exp%− ∫ �

0 h�s�ds& (Ross 1983), Xy is
stochastically smaller than a random variable whose failure
rate is �n+ '�/� for � > y. That is the failure rate for a
Pareto random variable with parameters �y�n+'�. Because
the nth moment of the Pareto is finite, the nth moment of
Xy is also finite.
Now suppose that X is IGFR and that Ɛ%Xn& < � for

n > $. Then, there exists a Pareto random variable with
parameters �z�$ + '� for 0 < ' < n − $ and z > 0 such
that this Pareto random variable is stochastically smaller
than X conditional on X being greater than z. However, the
nth moment of a Pareto random variable with parameters
�z�$+ '� is undefined, and hence the nth moment of X is
undefined, which yields the desired contradiction. �

The theorem generalizes Lemma 2 of Lariviere and
Porteus (2001). Recall that our motivating pricing problem
required the generalized failure rate to exceed one at a finite
point for there to be a finite solution to the firm’s pricing
problem. We now see that it is sufficient to assume that the
distribution of reservation values has a finite mean. Fur-
ther, Theorem 2 allows us to relate IGFR distributions to
a condition used by Van Mieghem and Dada (1999). For a
pricing problem, they require that (a) h���−�n+1�/� have
at most one zero, and (b) lim�↓0 �h��� < n+ 1, where n
is a positive integer. This is satisfied by any strictly IGFR
distribution with a finite �n+ 1�st moment.
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