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We examine the role of reservations in capacity-constrained services with a focus on restaurants. Although
customers value reservations, restaurants typically neither charge for them nor impose penalties for failing
to keep them. However, reservations impose costs on firms offering them. We offer a novel motivation for
offering reservations that emphasizes the way in which reservations can alter customer behavior. We focus
on a market in which demand is uncertain and the firm has limited capacity. There is a positive chance that
the firm will not have enough capacity to serve all potential customers. Customers are unable to observe how
many potential diners are in the market before incurring a cost to request service. Hence, if reservations are
not offered, some may choose to stay home rather than risk being denied service. This lowers the firm’s sales
when realized demand is low. Reservations increase sales on a slow night by guaranteeing reservations holders
service. However, some reservation holders may choose not to use their reservations resulting in no shows.
The firm must then trade off higher sales in a soft market with sales lost to no shows on busy nights. We
consequently evaluate various no-show mitigation strategies, all of which serve to make reservations more
likely in equilibrium. Competition also makes reservations more attractive; when there are many small firms in
the market, reservations are always offered.
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1 Introduction

Restaurant reservations are a curious phenomenon. Customers value them, but restaurants give them away.

Indeed, firms such as TableXchange and Today’s Epicure have tried to profit from the resulting arbitrage

opportunity by creating markets to sell reservations. What makes offering reservations even more remark-

able is that they are costly to provide. Fischer (2005) identifies three costs to offering reservations. These

include additional staff needed to take reservations and added complexity from having to balance the needs

of walk-in customers with commitments made to reservation holders. Even if technology is substituted for

personnel, the restaurant must pay licensing and commission fees to services such as OpenTable. One New

York restaurateur estimates his annual costs of offering reservations at $125,000 (Collins, 2010).

Fischer’s final consideration is no shows. Customers can generally fail to keep reservations without

penalty, but restaurants suffer if they hold capacity for customers that never come. No shows represent a

real problem. Bertsimas and Shioda (2003) report a no-show rate of 3% to 15% for the restaurant they

studied. More generally, rates of 20% are not unusual (Webb Pressler, 2003) and special occasions such as
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New Year’s Eve can push rates to 40% (Martin, 2001).

Why then should restaurants offer reservations? One reason is the operational benefits they provide.

Reservations regulate the flow of work. By staggering seatings, a restaurateur can assure that waiters are

not overwhelmed by a rush of customers followed by the bartender and kitchen being swamped with orders.

Reservations thus allow fast service without excessive capacity (Fischer, 2005). Reservations would then

be appealing when either customers are delay sensitive or the firm’s costs increase with arrival variability.

Further, reservations may allow a restaurant to estimate demand and improve staffing and sourcing decision.

This is particularly important when variable costs are high. Chicago-based Alinea is known for intricate,

multicourse menus. It requires that customers make reservations. To the extent that Alinea incurs significant

expense in preparing for its guests, knowing how many are coming on a given night is crucial.

We abstract from these issues and focus on reservations’ ability to influence consumer behavior and thus

increase sales. We consider a restaurant with limited capacity whose sole decision is whether or not to offer

reservations. (Our model also applies to other firms that serve both reservation and walk-in customers and

whose revenues depend on choices customers make after they arrive for service.) At the time reservations

are made (assuming they are offered), customers are uncertain how they will value the service at the time of

consumption. Customers learn their valuations before traveling to the service facility. Since there is a fixed

cost to accessing the facility, those with low realized values fail to keep their reservations. If reservations are

not offered, customers learn their value for the service and decide whether to walk in for service. Walking

in incurs a travel cost and a risk of an additional penalty if one cannot get a seat.

We assume the market-size is uncertain and takes one of two values. The firm can serve all customers

on a slow night, but it lacks the capacity to serve everyone on a busy night. When reservations are not

offered, customers risk not getting a seat despite having incurred the cost to travel to the firm. This is costly

to the firm on slow nights since some customers who would have had a positive net utility from dining out

choose to stay home. Reservations counteract this by guaranteeing all customers in the market a seat on a

slow night. However, reservations also impose a penalty on the firm because some sales will be lost to no
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shows on busy nights. The restaurant hence faces a trade off as reservations are valuable in a weak market

but costly in a strong one. We derive conditions under which this comparison favors offering reservations.

That is, reservations may indeed be recommended. Further, we explore various strategies for limiting the

impact of no shows. We also show that competition can make offering reservations even more attractive. In

a market with many firms, it is unlikely that none of the firms will offer reservations.

Below, we review the literature. §3 presents the basic model while the following section analyzes the

trade off between reservations and relying on walk-in traffic. §5 evaluates strategies of mitigating no shows.

§6 examines the impact of competition. §7 concludes. Proofs are in the Appendix.

2 Literature review

The existing literature on reservations or advance sales emphasizes pricing or segmentation. In Png (1989),

a firm with limited capacity sells to risk-averse customers who are uncertain of their need for a service

at some future point. The firm offers reservations and overbooks; bumped customers receive a specified

compensation. Reservations act as insurance and allow for higher prices than either selling outright in

advance or selling in the spot market. Dana (1998) considers a competitive market with capacitated firms.

Market segments differ in their willingness to pay and the certainty with which they need service. If those

with low valuations are more certain to need the service, the firms sell some capacity early at a discount but

raise the price closer to the time of service delivery. In DeGarba (1995), advance selling allows the firm

to capture the same revenue as first-degree price discrimination. Xie and Shugan (2001) and Shugan and

Xie (2005) develop similar ideas. (See Courty, 2000, and Shugan, 2002, for reviews.) None of this work

addresses the restaurant industry. Restaurants do not charge in advance, and menu prices are independent

of holding reservations. Also, they do not publicize compensation schemes for reservation holders denied

service. Further most of these papers focus on monopoly settings (Dana, 1998, and Shugan and Xie, 2005,

are exceptions) while we extend our analysis to competitive environments.

Dana and Petruzzi (2001) study a newsvendor model in which customers incur a cost to shop. The stock-

ing level thus affects demand. They focus on determining the stocking level and do not consider altering
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the timing of sales. Deneckere and Peck (1995) examine similar issues in a competitive environment. We

take the restaurant’s capacity as exogenous but allow reservations. See Netessine and Tang (2009) for more

on the role of strategic consumers in operations management.

Appointment systems have been widely studied, particularly in health care. See, for example, Robin-

son and Chen (2003) or Savin (2006). Gupta and Denton (2008) provides a survey. This work generally

ignores strategic consumer actions. Lariviere and Van Mieghem (2004) consider delay-sensitive consumers

choosing arrival times. An appointment system allows them to pick sequentially and results in an arrival

pattern that minimizes both period-to-period variation in arrivals and total delay costs. Customers are not

allowed to decline seeking service. We ignore delay costs but explore how reservations can increase sales

by encouraging more customers to come in.

There have been some studies applying revenue management to restaurants. Thompson (2010) provides

a review and notes that existing research does not clearly state under what conditions reservations should be

offered. We show that reservations are advantageous when demand is uncertain if the no show rate is suf-

ficiently low. Bertsimas and Shioda (2003) consider how many reservations a restaurant should accept and

how to accommodate walk-in customers given reservation commitments. Both demand streams are exoge-

nous. Here, offering reservations changes the number of customers patronizing the firm. Çil and Lariviere

(2010) examine a model with two segments, one of which will only patronize the firm if reservations are

offered while the other incurs a cost to walk in. They examine how capacity should be allocated between

the segments and show that it may be optimal to save no capacity for late arriving walk-in customers even if

they are more valuable to the firm. We focus on a single segment who can be served either with or without

reservations and focus on the question of whether reservations should be offered at all.

3 Model fundamentals

We consider one restaurant serving customers in a single sales period. Customers are a priori homogeneous.

The net utility from planning to stay home is normalized to zero. Each customer incurs a cost T ≥ 0 to

travel to the restaurant whether or not she holds a reservation. A walk-in customer who fails to get a seat
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incurs a denial cost D ≥ 0, which represents the inconvenience of changing plans. A strictly positive denial

cost implies that the opportunities open to a customer who has been turned away are not as attractive as the

customer’s outside option of not visiting the restaurant. Note that while both T and D are costs incurred by

customers, they are not paid to the firm.

While a priori homogeneous, customers are ex post differentiated by their value for dining out. Each

customer draws a valuation V independently from a known, continuous distribution, F (V ) with density

f (V ) and support (0,Ω) for Ω > T . F̄ (V ) = 1 − F (V ). One should interpret V as the customer’s

valuation net of expected payment to the firm. This is without loss of generality as we take the firm’s

pricing policy as fixed. Customers learn their valuations before incurring the travel cost. Hence, only those

whose realized valuation V exceeds T will even consider patronizing the restaurant. We will term V − T

the customer’s net utility.

The number of customers in the market is uncertain and takes one of two levels, θ or 1with θ > 1.1 High

demand occurs with probability ρ for 0 < ρ < 1. Market demand uncertainty does not reflect variation over

observable conditions (e.g., Fridays are busier than Tuesdays) but variation given specific circumstances.

One should interpret the model as saying that given that it is Friday night, the restaurant will be busy with

probability ρ. Customers and the firm cannot learn the market size until they interact. That is, the firm learns

it is a busy night from the number of customers that request service while customers can update their belief

on whether it is a busy night based on whether they are able to get a reservation or receive service.

Customers are atomistic; they are sufficiently small relative to the market that the only aggregate un-

certainty is the total number of customers in the market. Thus, while it is uncertain whether any specific

consumer will have a positive net utility from dining out, the number of customers interested in dining out

is certain to be θF̄ (T ) on a busy night and F̄ (T ) on a slow night.

The firm’s sole decision is whether to offer reservations. Its menu and pricing are fixed, and the expected

spending is the same for all customers regardless of their realized value for dining out. The restaurant’s

1 More generally we could have demand as taking values θH and θL with θH > K > θL where K is the

firm’s capacity. Setting θL = 1 represents a normalization of demand and capacity to economize on notation.
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objective is thus to maximize unit sales. The firm can serve K customers per evening where we assume

that every customer requires the same amount of capacity. That is, we are not differentiating based on party

size. One can interpret the model as assuming that all arrivals to the restaurant are parties of the same size.

We assume θF̄ (T ) > K > 1. On a slow night, the restaurant can serve everyone who would have a

positive net utility to dining out but cannot do so on a busy night.

Events proceed as follows. The firm announces its policy. The number of customers in the market is

realized but is not observed by either the firm or individual customers. If the restaurant offers reservations,

customers simultaneously decide whether or not to ask for one. Requesting customers learn immediately if

they are successful. Subsequently, each customer learns her valuation V . Reservation holders then decide

whether to use them while non-holders simultaneously decide whether to walk in. As customers arrive,

reservation holders are seated first. If the number of walk-in customers exceeds the available capacity, seats

are rationed randomly. Thus, if M reservations have been given out and κ > K −M customers walk

in, the probability of any one walk-in customer being seated is (K −M) /κ. This implicitly assumes the

restaurant does not realize a given reservation holder is a no show until it is too late to give her seat to a

walk-in customer. (We will discuss allowing the firm to re-offer the seats of no shows in §5.) If reservations

are not offered, customers wait to learn their valuations and then decide whether or not to walk in. If the

number of walk ins exceeds capacity, seats are rationed randomly.

4 Analysis: Walk ins versus reservations

To determine whether reservations are recommended we need to contrast firm sales under two policies,

offering reservations and relying solely on walk-in traffic. We examine the latter first.

4.1 The no reservation case

When reservations are not offered, a customer with realized valuation V faces a lottery. By spending the

travel cost T , she either receives a benefit of V or incurs a penalty of D. The probability of getting a seat is

thus critical to her decision. Let δ denote her anticipated probability of getting a seat. Her expected utility

from walking in is δV − (1− δ)D − T , and she will walk in if δ ≥ T+D
V+D . Since all customers have the
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same chance of getting a seat, anyone with realized valuation V 0 ≥ V will also walk in if the customer

with value V walks in. Thus, the equilibrium between customers will be in the form of a cutoff strategy

in which all customers whose valuations exceed some value V ∗ ≥ T attempt to receive service. Because

all customers are treated equally, the probability of being seated will be given by the fraction of demand

that is satisfied from the available inventory, i.e., by the fill rate (Cachon and Terwiesch, 2009). See Dana

and Petruzzi (2001) for a concise proof. Deneckere and Peck (1995) also provide a proof which utilizes a

customer’s ability to update her belief about the size of the realized market from the fact that she is actively

in the market.2 If only those with valuations exceeding V ∗ walk in, the chance of getting a seat is:

δ (V ∗) =
F̄ (V ∗) (1− ρ) +Kρ

F̄ (V ∗) (1− ρ+ ρθ)
. (1)

Proposition 1 Suppose the restaurant does not offer reservations.

1. The unique equilibrium has all customer with valuations greater than V ∗ walking in to the restaurant,
where V ∗ is found from

F̄ (V ∗) =
ρK (V ∗ +D)

ρθ (T +D)− (1− ρ) (V ∗ − T )
. (2)

The equilibrium probability that an arriving customer gets a seat is T+D
V ∗+D .

2. F̄ (V ∗) > K/θ, and V ∗ is increasing in ρ.
3. The firm’s sales are

(1− ρ) F̄ (V ∗) + ρK. (3)

In equilibrium, the marginal customer must be indifferent between walking in and staying home. Hence,

it must be the case that there is a positive chance of not being seated, i.e., we must have θF̄ (V ∗) > K

and the restaurant is oversubscribed on busy nights. At the same time, some customers with a positive net

valuation stay home so the number of customers walking in on a slow night is just F̄ (V ∗) . Thus, while

the restaurant fully utilizes its capacity on busy night, it loses some potential sales on slow nights. Demand

2 More precisely, suppose that there are Θ ≥ θ potential customers from which nature chooses to have in

the market on a given evening. If the market is small, a customer’s chance of being selected is 1/Θ. If the

market is large, her chance of being chosen is θ/Θ. The customer’s ex post belief that the market is large is

then ρ̂ = θρ
(1−ρ)+θρ . δ (V

∗) then equals 1− ρ̂− ρ̂ K
θF̄ (V ∗)

.

7



uncertainty is essential to this last point. As ρ goes to zero and demand is certain to be low, V ∗ goes to T

and the only customers who stay home are those with a negative net utility for dining out.

It is straightforward to show that V ∗ increases with θ, T , and D, but falls in K. Further, consider two

valuation distributions, F and G, and let V ∗F and V ∗G be the corresponding cutoffs. If F (V ) ≥ G (V ) for all

V , V ∗F ≤ V ∗G. A higher cutoff value does not translate into a smaller crowd. The chance a walk-in customer

gets a seat falls as V ∗ increases (holding T constant and D constant). A better restaurant (in the sense

of stochastically larger valuation distribution) is more crowded. Also, as less capacity is available, fewer

customers walking in does not offset the loss of seats; the chance of getting a seat falls as K decreases.

4.2 Reservations and the restaurateur’s problem

For simplicity, suppose the restaurant’s entire capacity is offered via reservations. (We relax this assumption

in §5.) It does not overbook, so reservation holders are guaranteed seats. (We discuss overbooking in

§5.) If demand exceeds K, reservations are rationed randomly. We do not a priori assume reservations

eliminate walk ins; if fewer than K reservations are given out, the restaurant will accept walk-in customers.

However, in equilibrium, a restaurant will not serve both reservation customers and walk ins. To see why,

let V = E [max {0, V − T}] . V is a representative customer’s expected value for holding a reservation.

Because V ≥ 0, all customers request one, and the restaurant commits all of its capacity to reservations.

Recall that the firm is unable to re-offer the seats of no-show reservation holders. A customer who was

unable to secure a reservation consequently does not walk in because she knows that she will not get a seat.

If the restaurant offers reservations, it will give out 1 on a slow night and K on a busy night. Its sales

will then be

(1− ρ) F̄ (T ) + ρKF̄ (T ) . (4)

Comparing (4) and (3) allows us to determine when reservations are recommended.

Proposition 2 The restaurant offers reservations if

(1− ρ)
¡
F̄ (T )− F̄ (V ∗)

¢
≥ ρKF (T ) . (5)

Reservations are never offered if

F (T ) ≥
(1− ρ)

¡
1− K

θ

¢
1− ρ+ ρK

. (6)
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Reservations alter the behavior of some customers whose realized valuations fall between T and V ∗.

When reservations are not offered, these customers are certain to stay home since their expected reward is

too small relative to the cost of walking in. If, however, reservations are offered and they manage to secure

one, they patronize the firm. On slow nights, everyone in the market receives a reservation, and the firm’s

sales are thus certain to increase. The outcome on busy nights is less sanguine. When reservations are not

offered, capacity is fully utilized on busy nights. Hence, it is not possible for reservations to increase the

firm’s sales. Instead, they lower sales. The firm pre-commits capacity to customers who ultimately do not

want service (i.e., have realized valuations below T ) and thus become no shows. Note that no shows occur

on slow nights as well but are not costly because capacity does not bind; a no show on a slow night does not

prevent the firm from serving a willing customer. No shows on busy nights leave seats empty that would

have been full if the firm had relied solely on walk-customer traffic.

If the firm opts to offer reservations, it must be that the gain on slow nights outweighs the loss on busy

nights. Reservations are consequently important on evenings in which the firm has plenty of available seats

but are costly when the place is hopping. That is, the restaurant offers reservations not to manage demand

when business is good but to entice more customers to come in when demand would otherwise be slow.

To the extent that a firm’s demand varies systematically over the week, this view of reservations suggests

that the firm may want to vary its policy over the week. For example, it may take reservations on Tuesdays

but not on Fridays. Intuitively, if weekend nights are almost certain to be busy, reservations are too costly

because they very frequently idle capacity while only rarely boosting slow-night sales. If weekday nights

are more likely to be slow, the penalty of idle capacity is less relevant while the increased traffic on slow

nights is beneficial. Some restaurants such as Audrey Claire in Philadelphia, Café Iberico in Chicago, and

Naam in Vancouver actually follow such a policy, taking reservations on weekdays but not on weekends.

Costly no shows are essential to our story: The trade off goes away if they are not an issue. If customers

knew their valuations when making reservations, sales in the high state would be K, and the firm would

always offer them. Alternatively, if the no show rate F (T ) is too high, reservations are never offered, as
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the bound given in (6) demonstrates. The right-hand side is decreasing in K and ρ. Hence, for any given no

show rate there exists a capacity level or chance of a large market sufficiently high that reservations would

never be offered.

Proposition 3 Suppose that for a given set of parameters K, θ, D, and T and valuation distribution F,
(5) holds and the firm prefers offering reservations.

1. The restaurant would offer reservations for any K 0 such that 1 < K 0 ≤ K.
2. The restaurant would offer reservations for any θ0 ≥ θ.
3. The restaurant would offer reservations for any D0 ≥ D.
4. The restaurant would offer reservations for any valuation distribution G larger than F in the reversed

hazard rate order.3

5. The restaurant would offer reservations for any T 0 ≤ T0 if F (ψT ) /F (T ) is decreasing in T for
ψ > 1.

Offering reservations becomes more attractive (in the sense that the gain from offering reservations

relative to relying in walk ins increases) as shrinking capacity or an increasing denial penalty further limits

walk-in demand. Similarly, when a larger valuation distribution raises the walk-in cutoff, reservations

become more attractive. Together these give the empirical predictions that smaller restaurants or better

quality restaurants (in the sense of higher valuation distributions) are more likely to offer reservations.

The roles of T and ρ are less clear. A higher travel cost lowers both reservation and walk-in sales.

Reservation sales fall because no shows increase in all states. Walk-in sales fall because a higher T implies

a higher V ∗, lowering sales in the low demand state. The first effect dominates, and reservations become

less attractive as T and the resulting no-show rate increases. The required regularity condition holds for

many common distributions.

While reservation sales increase linearly with the probability of high demand, walk-in sales are not

necessarily monotone in ρ. It is consequently difficult to generate comparative statics analytically. However,

we know that sales with and without reservations are equal as ρ falls to zero but relying on walk ins is always

better for ρ sufficiently high. This suggest that the gains from offering reservations are not monotone in ρ.

3 For distributionsF andGwith respective densities f and g, F is smaller thanG in the reversed hazard rate order

if f(V )
F (V ) ≤

g(V )
G(V ) for all V ≥ 0 (Shaked and Shanthikumar, 1994).
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Figure 1: Percent change in sales when moving from not offering reservations to offering reservations. F (v) = v for
0 ≤ v ≤ 1,D = 7/4, and θ = 5.

Figure 1 show that this can, indeed, be the case. The percentage increase in sales peaks at intermediate

values of ρ while the location of the peak tends to be at lower values of ρ for higher travel costs. Further, as

discussed above, the gain from reservations is higher when capacity is tight.

5 Mitigating no shows

In the preceding analysis, no shows create a trade off. The restaurant wants to offer reservations in order

to increase sales on slow nights but must weigh this gain against sales lost to no shows when demand is

high. The firm then has an incentive to limit the impact of no shows. Here, we consider four such strategies:

re-offering seats, overbooking, implementing a partial reservation policy, and imposing a no-show penalty.

We first consider each mitigation approach in isolation but consider interactions between them at the end of

this section.

5.1 Re-offering seats

In our base model, no shows translate directly into lost sales. Alternatively, one might suppose that at least

some reservation holders call to cancel or that the restaurant only briefly holds seats for late-arriving reser-

vations customers. In either scenario, the firm would have some capacity that although initially committed

to reservations holders can be offered to walk-in customers. Here we suppose that a fraction λ ∈ [0, 1] of
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the capacity held for no shows is made available to walk-in customers. If K reservations are given out,

λF (T )K seats will be available for walk ins.

We also suppose customers rationally anticipate that capacity will be available. The availability of re-

offered seats is only relevant when customers have been denied reservations (i.e., on busy nights). With

a single segment, these customers are the only ones who might walk in. Thus, we are assuming that

customers are willing to walk in even though they know that all capacity had been previously committed to

reservations.

Given these assumptions, it is straightforward to show that customers who were denied reservations use

a cutoff equilibrium. They know that it is a busy night and walk in if their valuation exceeds some value

Vλ > T . The resulting number of walk ins (θ −K) F̄ (Vλ) must exceed the available number of seats

λF (T )K.

In such a setting, the firm’s sales when offering reservations are

(1− ρ) F̄ (T ) + ρK
¡
F̄ (T ) + λF (T )

¢
,

and the restaurateur prefers relying on reservations over walk ins if

(1− ρ)
¡
F̄ (T )− F̄ (V ∗)

¢
≥ ρK (1− λ)F (T ) . (7)

Comparing (7) with (5), we see that re-offering seats lowers the costs of no shows and makes offering

reservations attractive over a larger range of parameters. In particular, as the fraction of seats re-offered λ

goes to one, offering reservations is always the best policy. To the extent that the restaurant can affect λ

(e.g., limiting how long it will hold tables for late arrivals), it will seek to increase λ as much as possible.

5.2 Overbooking

Re-offering seats copes with no shows ex post. The restaurateur could instead compensate for no show ex

ante by overbooking. Anticipating that not all customers will keep their reservations, the restaurateur could

simply give out reservations above the restaurant’s capacity much as airlines overbook flights. On a busy

night, the firm would simply give out K/F̄ (T ) reservation yielding K actual patrons. The restaurant then
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enjoys the best of both worlds, maximizing sales on a slow night (as we have said reservations would) while

keeping the restaurant full utilized on a busy night (as we have said relying on walk ins would).

Before proclaiming overbooking as the solution to the restaurateur’s problem, we must acknowledge

that limitations of our model oversimplify evaluating an overbooking policy. First, because we have as-

sumed that customers are atomistic, the firm’s overbooking problem is trivial. When K/F̄ (T ) reservations

are given out, our model expects exactly K customers coming in and never has excess capacity or (more

importantly) delayed customers. A more insightful model would have to incorporate discrete customers so

there is a possibility that the firm has more than K reservation customer arriving for service.

Further a proper model of overbooking would also have to explicitly consider the sequence of arrivals

over time. Overbooking in service systems with sequential arrivals and processing is challenging subject

because high yields at some point in the planning horizon can impose delays that persist after customers

who arrived in an overbooked period have left the system. See, for example, Muthuraman and Lawley

(2008) or Liu, Ziya, and Kulkarni (2010). Finally, these potential delays introduce an additional difficulty

in analyzing overbooking. A customer with, say, a 7:30 reservation presumably values be seated at 7:30

more than being seated at 8:00. The potential delays that overbooking introduces thus systematically lower

the expected value of keeping one’s reservation. Hence, the no show rate a firm sees will not be independent

of its overbooking policy.

The complications from overbooking have led one guide on restaurant management to opine on over-

booking “[B]ut there is always the chance that everybody will show up. That is a nightmare no maitre d’

wants to experience. It is unwise to play these odds. ... It is better to book the dining room to capacity

and replace any no shows with last-minute calls or spur of the moment arrivals.” (The Culinary Institute of

America, 2001, p 58)

5.3 Partial reservations

Re-offering seats limits the cost of no shows by increasing the salvage value of capacity while overbooking

adds an additional supply of customers. An alternative approach is to minimize the exposure to no shows
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by limiting the number of reservations given out. Thus far, we have assumed that the firm makes its entire

capacity available via reservations. Clearly, this is suboptimal. The firm would not offer reservations if it

were sure that demand was going to be high. Once reservation requests exceed the low demand level of

one, the restaurateur knows demand is high and could do better by refusing any more reservation requests.

Giving out additional reservations increases the number of no shows but does nothing to increase demand

on slow nights.

We now study allowing the firm to set a reservation level M such that 0 ≤M ≤ 1;K−M seats are thus

available for walk-ins customers. We suppose that capacity unclaimed by no shows cannot be re-offered

(i.e., no shows result in lost sales). We again assume that customers are again willing to consider walking in

even if they have been denied a reservation. These customers follow a cutoff equilibrium with those whose

realized value for the service exceeds VM walking in.

While the structure of the equilibrium is intuitive, the behavior of VM is not immediately obvious. On the

one hand, fewer walk-in customers are in the market (relative to the no reservation case) since some already

hold reservations. This suggests that VM should be decreasing in M. However, there are two countervailing

forces. First, those customers are competing for less capacity since M seats have already been allocated to

reservation holders. Second, being denied a reservation is informative since this is more likely to happen

when demand is high. The following lemma shows that these latter factors dominate and that a smaller

fraction of customers will walk in as more capacity is given out.

Lemma 1 VM is increasing in M .

Given this equilibrium behavior, the restaurant’s sales are

Π (M) = (1− ρ)
¡
MF̄ (T ) + (1−M) F̄ (VM)

¢
+ ρ

¡
MF̄ (T ) +K −M

¢
= MF̄ (T ) + (1− ρ) (1−M)F̄ (VM) + ρ (K −M) .

Note that the first term is increasing in M. Since VM is increasing in M, we then have that the other terms

are decreasing.

14



Proposition 4 Suppose that the firm makes 0 ≤M ≤ 1 seats available via reservations.

1. If
(1− ρ)

¡
F̄ (T )− F̄ (V ∗)

¢
≥ ρF (T ) , (8)

then M = 1 is optimal.
2. If (8) fails, then M = 0 is optimal.
3. Reservations are never offered if F (T ) ≥ (1− ρ)

¡
1− K

θ

¢
.

Out of a continuum of possibilities, only two reservations levels need to be considered. M either max-

imizes sales on a slow night or is set to zero. For intuition on why intermediate reservations are never

optimal, consider the limiting case as D goes to infinity. This would yield a customer equilibrium of

F̄ (VM) =
K−M
θ−M , and firm sales of

MF̄ (T ) + (1− ρ) (1−M)
K −M

θ −M
+ ρ (K −M) ,

which is convex in M. The exact shape of the function can vary; it may be monotonically increasing or

decreasing or may first decrease and then increase. All result in a corner solution. For finite D, F̄ (VM)

generally mimics the behavior of K−M
θ−M , and sales are maximized at either zero or one.

Comparing (8) to (5), we again have that limiting the impact of no shows increases the range of parame-

ters over which reservations are preferred. However, unlike the setting in which all seats can be re-offered,

it is never the case that reservations are preferred regardless of the no show rate. Part 3 of the proposition

shows that for a given no show rate there exists a capacity level and probability of a large market sufficiently

high that reservations are never offered.

5.4 No-show penalties

The previous options manipulate the impact of no shows or the firm’s exposure to no shows but do not alter

the root cause of the problem, the customer’s propensity for failing to come in. Our last alternative directly

lowers the no-show rate. We now suppose that the restaurant charges customers a fee p > 0 when they fail

to keep their reservations. Such charges have existed in the US restaurant industry for well over a decade

(Fabricant, 1996) but remain controversial. No-show penalties currently range from $25 to $175 (Frumkin,

2009). Such charges might seem exorbitant, but restaurateurs insist that the fees are secondary to shaping
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customer behavior. As one New York restaurateur put it “It’s not really about being punitive. It’s about

trying to keep the dining room full.” (Frumkin, 2009)

If a customer holds a reservation and has a realized valuation less than T, she now faces a choice. She

can keep her reservation and receive a net utility of V − T < 0, or she can stay home, pay the penalty

and have a net utility of −p. She thus keeps the reservation if V > T − p and the restaurant experiences a

no-show rate of F (T − p) .

The question then is how the firm should set the no-show fee. An obvious option is p = T which would

eliminate no shows completely. Since this possibility is open to the firm and will result in higher sales than

relying on walk ins, we immediately have that the firm will always prefer reservations to walk ins if it can

charge a no show fee. Remarkably, however, the firm may prefer not to set the no show fee to the travel

cost.

To see this point, note that because no-show fees bring revenue to the restaurant, examining only unit

sales is no longer sufficient. We must compare the margin on no shows with the margin on actually serving

customers. We assume that there are no costs incurred for no shows so the margin on these customers is

p and will denote the margin on serving customers as π. The firm’s expected margin when giving out a

reservation is then

μ (p) = πF̄ (T − p) + pF (T − p) = π + (p− π)F (T − p) for 0 ≤ p ≤ T.

There are two possibilities to consider. First, if π ≥ T, then we must have p ≤ π and μ (p) is increasing

in p. The optimal solution then is p∗ = T, and all no shows are eliminated. Alternatively, if π < T, the

firm can choose a no-show fee such that it makes more money on no shows than on customers who actually

show up while still inducing some no shows. When π < T, this is, in fact, optimal.

Proposition 5 Suppose that π < T and F (V ) is log-concave.

1. The optimal no-show fee p∗ is less than T and satisfies

p∗ = π +
F (T − p∗)

f (T − p∗)
. (9)

2. Consider two valuations distributions F (V ) and G (V ) such that G (V ) is larger than F (V ) in the
reversed hazard rate order. Let p∗F and p∗G be the corresponding optimal no-show fees. Then p∗F > p∗G.
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The optimal no-show fee p∗ is greater than π, and thus the restaurant is better off when customer do not

keep their reservations. The proposition is illustrated by the power function distribution,

F (V ) =

µ
V

Ω

¶k

for k > 0 and 0 ≤ V ≤ Ω,

which yields p∗ = k
k+1π +

1
k+1T. The no-show fee decreases with k, which also corresponds with F (V )

increasing in the reverse hazard rate order.

It may seem unreasonable that a restaurant might set its no-show penalty higher than its margin for

serving customers. But consider the case of New York restaurant Momofuku Ko. It imposes a $150 per

person penalty for reservations cancelled less than 24 hours in advance of the seating time or for which

customers simply do not show up. Momofuku Ko’s dinner offering is a prix fixe menu at $125. While

most diners likely have wine with their meal so the total per-customer revenue exceeds $150, it is plausible

that collecting no-show fees is more profitable than serving customers. Similarly, Chicago-based Alinea

imposes a $100 no-show fee while offering a prix fixe menu at $210. Its gross margin is reported to range

between 8% and 18% (Tanaka, 2011). Obviously, the gross margin accounts for various overhead costs that

would not be included in the per-customer margin. However, it is conceivable that Alinea earns more when

customers fail to show up than when they do.

Finally, we should highlight an implicit assumption behind our analysis. We have throughout assumed

that customers have a positive expected value to holding a reservation and thus all customers in the market

would request one. If the firm imposes a no-show fee, this need not be the case since customers with low

realized valuations end up with a negative net utility. We have thus implicitly assumed that the valuation

distribution puts sufficient weight on large values that holding a reservation has a positive expected value

even if p∗ = T. This holds if E [V ] ≥ T.

5.5 Interactions between mitigation strategies

The various mitigation strategies we have proposed interact in interesting ways and can be seen as com-

plements or substitutes. For example, if the firm is able to re-offer a high fraction of seats, overbooking

(and thus possibly delaying customers) becomes less attractive since fewer seats will be idle. The ability to
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re-offer seats, however, makes a partial reservation strategy more attractive because it effectively increases

the salvage value of unclaimed seats. Conversely, limiting reservations is not consistent with overbooking.

Limiting reservations to M = 1 generates value for the firm by letting it learn that a given night is, in fact,

busy. There is no point in overbooking beyond unless one is willing to offering all capacity via reservations

and overbooking to the level of K/F̄ (T ) .

As for no-show fees, if the firm eliminates no shows, it is indifferent between giving out all of its

capacity or only part of its capacity via reservations. Further, there is no need to overbook since no shows

are eliminated. If the firm sets p∗ < T, then it strictly prefers giving out as many reservations as possible.

If the firm can re-offer a fraction λ of unused seats, it can make money twice on unkept reservations. The

restaurant will not eliminate no shows as long as T > π (1− λ), and the optimal no show fee is decreasing

in λ. When there are greater opportunities to re-offer seats, the restaurant is more tolerant of no shows. If

the firm cannot re-offer seats, overbooking to K/F̄ (T − p)would be attractive since the firm can still profit

from no shows who pay the penalty while having its capacity fully utilized.

6 Competition

We now return to the assumptions of our base model except we suppose there are two restaurants, A and

B. Travel and denial costs are the same for both firms. Restaurant j has capacity Kj for j = A,B. Let

K̃ = KA + KB and α = 1 − β = KA/K̃. We assume 1 ≤ KA ≤ αθF̄ (T ) and 1 ≤ KB ≤ βθF̄ (T ).

Thus either firm could serve the entire market by itself on a slow night, but together they cannot serve all

customers on a busy night even if customers are allocated in proportion to the fraction of industry capacity

they control. This structure keeps the competitive market comparable to our monopoly setting since the

industry as a whole could serve all interested customers on a slow night but not on a busy night. We relax

the assumption that either firm could serve the entire market on a slow night below.

The sequence of events is slightly more involved. Both firms announce their policies, and customers

arrive to the market. If at least one offers reservations, customers wanting one make their requests simul-

taneously before learning their valuations. If both offer reservations, customers seek only one reservation.

18



Once valuations are learned, reservation holders determine whether to use their reservations or stay home.

Customers without reservations wait to learn their realized valuations and determine whether to walk in and

if so to which firm (i.e., they can only patronize A or B). If no one offers reservations, customers choose

whether to walk in (and to which firm) after learning their valuations.

It remains to specify the joint distribution of customer values. We focus on a simple case. Suppose each

customer draws a valuation V from distribution F and her value for dining at A is the same as her value for

B, i.e., VA = VB.

We begin with the walk-in equilibrium. Consider a customer with realized value V > T. Since she

values dining at the two restaurants the same, she goes to the firm offering a better chance of getting a seat.

In equilibrium, the firms must offer the same probability of successfully securing a seat. Suppose customers

with valuations greater than some Ṽ attempt to dine out and randomize between the firms in proportion to

their capacities (i.e., a given customer goes to firm A with probability α and to B with probability β). The

chance of getting a seat at either firm would then be

F̄
³
Ṽ
´
(1− ρ) + K̃ρ

F̄
³
Ṽ
´
(1− ρ+ ρθ)

.

It remains to find Ṽ . Since the chance of a walk-in customer getting a seat is the same as when there is a

monopolist restaurant with capacity K̃, the cutoff can be found from (2). We take this monopoly setting as

the base case against which to compare the competitive outcome.

Now consider A’s problem. Suppose B does not offer reservations. If A also forgoes reservations, its

sales are (1− ρ)αF̄
³
Ṽ
´
+ρKA. If it offers reservations, A gets the entire market in the low demand state.

Expected sales are (1− ρ) F̄ (T ) + ρKAF̄ (T ), and reservations are preferable if

(1− ρ)
³
F̄ (T )− αF̄

³
Ṽ
´´
≥ ραK̃F (T ) . (10)

Comparing (10) with (5), it is easy to see that if B does not offer reservations, A would find reservations

attractive over a larger range of parameters than a monopolist with capacity K̃.

IfB offers reservations andA does not,A’s sales are ρKA. If both offer reservations, they must offer cus-
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tomers the same chance of getting a reservation in equilibrium. A’s sales are consequently (1− ρ)αF̄ (T )+

ρKAF̄ (T ) , and A offers reservations if

(1− ρ)αF̄ (T ) ≥ ραK̃F (T ) . (11)

Proposition 6 Suppose that firm A is the smaller firm so that α ≤ 1/2.

1. The equilibrium has the following structure:

(a) If ρK̃F (T ) ≥ 1−ρ
α

³
F̄ (T )− αF̄

³
Ṽ
´´

, neither restaurant offers reservations.

(b) If 1−ρ
α

³
F̄ (T )− αF̄

³
Ṽ
´´
≥ ρK̃F (T ) > max

n
1−ρ
β

³
F̄ (T )− βF̄

³
Ṽ
´´

, (1− ρ) F̄ (T )
o
,

A offers reservations and B does not.
(c) If 1−ρ

β

³
F̄ (T )− βF̄

³
Ṽ
´´
≥ ρK̃F (T ) > (1− ρ) F̄ (T ), only one restaurant offers reserva-

tions, and it can be A or B.
(d) If (1− ρ) F̄ (T ) > ρK̃F (T ), both restaurants offer reservations.

2. If a monopolist with capacity K̃ would offer reservations, both restaurants offer reservations.

3. If F (T ) ≥ (1−ρ)(1−K̃/θ)
1−ρ+ραK̃ , reservations are never offered.

Competition makes reservations viable over a larger range of market parameters. This is driven by the

smaller firm. The first firm to offer reservations enjoys a windfall in a soft market if its competitor does not

match its policy. This slow-night windfall is larger for the small firm because each firm’s slow night sales are

proportional to the fraction of capacity it controls. The amount of sales lost to no shows is also proportional

to capacity implying that the smaller firm pays a smaller price in the high-demand state . Indeed, the amount

of no shows the larger firm would incur may be sufficiently big that it would rather forego any low demand

sales than lose sales in the high demand state.

Figure 2 provides an example, showing the prevailing equilibrium for combinations of industry capacity

and A’s share of capacity.4 For the given parameters, a monopolist would only offer reservations if K̃ ≤

1.78 but both firms offers reservations for K̃ ≤ 3 (region “A & B” in the figure). As capacity expands, we

move to the region marked “A or B”; here, only one firm will offer reservations and it can be A or B. This

4 Note that we cannot guarantee for a specific set of parameters, that all of the equilibrium possibilities of the

proposition exist. Also, the assumption αK̃ > 1 limits the range of parameters we can consider. In the region

marked NA in the figure, industry capacity is too small relative to the fraction held by firm A and our results

do not apply.
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Figure 2: Equilibrium outcome with F (v) = v for 0 ≤ v ≤ 1 and parameters ρ = 0.2, T = 1/3, D = 1/4, and
θ = 12. Our analysis is not valid in region NA since α < 1/K̃.

is the only region in which there are multiple equilibria. As the split of capacity becomes more skewed, only

A offers reservations as the larger firm now finds it unprofitable to match offering reservations. If capacity

expands sufficiently, walk-in business is robust on slow nights and reservations lead to many no shows on

busy nights. Thus, no one offers reservations.

To generalize these results to N ≥ 2 firms, we consider two cases. In the first, the restaurants are

“lumpy.” Each has capacity greater than one and thus can serve the entire market on a slow night. In the

second case, the firms are arbitrarily small. Any one firm’s capacity is inadequate for serving the entire

market on a slow night, and the amount of industry capacity available via reservations K̃R can take on any

value. In both settings, we assume that in any walk-in equilibrium customers first employ a common cutoff

value and then split in proportion to firm capacities; the cutoff remains Ṽ as discussed above.

Proposition 7 Suppose that there are N ≥ 2 firms in the market and that θF̄ (T ) > K̃ > 1.

1. Suppose the firms each have capacity K̃/N > 1. The equilibrium has the following structure:

(a) If K̃ > N 1−ρ
ρ

µ
F̄ (T )
F (T ) −

F̄(Ṽ )
NF (T )

¶
, no firm offers reservations.

(b) If N
R
1−ρ
ρ

F̄ (T )
F (T ) ≥ K̃ > N

R+1
1−ρ
ρ

F̄ (T )
F (T ) for R = 1, ..., N − 1, then R firms offer reservations.

(c) If 1−ρρ
F̄ (T )
F (T ) ≥ K̃, all N firms offer reservations.

21



2. Suppose the firms are arbitrarily small and F (T ) ≤ (1− ρ)
³
1− 1/K̃

´
. In equilibrium:

K̃R =
1− ρ

ρ

F̄ (T )

F (T )
. (12)

When restaurants are sizeable, the range of industry capacities in which everyone offers reservations

is independent of the number of firms in the market but the region in which no one offers reservations is

decreasing in the number of restaurants. Thus, splitting market capacity more finely makes having at least

one firm offer reservations more likely. The intuition is similar to the duopoly case. The less capacity each

firm has, the less is lost to no shows in the high demand state. However, unless market capacity is severely

limited, not every restaurant offers reservations. Indeed, the amount of capacity available via reservations

RK̃/N will be very close to 1−ρ
ρ

F̄ (T )
F (T ) when N is large.

When firms are small, this holds exactly. A market with many small restaurants will consequently never

have all firms following the same policy. Instead, some will offer reservations and have sales levels that

do not vary with the realized number of customers. Those that do not offer reservations will make do with

boom-and-bust sales. On busy nights, they are turning customers away; on slow nights they are empty.

Before closing this section, we return to our strategies for mitigating no shows and consider their ef-

fectiveness in a duopoly. Re-offering seats, overbooking (given our simplifying assumptions) and partial

reservation policies will remain attractive to the firm in a competitive market. None of these strategies

affects the customer’s decision of whether to ask for a reservation or from whom to ask for one. Thus

each strategy serves to reduce the cost of no shows and will expand the range of parameters over which

reservations are offered.

The story for no-show penalties is less positive. Suppose that problem parameters are such that with-

out no-show penalties, restaurants in a duopoly would both offer reservations. If we now allow no-show

penalties, the firms would still offer reservations but not impose no show-penalties. To see why consider

the customer’s problem. She is indifferent to holding a reservation from either firm if they impose the same

no show penalty p∗. However, if one of the firms drops its penalty from p∗ to p∗ − ε, all customers would

prefer this firm. It would get all of the market on a slow night while incurring only a trivial penalty on busy
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nights. Its competitor then has an incentive to cuts its no-show penalty as well. The firms are effectively

pushed into undifferentiated Bertrand competition which ultimately drops the price to zero.

If instead only one firm offers reservations in equilibrium, it can demand a no-show penalty and enjoy

higher profits. This would expand the range over which reservations are part of the market equilibrium.

There is a caveat. Relative to the monopoly case, the firm imposing a no-show penalty faces an additional

constraint in the duopoly setting. No-show penalties lower a customer’s expected utility, but now she has

the option of patronizing the other firm. If the no-show fee is sufficiently high, some customers may opt to

wait to learn their valuations and then walk in to the competitor.

7 Conclusion

We have examined whether a restaurant should offer reservations with an emphasis on the ability of reser-

vations to shape customer behavior. Uncertain demand is central to our model. Customers cannot a priori

verify whether demand is high or low. Consequently, slow nights are exceptionally slow when reservations

are not offered because customers with low valuations stay home rather than risk being denied service.

Reservations address this problem by guaranteeing potential diners seats, generating more demand in a

slack market. The downside is sales lost to no shows in a large market. Thus, reservations are valuable

to the restaurant when business is slow but costly when demand is high. In contrast, customers would not

value reservations if they knew the market were small but would prize them highly on busy nights.

No shows are hence also crucial to our model, and the restaurateur has an incentive to reduce their impact.

If the firm can re-offer the seats of no shows to those initially denied reservations, offering reservations

becomes more attractive. The firm might also limit the number of reservations given out. We show that it is

either optimal to not take reservations or offer just enough capacity via reservations to serve a small market

completely. Alternatively, the restaurant may impose a no-show penalty and completely eliminate no shows.

While it is always possible to eliminate no shows, the firm may prefer to allow some if its margin on serving

customers is sufficiently small. Finally, the firm may choose to overbook, taking additional reservations on

busy nights to offset the anticipated number of no shows. In our simple model, this eliminates no shows
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essentially for free although in practice overbooking introduces significant complications.

Our results carry over to competitive environments. Competition expands the range of parameters over

which reservations are offered. This is particularly true for a smaller firm, and a market with many small

firms almost certainly has some firms offering reservations.

Together, these insights suggest several emprical predictions. For example, reservations are most at-

tractive to firms facing significant demand uncertainty (measured by ρ (1− ρ)) . This follows from two

observations. First, reservations are not offered when ρ approaches one and demand is all but certain to

be high. Second, as ρ goes to zero, offering reservations and relying on walk ins result in the same profit.

Hence, if there are any administrative costs to reservations, they are easier to recoup when demand uncer-

tainty is higher. Our model also predicts that reservations are most attractive to smaller firms. The rate at

which customers walk in when no reservations are offered increases in the firm’s capacity. Smaller firms

thus see a bigger jump in slow-night sales from offering reservations while paying a smaller price in terms

of no shows on busy nights. Further, this effect is amplified in competitive markets. Finally, our model

suggests that as the number of restaurants in a market increases, reservations should be more prevalent.

However, in a very large market, it should not be the case that all firms follow the same strategy.

While we have offered a unique perspective on reservations, it is certainly not the only reason a restau-

rant may offer free reservations. We have purposefully suppressed reservations’ operational benefits to

emphasize their impact on consumers. To the extent that the firm can use reservations to manage the flow

of work or forecast demand, we have systematically underestimated their value. Further, firms may use

reservations to segment customers, relying on them to attract customers with different characteristics. For

example, one might suppose the existence of a segment that will only dine out if they have a reservation as

in Çil and Lariviere (2010). More subtly, in our model, segments could differ in their travel or denial costs.

If a restaurant does not offer reservations, high-cost customers are under-represented among its customers.

Reservations move the firm’s sales mix closer to the underlying market mix. Tweaking the sale mix would

be worthwhile if the segments differ in both their costs and spending proclivities. If high-cost customers are
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more likely to run up large tabs, reservations would be warranted if the gain in the average bill is sufficient

to compensate for the resulting no shows.

Finally, we should note an alternative mitigation strategy we have not covered: simply charge for the

restaurant’s service at the time a reservation is requested. A restaurant would then be much more like an

airline or Broadway theater, and the cost of not showing up for the reservation would be shifted to the

customer. Chef Grant Achatz has implemented this scheme for his new Chicago project, Next Restaurant.

This model has clear advantages. Besides making the firm’s revenue independent of no shows, it allows

for differential pricing across days of the week and times in the evening. It also alters the cash flow of the

restaurant, allowing the firm to book its revenue before having to layout cash for labor and supplies (Wells,

2010).
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Appendix: Proofs
Proof of Proposition 1: In equilibrium, a customer with valuation V ∗ must be indifferent between walking

in and staying home, implying that δ (V ∗) = T+D
V ∗+D . Equation (2) then follows. For uniqueness, note that

the left-hand side of (2) is decreasing in V 0 while the right-hand side is increasing. F̄ (V ∗) must exceed

K/θ because walks in would otherwise be guaranteed a seat regardless of the demand realization and any

customer with a realized valuation V such that T < V < V ∗ would have a positive expected value to

walking in. Given that θF̄ (V ∗) > K, the fill rate (1) is decreasing in ρ for a fixed V ∗; V ∗ must increase

to compensate. Finally, the expected number of walk-in customers is F̄ (V ∗) (1− ρ+ ρθ) and (3) follows

from noting that the restaurant can serve at most K customers on a busy night. ¤

Proof of Proposition 2: Reservations are preferable if they lead to higher sales:

(1− ρ) F̄ (T ) + ρKF̄ (T ) ≥ (1− ρ) F̄ (V ∗) + ρK =⇒ (1− ρ)
£
F̄ (T )− F̄ (V ∗)

¤
≥ ρK

£
1− F̄ (T )

¤
.

For the bound on F (T ), F̄ (V ∗) ≥ K
θ so (1− ρ) Kθ + ρK underestimates walk-in sales. Reservations are

never offered if F̄ (T ) (1− ρ+ ρK) ≤ (1− ρ) Kθ + ρK, which give the bound. ¤

Proof of Proposition 3: For the first part, as K falls, V ∗ increase. Hence, the left-hand side of (5) increases

and the right-hand side falls as K decreases. Results for θ and D follow similarly. For the rest, note that

(5) implies that F (V ∗)
F (T ) ≥

ρK
1−ρ + 1. Let V ∗F [V ∗G] be the equilibrium cutoff for F [G]. If G is larger than

F in the reversed hazard rate order, we have that G (t) ≤ F (t) for all t and F (t) /G (t) is decreasing in

t (Shaked and Shanthikumar, 1994). The former implies that V ∗G ≥ V ∗F ; the latter give F (T ) /G (T ) ≥

F (V ∗F ) /G (V
∗
F ) . We then have

F (V ∗F )

F (T )
≤ G (V ∗F )

G (T )
≤ G (V ∗G)

G (T )
.

For the travel cost, consider T 0 < T and with respective equilibrium cutoffs V 0 and V ∗. Define ψ = V ∗/T

and ψ = V 0/T 0. We first show that ψ0 ≥ ψ. Since T0 > T1, it must be that V ∗ > V 0 and T+D
V ∗+D > T 0+D

V 0+D

because a higher cutoff value means fewer customers walking in which implies a higher probability of

getting a seat. If ψ0 < ψ, we would have to have

T 0 +D

ψ0T 0 +D
>

T 0 +D

ψT 0 +D
>

T +D

ψT +D
,

26



which implies T+D
V ∗+D < T 0+D

V 0+D . Given that ψ0 ≥ ψ, we then have

F (V ∗) /F (T ) = F (ψT ) /F (T ) ≤ F
¡
ψT 0

¢
/F
¡
T 0
¢
≤ F

¡
ψ0T 0

¢
/F
¡
T 0
¢
= F

¡
V 0
¢
/F
¡
T 0
¢
. ¤

Proof of Lemma 1: Let δ
³
Ṽ ,M

´
denote the fill rate when M seats are made available for reservations and

all customers with realized valuations greater than Ṽ walk in. We have:

δ
³
Ṽ ,M

´
=

F̄
³
Ṽ
´
(1−M) (1− ρ) + (K −M) ρ

F̄
³
Ṽ
´
((1− ρ) (1−M) + ρ (θ −M))

= 1− ρ̃ (M) + ρ̃ (M)
K −M

(θ −M) F̄
³
Ṽ
´ ,

where ρ̃ (M) = (θ−M)ρθ
(θ−M)ρθ+θ(1−M)(1−ρ) . Define κ

³
Ṽ ,M

´
= δ

³
Ṽ ,M

´
− T+D

Ṽ+D
. In equilibrium, we must

have κ (VM ,M) = 0 and can then determine ∂VM
∂M through implicit differentiation. We have

∂κ
³
Ṽ ,M

´
∂Ṽ

=
(K −M)

(θ −M) F̄
³
Ṽ
´2 + T +D

(VM +D)2
> 0

and
∂κ
³
Ṽ ,M

´
∂M

= −ρ̃ (M)
θ −K

(θ −M)2 F̄
³
Ṽ
´ + ρ0 (M)

⎛⎝ K −M

(θ −M) F̄
³
Ṽ
´ − 1

⎞⎠ .

Note that since θ > 1, ρ̃0 (M) ≥ 0 and that in equilibrium we must have F̄ (VM) ≥ K−M
(θ−M) (otherwise, walk

ins would be guaranteed a seat). We thus have ∂κ(Ṽ ,M)
∂M < 0 and therefore ∂VM

∂M ≥ 0. ¤

Proof of Proposition 4: Π(1) > Π(0) if

F̄ (T ) + ρ(K − 1) ≥ (1− ρ)F̄ (V0) + ρK,

which simplifies to (8). To show that M ∈ (0, 1) is never optimal, we have

Π(M) = MF̄ (T ) + (1− ρ)(1−M)F̄ (VM) + ρ(K −M)

< MF̄ (T ) + (1− ρ)(1−M)F̄ (V0) + ρ(K −M)

= M(F̄ (T ) + ρ(K − 1)) + (1−M)((1− ρ)F̄ (V0) + ρK)

= MΠ(1) + (1−M)Π(0)

≤ max {Π(0),Π(1)} .
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The sufficient condition for reservations follows from substituting F̄ (V ∗) = K
θ into (8). ¤

Proof of Proposition 5: Setting μ0 (M) to zero yields (8). The log-concavity of F (V ) implies that the

reversed hazard rate is decreasing and that the solution is unique. The second part follows from the definition

of the reversed hazard rate order and the log-concavity of F (V ). ¤

Proof of Proposition 6: First, because F̄ (T )−αF̄
³
Ṽ
´
≥ αF̄ (T ) , (11) implies (10). Next, the conditions

for B to offer reservations are

(1− ρ)
³
F̄ (T )− βF̄

³
Ṽ
´´

≥ ρβK̃F (T ) (13)

(1− ρ)βF̄ (T ) ≥ ρβK̃F (T ) . (14)

Comparing (11) and (13), it is evident that the former always holds if the latter does because β ≥ α.

Comparing (10) and (14), one sees that they are scalings of each other. Hence, the firms would have same

best responses to a competitor offering reservations.

Now suppose (10) fails (as in part 1a of the proposition), it must also be the case that B does not want

to be the first to offer reservations. Also, A (and hence B) would not respond to a competitor offering

reservations by also offering reservations. Thus, no one offering reservations is the only outcome. If,

however, (10) holds while (11) and (13) fail (part 1b), A is willing to offer reservations if B does not,

and B never is willing to offer reservations. If (13) holds but (11) does not, both firms are willing to

offer reservations if the other does not do likewise. Since (11) fails, neither will match the others offering

reservations. Hence, one firm will offer reservations and it can be either A or B. If (10) and (11) both hold,

offering reservations is a dominant strategy for A and B’s best response is to offer reservations (part 1d).

For part 2, (5) immediately implies (11) and both offer reservations. The proof of the final is similar to

the corresponding part of Proposition 2. ¤

Proof of Proposition 7: With lumpy firms and no one offering reservations, a firm earns π0 = (1− ρ)
F̄(Ṽ )
N +

ρ K̃N . If one firm offers reservations, it makes π1 = (1− ρ) F̄ (T ) + ρ K̃N F̄ (T ) . π0 > π1 requires K̃ >

N 1−ρ
ρ

µ
F̄ (T )
F (T ) −

F̄(Ṽ )
NF (T )

¶
. If R ≥ 1 firms offer reservations, a firm offering reservations earns πR =

(1−ρ)F̄ (T )
R + ρ K̃N F̄ (T ). A firm without reservations makes πNoR = ρ K̃N . πR decreases monotonically
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with R while πNoR is independent of R. For R firms to offer reservations in equilibrium, it must be the case

that πR ≥ πNoR ≥ πR+1, which leads to (1b). For (1c), one compares πN and πNoR.

For the case of small restaurants, we first show that given F (T ) ≤ (1− ρ)
³
1− 1/K̃

´
the equilibrium

must involve reservations. Suppose that no firm offered reservations in equilibrium. Letting k be the

capacity of a representative firm, this would require:

(1− ρ)
k

K̃
F̄
³
Ṽ
´
+ ρk ≥ k (1− ρ) F̄ (T ) + ρkF̄ (T ) = kF̄ (T ) ,

which implies F (T ) ≥ (1− ρ)
³
1− F̄

³
Ṽ
´
/K̃
´

but (1− ρ)
³
1− F̄

³
Ṽ
´
/K̃
´
> (1− ρ)

³
1− 1/K̃

´
.

Next, we show that K̃R cannot be less than 1. For 1 > K̃R > 0, the profit of a firm offering reser-

vations is kF̄ (T ) and is constant in K̃R. The profit of a firm not offering reservations is π
³
K̃R

´
=

(1− ρ)
³
1− K̃R

´
k

K̃−K̃R
F̄ (VR) + ρk, where VR is the equilibrium appropriate cutoff value for those cus-

tomers who were not able to get a reservation. One can easily show that π0
³
K̃R

´
< 0. Hence, as more

firms offer reservations but K̃R remains less than one, those not offering reservations have an increasing

gain from offering reservations. Consequently, K̃R < 1 cannot be an equilibrium. In equilibrium, the two

policies must offer the same returns, which leads to (12). ¤
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