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Motivated by recent innovations in service delivery such as ride-sharing services and work-from-home call

centers, we study capacity management when workers self-schedule. We assume that agents determine for

themselves whether or not to work in a given period. The service provider thus seeks to maximize its profit

(revenue from served customers minus capacity costs) when it controls capacity only indirectly. Agents choose

when to work based on the compensation offered and their individual availability. To guarantee adequate

capacity, the firm must offer sufficiently high compensation.

These novel service platforms provide a variety of benefits to the firm, the agents and the service’s users.

However, our analysis shows that self-scheduling can impose costs on the firm and its customers. Relative

to the setting in which the firm can dictate when agents work, the firm has lower profits and the customers

a higher chance of not being served. Furthermore, in the face of time varying demand, self scheduling

results in lower service level in high demand periods. We show that the firm has an incentive to increase

its pool of agents in order to drive down the compensation rate it must offer. If the firm must offer a

minimum compensation rate, it no longer chooses an arbitrarily large pool but it does limit agent flexibility

by restricting the number of agents that can work in some time intervals. Our key results are robust to the

agent-compensation mechanism and to the pricing capability of the firm.
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operations, Uber.

1. Introduction

Staffing in service environments is a challenging problem. Firms must control costs while assuring

adequate capacity to serve demand. In tackling this problem, managers have always maintained

an important trump card: the ability to tell workers when to work. The overall construction of the

schedule might involve worker preference, union rules, or government regulations but, at the end of

the day, each worker has been told when she is expected to begin and end her shift. Furthermore,

these directives have been backed by implicit (and often explicit) consequences for not adhering to

an assigned schedule.

In many novel service settings, however, firms are surrendering this power. Instead of ordering

workers to punch in and out at appointed times, firms are allowing agents to create their own

schedules, choosing whether and when to work based on personal preferences. We are not speaking

here of professional knowledge workers who are given flexible schedules as long as projects are

completed on time. Rather, we are focusing on industries such as ride-sharing services (e.g., Uber
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and Lyft), work-from-home call centers (e.g., Arise Virtual Solutions and LiveOps), or delivery

services (e.g., Instacart) which must have capacity available to service demand as it arises.

These service providers have put themselves in a tenuous position. On the one hand, they need

to provide their customers with good service. Ride-sharing services, for example, compete against

conventional taxis and public transportation in part by emphasizing their availability. In the words

on Uber’s chief executive, “Uber is ALWAYS a reliable ride.” (Kalanick 2012). Delivering on these

commitments requires capacity; without adequate staffing, these service providers will fail to honor

their obligations.

On the other hand, these service providers promise their agents1 flexibility and cannot simply

dictate when they should work. Grocery shopping service Instacart, for example, states that its

delivery agents can create their own flexible schedule on its recruiting page.2 Work-from-home call

center LiveOps makes a similar pitch:

“As a LiveOps independent agent, you can benefit from a highly flexible and rewarding oppor-

tunity. ... As an independent contractor providing services to LiveOps’ clients, you are your

own boss!”3

Flexibility and control of one’s schedule are important to agents. In a study of Uber drivers (con-

ducted for Uber), 85% of respondents cited the ability “to have more flexibility in my schedule”

as a motivation to drive for the company (Hall and Krueger 2015). Additionally, Lyft and Uber

have pointed to the fact that drivers set their own schedules in contesting lawsuits on whether

drivers should be deemed employees or independent contractors (Levine and McBride 2015). Con-

sequently, these firms cannot simply renege on allowing agents to self-schedule. They must instead

use incentives schemes to induce the right number of agents to be available at the right time.

A service provider must also assure that its agents have adequate earnings over time. Some of

these firms aggressively recruit and compete with each other for agents.4 There are blogs that

inform about work conditions in competing services.5 Firms are consequently rightly concerned

when websites ask whether a particular company is a “work-from-home scam”6 or when former

1 Describing the people serving customers for these firms requires some finesse. Generally, those answering calls or
driving customers are not employees. Rather, they are independent contractors whose continued relationship with
the service provider is dependent on achieving a minimal level of performance (e.g., an Uber driver rating) over time.
We will generally refer to those serving customers as agents.

2 www.instacart.com/shoppers. Accessed April 17, 2015.

3 http://join.liveops.com/ Accessed August 28, 2014

4 http://www.forbes.com/sites/ellenhuet/2014/05/30/how-uber-and-lyft-are-trying-to-kill-each-other/

5 http://therideshareguy.com/category/lyft-vs-uber/

6 See workathomemoms.about.com/od/callcenterdataentry/a/arise.htm accessed on Aug 28, 2014.
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agents complain in public forums that a firm is “the worst company ever” offering “below average”

pay.7

The provider’s problem can thus be understood as managing agent participation on two different

time scales. On a longer-term basis (measured in weeks or months), the firm must maintain an

adequate pool of eligible agents. In order to keep agents in the pool, the firm must ensure that

agents earn enough to make collaborating with the firm an attractive opportunity. On a short-term

basis (measured in hours or less), it must attract enough – but not too many – agents for each

time interval over some horizon to maximize its profit while achieving a desired service level.

The goal of this paper is to examine how a firm that allows its agents to self schedule solves this

problem. We consider a firm that must staff a service system facing time-varying arrivals over a

horizon. The firm recruits a pool of agents who in each period choose whether or not to work. A

given agent’s willingness to work varies with each period as she draws an availability threshold at

the start of each period. Thus, given the terms the firm offers, an agent may want to work this

morning but then be unavailable this afternoon.

The firm has three control levers at its disposal. First, it can set the pool size – that is, how

many agents it recruits and qualifies to serve customers. Since training agents takes time, the pool

size is set at the start of the horizon and cannot be adjusted based on the demand in a given

period. The second lever is the compensation offered to agents who work in a period. This can

vary from time period to time period. For most of our analysis, we assume the firm offers a fixed

compensation for each time interval (e.g., $15 per hour). However, we demonstrate that the firm

can achieve identical results if it instead used alternative compensation schemes, such as a piece

rate, that depend on the number of customers an agent serves. Finally, we allow the firm to impose

a cap on the number of agents that are active in a period. That is, we allow the firm to tell an

agent she cannot work in a given time interval even though she is willing to do so.

We employ a newsvendor setting and find that the optimal decision is an elegant variant of

the classical critical fractile solution. Specifically, suppose that the firm offers agents a wage of

η and receives revenue p from successfully serving a customer. Under conventional staffing (i.e.,

assuming that the firm can order any number of agents to work in a given period), the firm would

employ enough agents so that the probability of turning customers away is η
p
. The corresponding

probability under self-scheduling, however, is η
p

+ F (η)

pf(η)
, where F is a distribution governing agent

availability and f its density.

We immediately have that self-scheduling is costly to the firm. The firm chooses a lower staffing

level than it would if it could dictate when agents work (assuming the same wages) resulting in

lower profits. This in turn is costly to customers who face a higher chance of not being served.

7 See www.glassdoor.com/Reviews/Employee-Review-LiveOps-RVW2743190.htm accessed on Aug 28, 2014.
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Poor customer service is exacerbated when demand varies over the horizon. We consider a horizon

with both high and low demand periods (in the sense of having a stochastically larger or smaller

demand distribution). The service provider offers agents higher pay in high demand periods and

thus makes more capacity available. However, the service level customers see falls.

We also demonstrate the firm needs to use all three control levers – particularly capping the

number of active agents – when it must satisfy a nontrivial constraint on agent earnings. Absent an

earnings constraint (i.e., when the firm only needs to consider gaining adequate agent participation

in each period), the firm has incentive to make its pool of agents as large as possible. It is then able

to offer relatively low wages in both high and low demand periods and still induce enough agents

to work. Once there is a constraint on agent earnings, however, the firm cannot slash wages. This

drives up costs both because it pays more and because that higher pay induces too many agents to

work. In particular, low-volume periods will be overstaffed. Capping the number of active agents

addresses this problem. Note that this implies that agents must sacrifice some scheduling flexibility

in order to guarantee a minimum compensation level.

The necessity of a cap does not go away if one replaces a per-period wage with a piece rate.

However, its role changes. Under a per-period wage, a cap keeps the firm from paying for agents

it does not want at the prevailing wage. Under a piece rate, the cap keeps excessive competition

between agents from diluting agents’ earnings.

Our work is related to the literature on principal-agent models (see Salanie 1997 and Laffont

and Martimort 2009 for reviews). Classical principal-agent models focus on hiring an agent to

exert effort for the benefit of the principal when the agent’s actual effort cannot be observed. The

principal must consequently be concerned with both directing the agent’s action as well as gaining

the agent’s participation. Our model does not consider explicit effort in serving customers. In effect,

we assume monitoring is sufficient to assure that agents provide the appropriate level of effort.

Consequently, our attention is squarely on assuring agent participation.

There has also been some work in the operations literature looking at two-sided markets that

match tasks with service providers (e.g., see Allon et al. 2012 and Moreno and Terwiesch 2014).

In these papers, individual clients arrive looking to buy a specific service (e.g., coding a smart

phone app) that can be carried out by one individual. The question then is how different rules

or information structures affect market performance. In our case, the service provider commits to

serving customers with homogeneous requests that any available agent can handle. The question

is then not how one job gets matched with one agent, but how the firm can assure it has sufficient

capacity to meet demand.

To our knowledge there is only one other paper that explicitly deals with self-scheduling agents.

Ibrahim and Arifoglu (2015) consider a firm facing a two-period staffing problem. Each agent prefers
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one period over the other but each is certain to work in some period. The firm must then decide how

many agents to induce to work in each period given a queuing structure with abandonments. We

consider an arbitrary number of periods and our model manipulates agent availability as opposed

to preferences for specific periods.

2. Model

We consider a service provider selling to customers over a horizon composed of T time intervals.

In period t (for 1≤ t≤ T ), the firm’s revenue is determined by the number of available agents and

market conditions. Let At denote the number of agents available in period t and A = (A1, . . . ,AT ).

We assume that each agent can serve one customer per period making the firm’s staffing level

equivalent to its capacity. We assume that market conditions in period t are captured by a proba-

bility distribution Gt. That is, the actual demand in period t, Dt, is drawn from Gt. One expects,

for example, Gt to exhibit day of the week or time of day seasonality (e.g., demand for ride sharing

services is highest at rush hour). Let G = (G1, . . . ,GT ).

Let Rt (At,Gt) denote the firm’s revenue in a period with At available agents and market condi-

tions Gt. Then,

R (At,Gt) = pSt (At) = p

(∫ At

0

xgt (x)dx+AtḠt (At)

)
, (1)

where g is the density of G, which we assume to be strictly positive, and Ḡ = 1−G. Note that

St (At) represents expected unit sales in period t given staffing level At. Note that the retail price p

is fixed over the horizon. In §4, we allow the firm to choose p. The firm’s revenue over the horizon

is RT (A,G) =
∑T

t=1Rt (At,Gt) .

We assume that the firm pays agents ηt for being available in period t. For now, we assume that

compensation is implemented through a per-interval compensation (e.g., paying $15 per hour). We

discuss alternative compensation schemes in §4. The firms profit at period t is then given by

Π(At,Gt) =R(At,Gt)− ηtAt,

and its profit over the horizon by ΠT (A,G) =
∑T

t=1 Π(At,Gt)

Given η, the firm would like to use staffing levels A∗ that maximize ΠT and schedule A∗t agents to

be available in period t. However, under self scheduling it cannot directly order At agents to work.

Instead it must offer sufficient compensation to induce that many agents to choose to work. We

suppose that the firm has a pool of N qualified agents. Interpret N as the number of agents that are

affiliated with (or belong to) the network of a firm, who have been trained to serve customers. In

the case of a ride sharing service such as Uber, the pool would consist of all drivers in a geographic

area that have been through the firm’s review process. Thus, N is the maximum number of agents
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that could potentially work in a given period. However, it is not the case that all pool members

will work; some may find the firm’s offered compensation in that period to be insufficient.

We model variation in agents’ availability to work by assuming that each agent has an availability

threshold for each period. An agent may thus be available for work this morning because they have

drawn a low threshold but be unavailable this afternoon or tomorrow morning because they have

drawn a significantly higher threshold. More formally, each agent draws an availability threshold τ

from a distribution F at the start of each period. Agents are assumed to be statistically identical

and independent of each other. The distribution does not vary over time, and a given agent’s draw

for period t is independent of her draw for any other period. We consider having F depend on the

time period in §4. We assume that F is continuous with a strictly positive density f on a support

(0,Φ). Let F̄ (τ) = 1− F (τ) . We assume that F is log-concave, a condition that holds for many

common distributions (see Bergstrom and Bagnoli 2005).

Agents are risk neutral and seek to maximize their earnings subject to only working in periods

in which they expect to earn more than the availability threshold they have drawn for that period.

Thus, an agent with realized availability threshold τ in period t makes herself available to work if

the firm offers compensation ηt greater than τ . The total number of agents interested in working

in period t is then NF (ηt). Note that we are implicitly appealing to the law of large numbers by

assuming that the pool of qualified agents is sufficiently large that working with average number

of available agents is a reasonable approximation of the actual number of available agents.

The firm’s problem is then to maximize ΠT (A,G) by manipulating its available control levers.

We consider three. The first is the pool size N. Since training agents takes time, this decision must

be made up front. The pool size is thus constant over the horizon. The second variable is the agent

compensation which is allowed to vary from period to period. Finally, the firm may impose a

cap Kt on the number agents allowed to work in period t. If, under the offered compensation, the

number of interested agents, NF (ηt), exceeds the number the firm wants, it can choose to limit

access only to the number it needs. With a cap Kt, the staffing level is At =NF (ηt)∧Kt. Allowing

the possibility of an access cap requires some assumption regarding how the firm chooses from

among interested agents. We will assume random rationing : the agents who work in an interval are

chosen randomly from amongst those that are interested.8

To this basic problem we can add a constraint related to agent welfare. As discussed in the

introduction, firms have an interest in assuring that they are seen as providing good opportunities

for workers. We model this by imposing a constraint on the agents’ compensation. We consider a

per-period earnings constraint that requires ηt ≥ β for all t= 1, . . . , T , i.e., that the compensation

8 Other rationing mechanisms are possible; for example, Netessine and Yakubovich (2012) discuss several settings in
which better workers are given priority.
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offered on each interval exceeds a certain value. In a setting with a long repetitive horizon (as in

virtual call centers where consecutive weeks are similar), this is equivalent to requiring that agents

get sufficient earnings on any “type” of interval on which they work. If β ≡ 0 the firm faces no

earnings constraints.

Given these considerations, we can write the general form of the firm’s optimization problem as

max
η,N,K

ΠT (A,G)

s.t. At =NF (ηt)∧Kt, t= 1, . . . , T, (Participation)

ηt ≥ β, t= 1, . . . , T. (Earnings)

3. Analysis

In this section we establish the following three key results:

(i) Theorem 1: Participation is costly to both firm and customers. Relative to a setting where

it can summon the necessary agents for a “industry standard” market wage, the firm is going to

have a smaller profit, staff with fewer agents and, in turn, provide a lower service level.

(ii) Theorem 2: Agents are better off in high demand periods (their compensation is higher) but

customers are worse off (their service level is lower).

(iii) Theorem 3: In the presence of earnings constraints, the firm must use all of the tools in its

toolbox. To maximize its profit, it is necessary for the firm to cap access in low demand periods

but not necessarily in high demand period. Thus, an earnings guarantee comes at a cost to agents

– their flexibility to self-schedule will be compromised.

We will further show that these findings are robust to whether the firm pays a per-period wage

or a piece rate. However, the role of the cap changes between these settings; see §4.

3.1. The cost of self scheduling

To begin, we assume that customer arrivals are identically distributed in each period, i.e., Gt ≡
G, and hence drop the dependence on the time period from the notation. We first optimize the

compensation level assuming that the pool size is ample, that the firm does not consider earnings

constraints (i.e., β = 0), and that no access caps are used.

The firm then maximizes R(A,G)− ηA where

R (A,G) = pS (A) = p

(∫ A

0

xg (x)dx+AḠ (A)

)
, (2)

The following lemma is immediately derived from the first-order condition.

Lemma 1 The unique optimal compensation level η∗ satisfies

G (NF (η∗)) = 1−
η∗+

F(η∗)
f(η∗)

p
. (3)
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The uniqueness of η∗ follows from the logconcavity of F, which implies that the reversed hazard

rate
f(η∗)
F (η∗) is monotonically decreasing. In the mechanism design literature, η∗+

F(η∗)
f(η∗) is known as

the virtual cost. That is, the decision maker acts as if her marginal cost is η∗+
F(η∗)
f(η∗) even though

she pays agents only η∗.

It is instructive to contrast how many agents the firm induces to work under self scheduling

to the number it would order to work in a natural benchmark problem. Specifically we take as a

benchmark a staffing problem in which the firm can order any number of agents to work at given

rate η:

Π∗(η) := max
A

pS (A)− ηA,

which has the solution A (η) given by

G (A (η)) = 1− η
p
. (4)

The following theorem shows that self-scheduling (specifically, the participation constraints)

reduces the staffing (hence service level) as well as the firm’s profit. (All proofs appear in the

appendix.)

Theorem 1 For any given N ≥ 0, the participation constraint decreases the firm’s staffing level

and profit , i.e., NF (η∗)≤A (η∗) and Π(NF (η∗),G)≤Π(A (η∗) ,G).

We thus have a clear statement that self-scheduling is costly to the firm. It ends up with fewer

agents (and thus less revenue) than it would want to have at the compensation rate η∗. Intuitively,

the benchmark newsvendor analysis holds the cost of capacity constant, so increasing the number

of agents does not increase the cost of capacity that the firm already has. Under self scheduling,

increasing the compensation rate to draw in more agents means paying more for the agents that

were willing to work at a lower rate. Customers also pay a price as they have a greater chance of

not receiving service if the firm opts for self scheduling.

The extent of the difference in outcomes between the self-scheduling setting and the benchmark

newsvendor depends on problem parameters. We next consider how the pool size, the retail price

and the distribution of the agent’s availability threshold affect the firm’s actions. To this end, we

write η∗F to capture explicitly the dependence of the optimal agent compensation on the availability

threshold distribution.

Lemma 2 The firm’s profit increases as either N increases, p increases, or the availabil-

ity threshold distribution decreases in the reversed hazard rate order: i.e., Π(NF1(η
∗
F1,N

),G) ≥
Π(NF2(η

∗
F2,N

),G) given F1 and F2 if

f1 (τ)

F1 (τ)
≤ f2 (τ)

F2 (τ)
.
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The compensation rate for agents decreases as either N increases or the availability threshold dis-

tribution decreases in the reversed hazard rate order. Agent compensation increases as p increases.

Finally, the service level increases as either N or p increase.

A large pool promises more agents with low availability thresholds, which allows for a lower

payment to agents. Additionally, since F (η)

f(η)
is increasing in η, (so that it decreases as η decreases)

we also have that the gap in the service level offered by a firm allowing self-scheduling and one

solving the benchmark newsvendor problem also falls. Consequently, while self scheduling is less

profitable, a self-scheduling firm sacrifices little when it has a large pool of agents.

Holding the pool size fixed, a smaller distribution of availability thresholds means that a greater

fraction of the pool is available at any compensation rate, which increases the firm’s profit. As the

retail price increases, agent compensation also increases. However, these gains are not so large that

they result in a lower firm profit. Also, customers who pay more may reasonably expect better

service.

Notice that Lemma 1 makes no claim about the dependence of the service level on the threshold

distribution. This is because a clear statement cannot be made as Figure 1 illustrates. Demand

is uniform over [0,100] while the availability threshold is one of two power function distributions,

F1(x) = x for 0< x < 1 or F2(x) = x2 for 0< x < 1. Note that F2 is larger than F1 in the reverse

hazard rate ordering. The left-hand panel of Figure 1 shows that, as stated in Lemma 1, the offered

compensation falls as either the pool size increases or the availability distribution decreases (from

F2 to F1). The right hand panel shows, however, that the lower compensation rate under a smaller

distribution does not necessarily translate to a higher service level. For smaller pool sizes, customers

see a higher service level when agents have the larger availability threshold distribution F2. This

relationship is reversed when the pool size is large. Intuitively, two countervailing forces are at
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Figure 1: The impact of pool size and availability threshold distribution on agent compensation
(left-hand panel) and service level (right-hand panel)
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play. On the one hand, a smaller threshold distribution means that more agents will be willing

to work for any value of η, which favors a higher service level. On the other, a smaller threshold

distribution means that the firm faces a higher virtual cost for any value of η, which argues for

a lower service level. Larger pool sizes amplifies the former effect causing it to be the dominating

force as the number of agents grows.

3.2. The role of an earnings constraint

To this point, we have ignored any constraint on agent earnings. We now consider the impact of

such a constraint. First, it is obvious that if η∗, for a given N , is greater than β (where η∗ is

determined by (3)), the earnings constraint is not binding and the firm can use η∗. If η∗ < β, the

firm optimally sets the compensation per interval at β and gets NF (β) interested agents. The

following is a characterization of the firm’s optimal decision.

Lemma 3 The optimal solution with earnings constraints has η∗ = β and N∗ = Ḡ−1 (β/p)/F (β).

For all values of N 6=N∗ such that η∗N <β, the firm can strictly increase its profit by setting a cap

and the optimal cap is set at A (β).

Given a large enough pool, an earnings constraint eliminates any difference between self schedul-

ing and the benchmark problem. If N ≥N∗, the self-scheduling firm is able to attract all the agents

it wants at compensation β – just as we assumed in our benchmark problem. Hence, its staffing

level and profit are the same as under the benchmark problem.

3.3. Time-varying demand

Note that when the firm is allowed to choose the optimal pool size N∗, capping the number of

agents that work is not necessary if demand does not vary. The cap is important when we move

to a time-varying environment as we now show. Suppose that there are two types of intervals (low

and high) with respective demand distributions Gl and Gh, such that Gh is stochastically greater

than Gl in the sense of first order stochastic dominance. Let us assume that there are Tl intervals

of low demand and Th of high demand. The firm thus faces the problem of maximizing

ΠT (A,G) := p (TlSl(Al) +ThSh(Ah))− (ηlTlAl + ηhThAh),

where Si (i = l, h) is as in (2) with G replaced by Gi. Let η∗i,N be the solution to (3) when the

demand distribution is Gi, i= l, h, the pool size is N , and K =∞. Let Ai (β) = Ḡ−1i (β/p) be the

solution to (4) with η= β and the demand distribution Gi, i= l, h.

Theorem 2 Fix N and suppose that β = 0. Then, the optimal compensation is lower on low

demand periods, i.e., η∗l,N ≤ η∗h,N , and the staffing level is, consequently, lower. The service level is,

however, higher in low demand periods.
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Theorem 3 Suppose that β > 0. Then, every optimal solution has η∗l,N = η∗h,N = β and N∗ ≥

Ah(β)/F (β) = Ḡ−1h (β/p)/F (β). The assigned capacity satisfies N∗F (β) ∧ K∗l = Al(β) and

N∗F (β)∧K∗h =Ah(β). In particular, in every optimal solution, the firm uses a cap K∗l =Al(β) in

the low demand period.

These theorems offer two important insights. First, the ability to cap the number of active agents

is a crucial to controlling the firm’s costs when it must guarantee a minimum earning level. Without

it, low demand periods would be overstaffed. Second, even with a cap, customers will see worse

service in high demand periods unless the firm has a very large agent pool (i.e., N ≥N∗).

Before closing this section, we make a couple of observations. First, we could consider other

revenue models than the newsvendor. All that is needed for the insights to persist is that the

expected unit sales be increasing and concave in the staffing level. One could, for example, suppose

that sales are given by an Erlang loss model in which recruiting more agents results in fewer loss

sales.

That said, the newsvendor is applicable in a wide variety of settings. Facing significant uncer-

tainty in call volume, a newsvendor model provides a good approximation for call-center opti-

mization; see e.g. Bassamboo et al. (2010). To relate this specifically to our setup, consider a call

center with a single group of servers serving a single type of customers with finite patience. If the

number of agents is A and the call volume comes from a distribution G. Then, S(A) provides a

good approximation for the number of calls served. The average number of calls that abandon is

the expected volume minus those served. If a contract with a client compensates the call center a

p for each call served, the call center is optimizing capacity so as to maximize pS(A)− ηA just as

in our study above. In this way, the self-scheduling newsvendor captures, at least in first order, the

challenges faced by a call-center provider such as Arise Virtual Solutions or LiveOps.

4. Extensions

We now consider three extensions of our base model: (i) alternative compensation schemes in which

agent earnings are tied to the volume of customers served, (ii) a price-dependent newsvendor setting

in which the firm sets both agent compensation and the retail price; and (iii) agents that have

preferences that vary over the horizon.

4.1. Volume-dependent compensation schemes

Thus far the firm, in our model, implemented its policy by paying agents a fixed per-period amount

η∗: an agent that signs-up to work Monday 10:00-10:30 gets η∗ regardless of the number of customers

served. Ride-sharing service such as Lyft and Uber compensate drivers by splitting fares with them.

Similarly, call centers like LiveOps and Arise Virtual Solutions use piece-rate compensation or
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some combination of piece rate and a guaranteed per-interval minimum. The firm might reasonably

prefer some sort of volume-dependent compensation. For example, a piece rate may address moral

hazard issues (that we have left unmodeled) and induce agents to exert more effort. Additionally,

a piece rate is easier on a firm’s finances since it only pays agents when it has been paid by the

client; such a consideration may be important for a nascent firm with limited resources.

Here we show that within our model with risk-neutral agents many reasonable compensation

mechanisms are equivalent. Namely, that there exists a translation from one scheme to the other

that generates the same outcomes in terms of staffing, service level and firm profit.

In particular, we will focus on piece-rate compensation in which an agent earns φt per completed

transaction in period t. To determine how much an agent earns under such a scheme, we need

to know how many transactions she completes. Let Xj
t denote the number of customers agent j

serves in period t. The distribution of Xj
t depends on a several factors including the number of

active agents, the demand distribution Gt, and how the firm allocates work among agents. If some

agents are given higher priority as demand is allocated among working agents, they will earn more

money than those with lower priority. Here we assume that jobs are distributed uniformly among

the active agents.9 Thus, if xt jobs arrive on interval t and At agents are active, each will receive

roughly xt/At jobs. Since xt is random, each agent will receive St(At)/At where St(·) is as in (2)

with G replaced by Gt. An agent’s expected earnings in period t µt = φtS(At)/At and the number

of interested agents is then NF (φtS(At)/At).

Recall that the number of agents interested in working in period t when the firm pays a fixed

amount ηt is NF (ηt). In comparing these values, note that under a fixed rate scheme, an agent

can determine whether or not to work by considering only her own availability threshold. Under

a piece rate scheme, however, an agent must consider both her threshold and what other agents

are doing. We must in this case consider an equilibrium among the agents in which the number of

interested agents is equal to the number that join, i.e, that NF (φtSt(At)/At) =At.

Lemma 4 Fix N , Gt, and φt. There then exists an equilibrium Aet , characterized by the unique

solution to the equation

NF

(
φtSt(A

e
t)

Aet

)
=Aet . (5)

It is a priori conceivable that this equilibrium structure introduces constraints into the firm’s

optimization problem or, in other words, that an optimal solution (N∗, η∗,K∗) to the firm’s opti-

mization problem is not implementable via a piece rate. The following simple argument is a proof

9 For a setting in which routing is non-uniform see Stouras et al. (2013).
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to the contrary: the firm can move from per-interval compensation to piece-rate compensation

without compromising its profits or customer service level.

Suppose that the firm is using a feasible solution (N,η,K) with Ki ≥NF (ηi), i= l, h (so that

access is not really limited). The firm should offer the piece rate φ′ =
(
φ′l, φ

′
h

)
such that

NF

(
φ′iSi(Ai)

Ai

)
=Ai,

where Ai = NF (ηi). Since (N,η,K) is a feasible solution to the firm’s problem, it must be that

N ≥NF (ηi) =Ai so that the existence of φ′ follows from the continuity of F . With this choice of

φ′, the number of agents that sign-up in equilibrium is (using Lemma 4) the unique solution to

NF (φ′iSi(Ai)/Ai) =Ai which must equal Ai by construction.

If (N∗, η∗,K∗) is an optimal solution to the firm’s optimization problem, then the firm can set

the piece rate at φ∗i = η∗iAi/Si(Ai) where Ai =N∗F (η∗i )∧K∗i . With this translation, the optimal

solution (N∗, η∗,K∗) to the firm’s problem with interval compensation is equivalent to the solution

(N∗, φ∗,K∗) with piece rate compensation: (i) the number of agents interested for each interval is

the same (and using the same cap, so is the number of people actually signing-up), (ii) the staffing

level is the same and, hence, (iii) the expected firm profits and customer service level are the same.

There are, however, subtle differences between the piece rate and fixed compensation. First, the

firm’s staffing costs are deterministic under fixed compensation but these costs are variable under

a piece rate. Thus a properly chosen piece rate delivers the same expected profit as the optimal

fixed interval compensation but the realized profit for a given demand outcome differs.

Second, piece rate compensation lessens the impact of increasing the pool size. Under fixed rate

compensation, doubling the pool size while holding the compensation rate constant will double

the number of interested agents. The response to an increase in the pool size is less elastic when

a piece rate is used. If the pool size is doubled while the piece rate is unchanged, the number

of interested agents increases but does not double. Competition between agents dissuades some

agents with availability thresholds less than φ from making themselves available.

Lastly, the cap on the number of active agents plays a different role under a piece rate than under

a fixed per-period compensation. Under the latter, the firm’s labor costs are fixed with regard to

the demand realization. The cap serves to control this fixed cost and prevents the firm from paying

for labor on which it would expect an inadequate return. From this perspective, a cap would seem

to be unnecessary when the firm moves to a piece rate system. Labor is no longer a fixed cost and

unutilized capacity is apparently costless to the firm. That unutilized capacity, however, is costly to

the firm. A large number of available agents reduces everyone’s expected utilization and expected

earnings for a given φ. Competition between agents undermines the firm’s ability to compensate
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agents adequately with a relatively low piece rate. Without a cap, the firm would have to raise the

piece rate driving up its cost of serving customers.

Piece rate and fixed compensation are two extremes. Fixed compensation means agents do not

face any volume risk while under a piece rate they carry all the risk. A two-part tariff (i.e., νt+φtX
j
t )

or a piece rate with a minimum guarantee (i.e., max
{
κt, φtX

j
t

}
) offer intermediate mechanisms.

A call center we have worked with pays agents a piece rate with a guaranteed minimum payment

level. Uber has also been reported to guarantee an hourly rate at some time periods (Kirsner 2014).

Given our analysis for piecerate it is not surprise (and, indeed, can be easily shown) that these

mechanisms are also equivalent, within our model, to fixed compensation.

4.2. Price-dependent newsvendor

Our assumption thus far, that retail price is fixed regardless of whether demand is high or low,

is appropriate in some settings (e.g., a work-from-home call centers). Yet, other services (notably

ride-sharing firms) raise their prices when demand increases. This calls into question one of our

earlier results that customer experience a lower service in high-demand periods. In Theorem 2 we

showed that if the retail price is fixed, an increase in staffing costs results in the firm picking a

lower service level. If now the retail price also increases, it is not clear that it is still optimal to let

customer service level fall.

To examine these issues, we suppose that demand in a low-volume interval given a retail price

p is a random variable ξp with distribution Gl (x|p) and that ξp becomes smaller in the sense of

first order stochastic dominance as p increases. That is, Gl (x|p)≤Gl (x|p̂) for all x for all p≤ p̂.

Next we assume that demand in a high-volume interval for a given price is θξp for some θ > 1. The

corresponding demand distribution is then Gh (x|p) =Gl

(
x
θ
|p
)
. We assume that there is sufficient

structure on Gl (x|p) that the firm has unique, pricing and staffing decisions for both low and high

volume periods (see Petruzzi and Dada 1999).

Letting Si (A,p) be expected unit sales in a type i∈ {l, h} period given staffing level A and retail

price p, one can show that

Sh (A,p) = θSl

(
A

θ
,p

)
.

Now consider the benchmark problem in which the firm can hire as many agents as it wants at

wage η in either period. Let Âi (η) and p̂i (η) be the optimal staffing level and price, respectively,

for a type i= l, h interval. It is straightforward to show that p̂h (η) = p̂l (η) and Âh (η) = θÂl (η) .

Thus a firm which manages its staff in a conventional fashion does not employ period-dependent

pricing; it sticks with the same retail price and adjusts its staffing level to achieve the same service

level in both high and low volume periods.
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This will no longer hold if the firm allows agents to self schedule. Increasing staff above Âl (η)

requires dipping further into the pool of agents which, in turn, drives up staffing cost. Higher costs

then lead to a higher retail price. That is, prices surge higher in this framework not because of the

market structure but because of higher costs.

The fact that the firm uses surge pricing does not yet tell us how service-level behaves and

whether (or not) making the retail price endogenous leads to a departure from Theorem 2. To

examine how the service level varies with demand under self scheduling, we work with a specific

demand distribution. Suppose that Gl (x|p) = x
D(p)

where D (p) is a non-negative strictly decreasing

function. Since demand is uniformly distributed, the expected demand (given a price) p is D(p)

2
.

Let ε (p) =−pD′(p)
D(p)

be the elasticity of expected demand. We assume that ε (p) is increasing, i.e.,

that demand becomes less elastic as the price falls.

We first consider the benchmark problem, which for high-volume periods is written as

max
p,A

pSh (A,p)− ηA.

With the uniformly distributed demand, we have

Sh (A,p) =A− A2

2θD (p)
,

which results in the following first order conditions:

A

θD (p)
= 1− η

p
, (6)

ε (p) =
2
A

θD(p)

− 1. (7)

Equation (6) is the classical critical fractile solution that ties the capacity A to a targeted service

level. Equation (7) relates the service level to the elasticity of demand: the higher the service level,

the lower the elasticity. To go the other way, a higher elasticity corresponds to a lower service level.

Substituting (6) into (7) yields an implicit expression for the optimal price p̂

p̂= η
1 + ε (p̂)

ε (p̂)− 1
. (8)

Equation (8) does not depend on θ. This is a specific instance of our more general argument above

that, in the benchmark problem, the retail price is not sensitive to the scale of demand so the

same retail price is optimal in high and low demand periods. Further, the right-hand side of (8)

is decreasing in p if ε (p) is strictly increasing. Consequently, p̂ is increasing in η so that higher

agent wages move the firm to a higher level of elasticity on the demand curve. Going back to (7),
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a higher elasticity corresponds to a lower service level. Thus when faced with higher staffing costs,

the firm charges more but offers worst service.10

Turning to the self-scheduling setting, the firm’s problem for given a pool-size of N is

max
p,η

pSh (NF (η) , p)− ηNF (η) ,

which yields the following first order conditions (the analogues to (6) and (7))

NF (η)

θD (p)
= 1−

η+ F (η)

f(η)

p
,

ε (p) =
2

NF (η)

θD(p)

− 1.

Comparing the problem of the self-scheduling firm with the benchmark setting, we again see (recall

(3)) that the self-scheduling firm works with an inflated marginal cost of capacity. That higher

cost leads to higher price than one would have in the benchmark problem with wage rate η and,

if ε (p) is strictly increasing, to a lower service level. Further, the chosen compensation rate is now

increasing in θ. Thus a firm that lets its agents self-schedule will charge more but, as in Theorem

2, offer worse service in high-demand periods.

4.3. Period-dependent threshold distributions

In our base model, the distribution of agent threshold values is independent of the period. This is

obviously unrealistic. Many people opt to work for a self-scheduling firm in part because existing

obligations (e.g., having young children) make working a conventional schedule difficult. However,

many of these obligations have a known schedule (e.g., the preschool gets out at the same time

every weekday); this should be reflected in the distribution of threshold values.

Here, we suppose that the distribution of threshold values depends on the time interval of the

horizon. Let ΩT be the set of all time intervals. Let Ωd and Ωu be subsets of ΩT such that Ωd∪Ωu =

ΩT and Ωd∩Ωu = ∅. An agent draws her threshold value for period t from Fd [Fu] if t∈Ωd [t∈Ωu] .

Further,

Fu (t)≤ Fd (t)

for all t. Ωd is then the set of desirable time intervals in the sense that each agent has a higher

probability of drawing a low threshold in these intervals than in the undesirable intervals of Ωu.

Stated another way, a given compensation rate will induce more agents to work in a desirable

interval than in undesirable interval.

10 This conclusion depends on ε (p) being strictly increasing. If D (p) = p−ε̃, the elasticity of demand is constant at ε̃,
making p̂ proportional to η and the optimal service level independent of η.
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When there is no earnings constraint, agent preferences over periods only modestly complicate

the firm’s problem. Let Ωh and Ωl be the collection of time periods in which demand is high or

low respectively. When the threshold distribution that does not depend on the time period, the

compensation offered in period t depends only on whether t falls in Ωh or Ωl. If the distribution

varies with the time interval, compensation in period t depends on whether t lies in Ωd ∩ Ωh

or Ωd ∩ Ωl and so on. The firm must then calculate four different compensation rates using the

appropriate version of (3).

Things get more interesting when the firm must satisfy a non-trivial per-period earning. Now

the firm offers β in every period and the question becomes how large a pool to recruit. Regardless

of whether a high demand period falls in Ωd and Ωu, the firm would want Ah (β) = Ḡ−1h (β/p)

working. The pool size necessary to achieve this staffing level is higher if the period in question

is undesirable. Thus, if Ωu ∩Ωh 6= ∅, the firm sets N = Ah (β)/Fu (β) > Ah (β)/Fd (β) . However,

assuming Ωd ∩Ωh 6= ∅, then preferred, high-volume periods will be overstaffed. Consequently, we

conclude that the firm may cap access to high-volume periods if it must satisfy a non-trivial

earnings constraint and the distribution of agent thresholds varies with the time period.

It is conceptually straightforward (albeit notationally cumbersome) to extend these results to

having two types (say, A and B) of agents each of which has its own set of desirable and undesirable

time periods. Assume that the firm offers the same compensation to both types of agents.11 If

there is no earnings constraint, the firm would now need to have eight different compensation rates

that depend on the demand and whether or not the period is desirable for Type A agents, Type

B agents or both. With a non-trivial earnings constraint, the action turns on how many agents of

each type to recruit. The number of agents will be determined by a subset of the possible kinds of

high-demand periods (e.g., periods that both types undesirable and those that Type A agents find

undesirables but Type B desires but not those periods that both types desire). Caps will not be

necessary in the periods that determine the staffing levels but will in other high-demand periods.

5. Concluding Remarks

We studied a model in which a service provider allows its agents to choose when to work, a scheme

being adopted in many service markets. The firm faces time varying demand over a horizon and

must offer compensation that attracts enough workers to provide an adequate service level. We

show that allowing self-scheduling is costly to both the firm and its customers. The firm picks a

lower service level than it would in a standard newsvendor setting, lowering its profits and making

it harder for customers to get served. These issues are mitigated if the firm can recruit a large

11 This would be appropriate if the agents types (say, stay-at-home parents and college students) affects their avail-
ability but not their productivity.
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pool of agents. As the pool size grows, the firm pays agents less and less and the gap between

self-scheduling and the benchmark newsvendor problem decreases. Of course, agents are worse off.

Interestingly, the gap between self-scheduling and the benchmark problem is also closed if the

firm must guarantee that agents earn some minimum amount per period. Indeed, in this setting

the gap completely disappears. The firm chooses its pool large enough that it can get, on a period-

by-period basis, exactly the number of agents it needs at the guaranteed wage. However, to control

its cost, the firm must cap the number of agents working in some period. That is, if the firm must

satisfy an earnings constraint, it limits the ability of agents to work when they want. This result

is robust to whether firm offers a fixed wage per period or a volume-dependent piece rate.

Our model is an abstraction of reality and there are ways in which it could be extended. For

example, one could consider competition between service providers for agents. Someone who is

qualified to drive for Uber could also choose to drive for Lyft. This has led to competition between

ride-sharing services to attract drivers (Kirsner 2014). It is reasonable to expect such competition

to drive up agent compensation, but the firm might have several ways in which to boost agent

earnings – particularly when the firm employs a piece rate (as is the case in the ride-sharing

industry). A firm could raise the piece rate outright or cap the number of active agents to increase

the utilization of those working. In a monopoly setting, this is a straightforward analysis, but with

competition different firms might follow different strategies.
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Appendix

Proof of Theorem 1: The right hand side of (3) is smaller than that of (4) so that, since G is increasing

in its argument, we must have that NF (η∗)≤A(η∗). For the profit comparison, notice that NF (η∗), would

generate in the benchmark problem the profit Π(NF (η∗),G). Since A(η∗) is, by definition, the optimal

solution for the fixed wages η∗, it must be the case that Π(A(η∗),G)≥Π(NF (η∗),G). 2

Proof of Lemma 2: We first show the monotonicity results for the compensation followed by the service

level and, finally, the profits. It is useful to re-write (3) as

Ḡ(NF (η∗)) =
η∗+ F (η∗)

f(η∗)

p
. (9)

Compensation: That compensation strictly increases with p and strictly decreases with N is evident

from (9). Consider for instance p. Suppose to reach a contradiction that, as p increases, the compensation

η∗ actually decreases. Then, the right-hand-side of (9) decreases by the monotonicity of F/f so that the

left-hand side Ḡ(NF (η)) must also decrease. This would entail (since F is increase and Ḡ is decreasing) that

η∗ increases with p which is a contradiction.

To prove that the compensation increases with the agent availability distribution F notice that, assuming

F2 dominates F1 in the reverse hazard rate ordering,

η∗2 +
F2 (η∗2)

f2 (η∗2)
≤ η∗2 +

F1 (η∗2)

f1 (η∗2)
. (10)

Further, if F1 is smaller than F2 in the reverse hazard rate order, then it is also smaller in the regular

stochastic ordering sense, F̄1(x)≤ F̄2(x) (or F1(x)≥ F2(x)), so that, since Ḡ is decreasing,

Ḡ (NF1 (η∗2))≤ Ḡ (NF2 (η∗2)) (11)

By (9),

Ḡ (NF1 (η∗1)) =
η∗1 +

F1(η∗1)

f1(η∗1)

p
and Ḡ (NF2 (η∗2)) =

η∗2 +
F2(η∗2)

f2(η∗2)

p
,
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so that combining (10) and (11) we have

Ḡ(NF1(η∗2))≤ Ḡ(NF2(η∗2)) = η∗2 +
F2 (η∗2)

f2 (η∗2)
≤ η∗2 +

F1 (η∗2)

f1 (η∗2) .
(12)

Assume now, to reach a contradiction, that η∗2 < η
∗
1. Then, since the right hand side of (12) increases strictly

in the compensation and the left hand side strictly decreases, we would get that

Ḡ(NF1(η∗1))< Ḡ(NF1(η∗2))≤ η∗2 +
F1 (η∗2)

f1 (η∗2)
< η∗1 +

F1 (η∗1)

f1 (η∗1)
,

which contradicts (9). We conclude that η∗1 ≤ η∗2.

Service level: The fact that the service level increases with p is evident from the optimal fractile for-

mula (9) and from the fact, already proved, that the optimal compensation increases with p. Similar is the

observation that the optimal service level increases with N.

Profits: To show that profits increase with the pool size N , take N2 > N1. Let η∗N1
be the optimal

compensation level at N1. Since N2 >N1, N2F (η∗N1
)>N1F (η∗N1

). In particular, we can find η̄ < η∗N1
such

that N2F (η̄) = N1F (η∗N1
). With this η̄, then, the firm gets the same staffing level under (N2, η̄) as under

(N1, η
∗
N1

) and, in turn, the same revenue. The staffing costs are smaller under (N2, η̄) since η̄N2F (η̄) =

η̄N1F (η∗N1
) < η∗N1

N1F (η∗N1
). Thus, the pair (N2, η̄) generates a higher profit for the firm than the pair

(N1, η
∗
N1

). In particular, (N2, η
∗
N2

) generates higher profits that (N1, η
∗
N1

).

An identical argument is used to study the effect of an increase (in the sense of reverse hazard ordering)

in the availability distribution starting with the observation that, since reverse hazard rate ordering implies

stochastic ordering, NF1(η∗F2
)≥NF2(η∗F2

) where N is fixed and η∗F2
is the optimal compensation under F2.

If NF1(η∗F2
) =NF1(η∗F2

), then under F1, η∗F2
generates the same profit as the optimal solution for F1 and, in

particular, the optimal profit under F1 is higher. If the inequality is strict, i.e., NF1(η∗F2
)>NF2(η∗F2

) we can

proceed, as before, by finding η̄ that generates the same staffing and revenue but lower staffing cost. 2

Proof of Lemma 3: Let η∗N be the optimal compensation in (3) when the pool size is N . Suppose that N

is such that η∗N > β. By Lemma 2, the firm’s profits are strictly increasing in N and the compensation is

decreasing in N . Thus, the firm will optimally increase N (and decrease η∗N) until it hits β and we conclude

that any optimal solution must have η∗N = β. The firm’s optimal N , is then given by maximizing (over N),

the profits

Π(NF (β),G) = pS(NF (β))−βNF (β).

This is a standard newsvendor problem so that the optimal level of N is given by the (unique) solution to

Ḡ(NF (β)) = β/p, or, equivalently, N∗ = Ḡ−1
(
β

p

)
/F (β), as claimed.

For the second part of the theorem, take N 6=N∗ with η∗N <β. The firm, to meet, the earnings constraint

must increase the compensation to β in which case NF (β) agents sign up and the firm’s profit is given by

Π(NF (β),G) = p

∫ NF (β)

0

xg (x)dx+ pNF (β) Ḡ(NF (β))−βNF (β).
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Recall that

Π(A(β),G) = p

(∫ A(β)

0

xg (x)dx+A(β)Ḡ(A(β))

)
−βA(β) = p

∫ A(β)

0

xg (x)dx

where we use the fact that, by definition, Ḡ(A(β)) = β/p. There are two cases to consider depending on

whether NF (β)>A(β) or NF (β)<A(β). The case that NF (β) =A(β) is ruled out by the assumption that

N 6=N∗. Suppose that NF (β)>A(β) (the other case is argued identically).

Π(NF (β),G)−Π(A(β),G) = p

∫ NF (β)

A(β)

xg (x)dx+ pNF (β) Ḡ(NF (β))−βNF (β)

Notice that

p

∫ NF (β)

A(β)

xg (x)dx≤ pNF (β)(Ḡ(A(β))− Ḡ(NF (β)),

Thus,

Π(NF (β),G)−Π(A(β),G)≤ pNF (β)(Ḡ(A(β))− Ḡ(NF (β)) + pNF (β) Ḡ(NF (β))−βNF (β) = 0

where we used the fact that Ḡ(A(β)) = β/p. In fact, since NF (β)>A(β) ,

pNF (β)(Ḡ(A(β))− Ḡ(NF (β))> p

∫ NF (β)

A(β)

xg (x)dx

we can conclude that

Π(NF (β),G)−Π(A(β),G)< 0,

so that the firm is better off with the cap. By the definition of A(β) it is immediate that A(β) is the optimal

cap. 2

Proof of Theorem 2: Here we fix N and omit it from the subscript. Recall that η∗l and η∗h are characterized

through the equations

Ḡh(NF (η∗h)) =
η∗h +

F (η∗h)

f(η∗
h

)

p
and Ḡl(NF (η∗l )) =

η∗l +
F (η∗l )

f(η∗
l
)

p

Suppose, to reach a contradiction, that η∗h < η∗l . Then, using the log-concavity of F (which implies, in

particular, that F/f is increasing), we have that

Ḡh(NF (η∗h)) =
η∗h +

F (η∗h)

f(η∗
h

)

p
<
η∗l +

F (η∗l )

f(η∗
l
)

p
= Ḡl(NF (η∗l )). (13)

Since F and G have strictly positive densities F (η∗h) < F (η∗l ) so that (since Ḡ is strictly decreasing)

Ḡl(NF (η∗h))> Ḡl(NF (η∗l )). Using the assumed stochastic ordering we then have that

Ḡh(NF (η∗h))≥ Ḡl(NF (η∗h))> Ḡl(NF (η∗l )),

which is a contradiction to (13). It must be then that that η∗h ≥ η∗l . Consequently, the staffing levels

satisfyNF (η∗h)≥NF (η∗l ). Finally, since F/f is increasing, η∗h +F (η∗h)/f(η∗h)≥ η∗l +F (η∗l )/f(η∗l ) and

Gh(NF (η∗h)) = 1−
η∗h +

F (η∗h)

f(η∗
h

)

p
< 1−

η∗l +
F (η∗l )

f(η∗
l
)

p
=Gh(NF (η∗h))

so that the service level is higher on low demand periods. 2
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Proof of Theorem 3: Consider a pool size N <Ah(β)/F (β) = Ḡ−1
h (β/p)/F (β). We will show that such a

level cannot be optimal. There are two cases to consider depending on how η∗h,N in (3) relates to β.

Case I: η∗h,N < β. In this case, in the absence of the earnings constraint the firm would optimally choose

a compensation level below β. For a given level N , we can treat both types of periods (high and low)

independently and, by Lemma 3, the firm sets its compensation levels at β and utilizes a cap Kl =Al(β) in

the low demand periods where Al(β) is the solution to (4) with demand distribution Gl. In this case the cap

in high demand periods is unncecessary because NF (β)<Ah(β).

The active capacity is then NFh(β) ∧Ah(β) and NFl(β) ∧Al(β) in the high and low demand periods.

Thus, the firm’s profits for values of N <Ah(β)/F (β) with η∗h,N <β is given by

Π̄(N) := ThΠ(NFh(β)∧Ah(β),Gh) +TlΠ(NFl(β)∧Al(β),Gl).

Notice that Π̄(N) is increasing in N . Since η∗h,N is decreasing in N , it continues to hold that η∗h,N < β as

we increase N . Thus, the firm’s profit follows Π̄(N) and is increasing in N and, in particular, any optimal

solution must have N∗ ≥Ah(β)/F (β). If the firm chooses N = Ḡ−1
h (β/p)/F (β) no cap is needed at the high

demand period because NF (β) =Ah(β). A cap is needed in the low demand period unless η∗l,N = η∗h,N = β

(notice that by Theorem 2 it is always the case that η∗l,N ≤ η∗h,N).

Case II: η∗h,N > β. Since the earnings constraint is not binding the firm will use η∗h,N as the optimal

compensation in the high demand period. By Lemma 2, the firm could increase its profit on high demand

period by increasing N . If also, η∗l,N >β, the same applies to low demand periods so that strictly increasing

N is optimal. If η∗l,N < β the firm uses a cap in the low demand period and, as before, the firm’s profit are

increasing in N .

Thus, as long as N is such that η∗h,N > β, the firm can increase its profits by increasing N . Let Ñ be

the smallest pool size such that η∗h,N = β. (Recall that we treat N as continuous variable so that such a Ñ

exists). It must be the case that Ñ ≥Ah(β)/F (β) = Ḡ−1
h (β/p)/F (β). Otherwise, Ḡh(ÑF (β))< β/p but, at

the same time, being a solution to (3), η∗h,N = β satisfies Ḡh(ÑF (β)) = (β+F (β)/f(β))/p≥ β/p which is a

contradiction. We conclude that Ñ ≥Ah(β)/F (β).

Finally, by Lemma 2 if Ñ is strictly greater than Ah(β)/F (β), the firm will set a cap to Kl =Al(β) and

Kh =Ah(β). As above, the firm can then decrease N until it hits Ah(β)/F (β) without decreasing its profits.

At this point no cap is needed in the high demand period because N =Ah(β)/F (β) but it is needed in the

low demand periods if η∗l,N < η
∗
h,N = β. 2

Proof of Lemma 4: Consider the function h(x) :=NF (φS(x)/x)− x. It is easily verified that S(x)/x→ 1

as x→ 0, so that h(x) =NF (φS(x)/x)−x→NF (φ) as x→ 0. Since F is bounded by 1 we have, as x→∞,

that h(x)→−∞. Combined, we just established that both h(x)→−∞ as x→∞ and h(x)→ NF (φ) as

x→ 0. Since F and G have densities the function h(x) is continuous on (0,∞) so that there must exist x0 such

that h(x0) = 0. The fact that this point is unique then follows from the fact that h is monotone decreasing.

Indeed, since S′(x) = Ḡ(x), h′(x) =Nf
(
φS(x)

x

)
φS
′(x)−1

x2
− 1 =−Nf

(
φS(x)

x

)
φ 1−Ḡ(x)

x2
− 1< 0. 2
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