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We consider a supply chain in which a supplier sells products to multiple retailers. When orders from
the retailers exceed the supplier’s capacity, she must employ an allocation mechanism to balance supply

and demand. In particular, we consider a commonly used allocation scheme in the automobile industry: turn-
and-earn, which uses past sales to allocate capacity. In essence, retailers “earn” an allotment of a vehicle after
they sell one. In contrast to turn-and-earn, fixed allocation ignores past sales and gives each retailer an equal
share of the capacity. Earlier work has demonstrated that turn-and-earn induces more sales in a two-period
setting compared to fixed allocation. The question remains unanswered whether turn-and-earn induces similar
behaviors over a long horizon when retailers possess private demand information. We construct a dynamic
stochastic game of order competition over an infinite horizon to track the order dynamics of the supply chain.
We obtain a richer set of equilibrium behaviors than existing models predict. Instead of a symmetric allocation
outcome, we observe that sales leadership may arise in equilibrium and that retailers with different past sales
adopt distinct ordering strategies to respond to demand uncertainty. Transient sales dynamics suggest that
sales leadership may not be persistent and can be eliminated by the occurrence of extremely low demand.
This provides a theoretical explanation for several behavioral observations of some U.S. automobile dealers. In
addition to the sales-inducing effect, interestingly, turn-and-earn also causes the retailers to absorb local demand
variability.
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1. Introduction
Many supply chains share two features: The upstream
supplier has limited capacity, and there are multi-
ple downstream retailers selling to the public. Lim-
ited capacity implies that the supplier will not always
be able to fulfill all the orders she receives. Mul-
tiple retailers imply that when capacity binds, one
retailer’s order can only be filled if someone else’s
order is shorted; that is, some will win while oth-
ers lose. Although they create headaches for retailers,
potential shortages may offer opportunities for the
supplier. Just who will win and who will lose depends
on the allocation mechanism the supplier chooses. An
allocation mechanism is a procedure for converting an
infeasible set of orders into a feasible set of capacity
assignments. There are a large number of procedures
that the supplier could use, and the choice matters.
How the supplier doles out scarce capacity can have
a nontrivial impact on how the retailers order and act,
making the supplier’s allocation scheme a lever for
influencing the actions of her supply chain partners.

We examine these issues by considering turn-
and-earn, an allocation scheme frequently used in

the automobile industry. Under a turn-and-earn sys-
tem, retailers earn higher allocations by selling (i.e.,
turning) more units. Variations of turn-and-earn are
used by most car companies in the United States1

(Lawrence 1996), and some manufacturers are using
it in developing markets as well (Shirouzu 2006).
Having products on allocation is not particular to
the auto industry. Indeed, over the years products
ranging from computers (Zarley and Damore 1996)
and pharmaceuticals (Hwang and Valeriano 1992) to
paper towels and liquid detergent (Harrington 1997)
have been on allocation.

Turn-and-earn has some clear virtues. First, it
“moves the metal,” providing a clear incentive for
dealers to sell cars rapidly as opposed to increasing
the price and holding out for top dollar. When it

1 Another common scheme is balanced-days-supply under which
stock is allocated so that all dealers in a region have the same days
of inventory. Note that this will behave similarly to turn-and-earn
because a dealership can increase its allocation by increasing its
sales rate.
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launched, the Buick Enclave was a hot-selling vehi-
cle and was initially allocated under a controlled
procedure not dependent on sales rate. In January of
2008 it was moved to turn-and-earn to “maximize
growth.” (LaReau 2008) Turn-and-earn also assures
that units are sent to markets where they are most
needed. When Toyota entered the Chinese market,
cars were first allocated according to an annual plan
(the system Toyota uses in Japan). When reality devi-
ated from the plan, some dealers had excess stock,
whereas others had nothing to sell. The firm has since
moved to a turn-and-earn system (Shirouzu 2006).

On the flip side, turn-and-earn has some acknowl-
edged shortcomings. It can lead to high-pressure sales
tactics (Lavin 1994). It has been blamed for induc-
ing dealers to fraudulently distort their sales totals
(Lynch 1997). It also has a propensity to lock in mar-
ket shares. A dealer with a small allocation may
find itself caught in a catch-22: It cannot sell more
without boosting its allocation, but the only way to
increase its allocation is to sell more (Sawyers 1999).
A lagging dealer cannot catch up unless high-selling
dealers reduce their sales rate. This can play out in
several ways. For example, Pontiac tied the allocation
of the Sunfire to the sales of the Sunbird, the model it
replaced. Although the Sunbird had sold well in the
Midwest, it had fared poorly in California. When the
Sunfire proved popular in California, Pontiac had lim-
ited flexibility to allocate more vehicles to that mar-
ket (Child 1995). Toyota has had similar issues, but
in reverse. Its turn-and-earn mechanism had for a
long time directed more stock to the West Coast as
opposed to the Midwest. A recession-induced sales
drop allowed Midwest dealers to catch up. In the
words of one Kansas dealer, “we’ve been asking for
more inventory for two years and now we finally
got it” (Rechtin 2008, p. 1).

Academic research on turn-and-earn has been lim-
ited, and mostly focuses on its sales-inducing effect
(see §2 for a detailed discussion). Some interesting
characteristics of the turn-and-earn system have been
overlooked. For example, how would a dealer with a
large allocation behave differently from a dealer with
a small allocation? Do asymmetric allocations tend
to be locked in, as in the Pontiac example? Or, are
they transitory so that dealers with small allocations
eventually overcome the catch-22 during a time of
slow sales, as in the Toyota example? How does local
demand variation experienced by retailers get propa-
gated in the supply chain under turn-and-earn?

To address these questions, we adopt the Markov-
perfect equilibrium (MPE) framework of Ericson and
Pakes (1995) and construct a dynamic stochastic game
of order competition over an infinite horizon. We fix
the supplier’s capacity and wholesale price through-
out the game but allow the retailers to submit orders

in each period after demand is realized. Demand
varies from period to period with uncertainty com-
ing from two sources: common demand shocks that
are publicly observed and local demand shocks that
are specific and only known to individual retailers.
We prove that the retailers’ decision rule is a thresh-
old policy dependent on their realized local demand.
However, the complexity of the dynamic stochastic
game with incomplete information precludes analyt-
ical closed-form solutions and necessitates numerical
analysis. Pure-strategy MPE exists for our game, and
we solve for them using an iterative algorithm. Our
numerical approach borrows the techniques devel-
oped in the field of computational economics. As far
as we are aware, this paper is among the first to adopt
those techniques to study a supply chain problem.

Using computed MPE, we show that turn-and-
earn induces the retailers to increase sales for the
demand states when the supplier’s capacity is abun-
dant, boosting the supplier’s sales. Moreover, we
obtain a richer set of equilibrium behaviors than exist-
ing models predict. Instead of a symmetric alloca-
tion outcome, we observe that sales leadership may
arise in equilibrium and that retailers with differ-
ent past sales adopt distinct ordering strategies to
respond to demand uncertainty. Sales leadership can
be maintained as long as demand is not extremely low
and the expected return of a larger allocation in the
future is sufficiently high—a situation that may have
occurred in the Pontiac case. Nevertheless, occurrence
of extremely low demand makes sales leadership
too costly to maintain. The resulting excess capacity
provides an opportunity for sales laggards to catch
up—a situation that likely mirrors the Toyota case.
Finally, we demonstrate that turn-and-earn can cause
the retailers to alter their orders in a way that reduces
the demand variability placed on the supplier. That
is, the retailers absorb local demand fluctuations.

In what follows, we first review the related litera-
ture in §2 and then lay out the base model in §3. We
characterize the structure of the MPE in §4. We com-
pute the MPE and analyze the numerical results in
§5. We consider several extensions of the base model
in §6 and conclude in §7. All proofs are relegated
to the online appendix (available at http://msom
.journal.informs.org/).

2. Literature Review
How to allocate scarce supply is relevant in any dis-
tribution system with limited capacity or inventory
whether the system is run by a single decision maker
or made up of independent firms (Zipkin 2000). Here
we focus on allocation schemes in supply chains
made up of independent self-interested firms. Aca-
demic research interest in this area can be traced to
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the seminal work of Lee et al. (1997) on the bullwhip
effect. They acknowledge that turn-and-earn reduces
the bullwhip effect. A well-accepted explanation is
that the bullwhip effect is counteracted because turn-
and-earn separates allocation from current orders and
thus mitigates order inflation.

Work subsequent to Lee et al. (1997) roughly breaks
into two streams. One focuses on a single sales period
and considers the performance of different allocation
schemes that depend only on current orders. Cachon
and Lariviere (1999b) characterize which allocation
schemes induce order inflation and which induce the
retailers to order truthfully. They show that supply
chain performance may improve with order inflation
because it reduces double marginalization. If the sup-
plier is able to choose its capacity level, the retailers
may benefit from an allocation scheme that induces
order inflation because it results in the supplier build-
ing additional capacity. This work assumes that retail-
ers are local monopolists. Furuhata and Zhang (2006)
and Chen et al. (2007) study related issues when
retailers compete for customers. Similar allocation
schemes have also been studied in a queueing system
that allocates demand among multiple servers (e.g.,
Gilbert and Weng 1998, Cachon and Zhang 2007).

The second stream focuses on turn-and-earn allo-
cation. Cachon and Lariviere (1999a) consider a two-
period model in which past sales may be used as a
basis for future capacity allocation between two retail-
ers. Demand is stochastic but identical across mar-
kets. Turn-and-earn induces the retailers to increase
sales in the first period in an attempt to secure a bet-
ter allocation in the second period. In equilibrium,
the retailers play to a draw—because they are com-
pletely symmetric, neither can gain an advantage over
the other, and they receive the same allocation. In a
recent paper, Purohit and Vernik (2008) present a vari-
ation of Cachon and Lariviere (1999a) in which the
supplier sells two substitutable products through the
retailers. Only one of the products is possibly capac-
ity constrained. They find that it is generally better to
have the second-period allocation of the scarce prod-
uct depend on first-period sales of both products.

Our model also has parallels with Cachon and
Lariviere (1999a). We too consider a supplier sell-
ing to multiple retailers and model turn-and-earn in
a similar fashion. Our model differs from Cachon
and Lariviere (1999a) along three key dimensions.
First, we consider an infinite horizon. In a two-period
model, retailers simply maximize their current profit
in the second period. Thus, turn-and-earn induced
asymmetric allocations, if any, would end in the sec-
ond period. With an infinite horizon, however, we
can examine the persistence of asymmetric allocations
over time.

Second, our model has three demand states. At first
glance, this seems a minor tweak, but in reality it
adds significant depth to the model. For allocation to
be interesting, the supplier’s capacity must bind in
some demand state but not in others. With just two
demand states, if the retailers increase their sales in
the low demand state, asymmetric allocations would
persist forever—if an allocation is worth fighting for
even low demand, it is worth maintaining under all
demand conditions. With three demand states, how-
ever, we can not only have a medium demand state
when leadership is worth fighting for, but also have a
low demand state with market conditions sufficiently
poor that makes a sales lead not worth maintain-
ing. Effectively, our model allows for overall market
slumps (like that experienced by the dealers in the
Toyota example) that relevel the playing field.

Third, our model allows for local variation in de-
mand. A common demand state determines whether
or not the supplier has sufficient capacity, but random
local shocks determine how much each retailer wants
to sell. This allows asymmetric allocations to arise
naturally even though the retailers follow symmet-
ric strategies. Moreover, it allows us to evaluate the
impact of turn-and-earn on demand variance propa-
gation in the supply chain. We show that turn-and-
earn induces the retailers to absorb local variability in
their markets instead of passing it on to the supplier.

Finally, this paper borrows the computational
methodologies developed in the Markov-perfect
industry dynamics literature (e.g., Ericson and Pakes
1995). Some recent papers in the operations manage-
ment literature have also used similar computational
methods to solve dynamic games (e.g., Besanko et al.
2010, Weintraub et al. 2010, Mookherjee and Friesz
2008, Perakis and Sood 2006). Although the Ericson–
Pakes MPE framework has received much attention
in the industrial organization literature, the present
paper is arguably the first to apply the framework to
a supply chain context.

3. The Model
3.1. A Dynamic Stochastic Game of

Order Competition
Consider a supplier and two retailers, indexed by i1
i = 1120 We will consider a large number of retail-
ers in §6.1. The supplier has fixed capacity K and
fixed wholesale price w0 Setting these two parameters
exogenously allows us to ignore the supplier’s prob-
lem and focus on the strategic interactions between
the retailers. The retailers’ markets are geographically
isolated, and thus both retailers would behave like
monopolists in their own market if they did not have
to compete for the supplier’s capacity. We consider an
infinite-horizon game between the retailers.
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3.1.1. Demand. Let pi and qi denote retailer i’s
price and sales quantity, respectively. He faces a lin-
ear demand pi = ai − bqi1 where ai is stochastic and
varies from period to period, and b is constant across
periods and identical for both retailers. We assume
nonnegative prices, i.e., pi ≥ 00 Such stochastic linear
demand functions have been commonly used in the
operations management literature (e.g., Cachon and
Lariviere 1999a, Chod and Rudi 2005). The stochas-
tic component of the demand function, ai, represents
the demand state and is the sum of two parts: ai =

�+��i0 The first part, �1 is the common demand state
publicly observed, drawn from set A ≡ 8�u9u=110001U 1
where U ∈ �1 �u > 01 and �u < �v for any u < v1
u1v = 11 0 0 0 1U 0 At the end of each period, the com-
mon demand transitions to another state according to
transition matrix P ≡ 6puv7 and the resulting demand
process forms a discrete-time Markov chain. (Figure 8
in the online appendix illustrates a three-state com-
mon demand process.)

The second part of the demand state, ��i1 is the
product of retailer i’s privately observed local demand
state, �i, and a scale factor, �, which is identical for
both retailers. �i is a random variable independently
and identically distributed across periods and retail-
ers. It has a continuous distribution function F 4 · 5
with support 6ä1 ǟ7 and Ɛ4�i5= 01 where �ä�1 �ǟ�<�0
We assume � > 0 so that it scales the variability of
local demand. We further assume � is small enough
such that �+�ä ≥ 01 i.e., demand intercepts are non-
negative for the entire support of �i0 Admittedly, this
is a crude way of modeling local demand dispersion,
but it allows us to capture the essence of demand
information asymmetry without sacrificing simplicity.

3.1.2. State of the World. Let si denote retailer i’s
sales quantity in the previous period. The state of the
world consists of three parts: sales of the previous
period s = 4s11 s25, common demand state �, and local
demand state �i. Notice that vector s is bolded. We
will use boldface letters to denote all vectors intro-
duced hereafter. The starting point of the game is
exogenously chosen and denoted by 4s01�050

3.1.3. Sequence of Events. In any period, the fol-
lowing sequence of events occurs: (1) The retail-
ers learn the sales state and common demand state.
Each retailer is also privately informed with his local
demand state. (2) The retailers submit their orders x =

4x11x250 (3) The supplier allocates capacity q = 4q11 q25
according to a posted allocation mechanism, where
qi ≡ qi4s1x50

We assume that the retailers play Markovian strate-
gies and derive MPE. The restriction to Markovian
strategies implies that every retailer’s action in any
period depends only on the current state, i.e., xi ≡

xi4s1�1�i51 and thus excludes strategies that depend

on the entire history. The benefits and the behav-
ioral assumptions of using Markovian strategies are
discussed in Maskin and Tirol (2001). Because the
horizon is infinite and the influence of past play is
captured in the current state, there is a one-to-one
correspondence between subgames and states. Hence,
any MPE in our model is subgame perfect. We further
assume that retailer i chooses the smaller order quan-
tity when two order quantities yield identical capacity
allocation. This is without loss of generality, because
in this case larger orders have no impact on the equi-
librium sales.

In any period, retailer i sells qi and earns profit
�i4s1�1�i1x5 ≡ 4� + ��i − bqi4s1x5 − w5qi4s1x50 Note
that we do not restrict the sign of �i1 i.e., retailer i
can earn a negative profit. We assume that the retail-
ers have to sell all they are allocated. Hence, the next
period’s sales state s′ ≡ 4s′

11 s
′
25= 4q11 q250 This assump-

tion is not unrealistic given that we consider no inven-
tory carryover from period to period. This is also the
assumption made by Cachon and Lariviere (1999a)
in their order competition game without inventory.
The retailers’ discount factors are identical and equal
to �0 Retailer i maximizes his total discounted profit,
denoted by Vi4s1�1�i5, which is his value function.
Furthermore, we define retailer i’s ex ante value func-
tion: Vi4s1�5≡

∫

Vi4s1�1�i5 dF 4�i50

3.2. Allocation Mechanisms
We consider two allocation mechanisms: turn-and-
earn and fixed allocation. Under each mechanism,
a retailer’s maximum allocation is capped by a rule-
specific limit, i.e., the guaranteed allocation, or the
capacity unclaimed by the other retailer, whichever
is larger. The guaranteed allocation is the sum of the
reserved capacity and an equal share of the unre-
served capacity.

3.2.1. Turn-and-Earn. Under turn-and-earn, the
supplier reserves some current-period capacity equal
to �s1 − s2� for the previous-period sales leader. The
scheme then allocates the rest equally among the two
retailers. Hence, the leader’s guaranteed allocation is
�s1 − s2� + 4K − �s1 − s2�5/2. The laggard’s guaranteed
allocation is 4K − �s1 − s2�5/2. Suppose retailer 1 is the
leader. Given orders x and past sales s1 the alloca-
tions are

q14s1x5= min
{

x11 �s1 − s2� +
K − �s1 − s2�

2
+ 4K − x25

+

}

1

q24s1x5= min
{

x21
K − �s1 − s2�

2
+ 4K − x15

+

}

0

The way we model turn-and-earn follows exactly
that of Cachon and Lariviere (1999a), thereby allow-
ing us to make a direct comparison with their
results. This definition is probably the simplest form

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

10
5.

19
9.

79
] 

on
 1

7 
D

ec
em

be
r 

20
14

, a
t 0

7:
30

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lu and Lariviere: Capacity Allocation over a Long Horizon: The Return on Turn-and-Earn
28 Manufacturing & Service Operations Management 14(1), pp. 24–41, © 2012 INFORMS

that captures the essence of this allocation scheme.
Nevertheless, in practice turn-and-earn is more com-
plicated.2 In §6, we consider two variants of the turn-
and-earn scheme: proportional turn-and-earn and
moving average turn-and-earn.

3.2.2. Fixed Allocation. Under fixed allocation,
each retailer has no reserved capacity, and is guaran-
teed with an equal share of the supplier’s capacity.
Thus, the guaranteed allocation for either retailer is
K/2, and the allocation for retailer i is

qi4s1x5= min
{

xi1
K

2
+

(

K

2
− xj

)+}

1 i 6= j0

By linking current allocation to past sales, turn-
and-earn introduces intertemporal dependence in the
retailers’ ordering behavior. In contrast, fixed alloca-
tion disregards past sales, and thus provides a myopic
benchmark for the retailers’ order quantities.

3.3. The Pareto Mechanism and the First Best
To evaluate the performance of turn-and-earn, we
derive allocations under the Pareto mechanism and
the first best. Cachon and Lariviere (1999b) define the
Pareto mechanism as the allocation that would max-
imize the sum of the retailers’ current profits for a
given wholesale price. By setting the wholesale price
equal to the cost of production, we derive the first-
best outcome from the Pareto mechanism.3 In every
period, the Pareto allocation is determined by the fol-
lowing maximization problem:

max
q∈�2

+

2
∑

i=1

4�+ ��i − bqi −w5qi

s.t. q1 + q2 ≤K0

Solving the problem yields for i1 j = 1121 i 6= j1

qPi 4�1�11 �25

=















�+ ��i −w

2b
if �1 + �2 ≤

2
�
4bK −�+w51

K

2
+

�4�i − �j5

4b
if �1 + �2 >

2
�
4bK −�+w50

(1)

It is straightforward to show that the Pareto
mechanism gives identical expected total sales as
fixed allocation. (Notice that under both mechanisms
the retailers order their monopolist quantities when
capacity is not tight whereas the total sales quan-
tity is equal to capacity when it is tight.) However,

2 For a more detailed discussion, see http://www.f150online.com/
forums/2004-present/127481-how-works-priority-codes-allocation
-scheduling.html (accessed October 1, 2010).
3 In our subsequent numerical analysis, for simplicity we normalize
the cost of production to zero.

fixed allocation may not distribute capacity among
the retailers efficiently when capacity is tight because
it treats all retailers equally. Suppose every retailer’s
optimal sales quantity exceeds his guaranteed alloca-
tion K/2 under fixed allocation, then 4�4�i − �j55/44b5
is its deviation from efficiency, as shown by Equa-
tion (1). Thus, although fixed allocation delivers the
same total sales as the Pareto scheme, it may fail
to maximize revenue. Compared to the first best,
the Pareto mechanism leads to lower sales when the
wholesale price is higher than the production cost.

3.4. State Discretization and Lumpy Orders
The dynamic stochastic game with incomplete infor-
mation does not yield closed-form solutions under
turn-and-earn. We resort to an iterative algorithm to
solve for the MPE. To simplify the computational pro-
cedure, we discretize the state space by restricting that
orders must take on one of M + 1 values listed in an
increasing order: 01�1 0 0 0 1M�1 where �=K/M is the
batch size and measures the lumpiness of order. This
assumption is without loss of generality because there
is no restriction on the value of �0 On the other hand,
order lumpiness finds its roots in practice. Retailers
order in bulk to avoid incurring fixed costs of order-
ing frequently. Batch ordering policies are also com-
monplace in the inventory management literature,
e.g., continuous-review 4R1Q5 policies.

4. Properties of the MPE
Retailer i’s optimal order quantity depends on the
current system state and his own local demand state.
We use an indicator function 16xi4s1�1�i5 = m�71
m = 01 0 0 0 1M1 to denote retailer i’s ordering action.
Integrating the indicator function over the support
of �i gives the probability of ordering m batches:
�im4s1�5 ≡

∫

16xi4s1�1�i5 = m�7dF 4�i50 Because his
local demand state is private, retailer i’s equilib-
rium order quantity, although a pure strategy, is per-
ceived by his opponent as a probability distribution
over the space of order quantities. Because there are
M + 1 possible order quantities, we use �i4s1�5 to
denote the order distribution with M + 1 compo-
nents: Ñi4s1�5 ≡ 8�i04s1�51 0 0 0 1�iM 4s1�590 In equilib-
rium, when retailer i decides to order m batches, the
decision is based on the fact that he knows his oppo-
nent’s order quantity up to a probability distribu-
tion determined by Ñj4s1�5. When retailer i’s order
is below his guaranteed allocation, his allocation is
equal to his order, and thus a deterministic num-
ber. Otherwise, his allocation becomes stochastic and
depends on the opponent’s actual order. Therefore,
from retailer i’s perspective, his expected allocation
is a random variable with a probability distribution
jointly determined by the opponent’s order distribu-
tion Ñj4s1�5 and the allocation mechanism.
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To characterize the MPE, we start by writing
retailer i’s Bellman equation as follows:

Vi4s1�1�i5 ≡ max
xi∈80�10001m̄�9

Ɛ6�i4s1�1�i1xi1xj57

+�Ɛ6Vi4s
′1�′5 � s1�1xi1xj 71

where m̄≡ max8m ∈� � �+ ��i − bm�≥ 090 This upper
bound ensures that the price is nonnegative. For sim-
plicity, we write xi with the understanding that it
is a function of 4s1�1�i50 The maximization problem
yields retailer i’s best response for a given strategy
profile of retailer j , i.e., xj4s1�1�j50 Because retailer j’s
order distribution, represented by Ñj4s1�51 is discrete
with M + 1 possible order quantities, we can express
the expectations in the Bellman equation as a sum
weighted by �jl, j 6= i1 l = 01 0 0 0 1M :

Vi4s1�1�i5 = max
xi∈80�10001m̄�9

M
∑

l=0

�jl4s1�5
{

�i4s1�1�i1xi1 l�5

+�
∑

�′∈A

P4�′
� �5Vi4q4s1xi1 l�51�

′5

}

0 (2)

The summation in the Bellman equation reflects the
fact that a realization of the rival retailer’s order quan-
tity xj = l� occurs with probability �jl4s1�5 and the
fact that retailer i’s total discounted profit is an expec-
tation over the order distribution of his opponent.

Solving the maximization problem in Equation (2)
yields that retailer i’s optimal order quantity fol-
lows a threshold policy depending on his private
local demand state—it is optimal for him for order m
batches if his local demand state is between certain
thresholds. This property is stated formally in Propo-
sition 1. For convenience, we introduce two notational
conventions: �i04s1�5=ä1 �i1M+14s1�5= ǟ0

Proposition 1. Suppose that q4s1x5 is weakly increas-
ing in x0 For any m ∈ 801 0 0 0 1M91 it is optimal for
retailer i to order m� if and only if �im4s1�5 ≤ �i ≤

�i1m+14s1�51 where �im4s1�5 ∈ 6ä1 ǟ7 is a function of
Vi4s1�5 and Ñj4s1�50 Accordingly, his optimal order dis-
tribution �i4s1�5 is given by

�im4s1�5 =

∫

16�im4s1�5≤ �i ≤ �i1m+14s1�57 dF 4�i51

m= 01 0 0 0 1M0

The threshold property stems from two facts. First,
a retailer’s myopic sales quantity is increasing in his
local demand state �i0 Second, capacity allocation is
weakly increasing in order quantity, which is true
for both turn-and-earn and fixed allocation. Taken
together, these two monotone properties yield that it
is better for retailer i to order a larger quantity when
his local demand increases because it improves both
the current profit and the future capacity allocation.
�im4s1�5 characterizes the optimal equilibrium pol-
icy of retailer i for a given value function and the

strategy profile of his opponent. The expressions of
�im4s1�5, given in the proof, allow us to solve the Bell-
man equation. Proposition 1 also ensures that Ñi4s1�5
represents a proper discrete distribution function.

4.1. Equilibrium Definition
Because of the private local demand information
that each retailer possesses, our definition of MPE
is more involved than that of the stochastic games
with complete information, as described in Fudenberg
and Tirole (1991). From the perspective of retailer j1
retailer i acts as if he plays a mixed strategy deter-
mined by an order distribution even though he plays
a pure strategy conditional on his “type” �i0 Instead
of stating the equilibrium strategy profile as a func-
tion of types, we derive the ex ante formulation of
the Bellman equation by integrating the value func-
tion of retailer i over the support of �i: Vi4s1�5 ≡
∫

Vi4s1�1�i5 dF 4�i50 This ex ante formulation is equiv-
alent to retailer i maximizing his utility conditional
on �i for all �i ∈ 6ä1 ǟ70

We have shown that retailer i’s optimal order-
ing policy is a threshold rule dependent on his
local demand state �i0 Integration of retailer i’s max-
imization problem over the support of �i can be
transformed into choosing an M-dimensional vec-
tor 4�i14s1�51 0 0 0 1�iM 4s1�55 that determines the prob-
ability distribution of retailer i’s optimal orders.
Let �

im
4s1�5 ≡ max8ä1 min8ǟ1 4bm� − �5/�99, m =

11 0 0 0 1M0 This threshold is the lower bound of �i
above which selling m batches yields a nonnega-
tive price. By imposing this lower bound on every
component of 4�i14s1�51 0 0 0 1�iM 4s1�55, we ensure that
negative prices never arise in optimality. Hence, inte-
grating Equation (2) over the support of �i yields

Vi4s1�5 =

∫

max
�im4s1�5∈6�im

4s1�51 ǟ71m=110001M

M
∑

l=0

�jl4s1�5

·

M
∑

m=0

16�im4s1�5≤ �i ≤ �i1m+14s1�57

·

{

�i4s1�1�i1m�1 l�5

+�
∑

�′∈A

P4�′
� �5Vi4q4s1m�1 l�51�′5

}

dF 4�i5

= max
�im4s1�5∈6�im

4s1�51 ǟ71m=110001M

M
∑

l=0

�jl4s1�5

·

{ M
∑

m=0

∫ �i1m+14s1�5

�im4s1�5
�i4s1�1�i1m�1 l�5dF 4�i5

+�
M
∑

k=0

∑

�′∈A

(

F 4�i1m+14s1�55− F 4�im4s1�55
)

· P4�′
� �5Vi4q4s1m�1 l�51�′5

}

0 (3)
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The order distribution Ñi1 determined by the optimal
4�i14s1�51 0 0 0 1�iM 4s1�55, is the ex ante policy function
perceived by retailer i’s opponent and the supplier.
The above integrated Bellman equation provides the
basis for defining the MPE.

Definition 1. A Markov-perfect equilibrium of the
order competition game involves value function Vi

and policy function Ñi such that for all i1 j = 1121
i 6= j1

(i) given Ñj1 Vi solves the Bellman equation (3); and
(ii) given Ñj and Vi, 4�i14s1�51 0 0 0 1�iM 4s1�55 solves

the maximization problem in Equation (3) for all
4s1�51 and Ñi4s1�5 is determined by 4�i14s1�51 0 0 0 1
�iM 4s1�55 according to �im4s1�5 =

∫

16�im4s1�5 ≤ �i ≤
�i1m+14s1�57 dF 4�i51 m= 01 0 0 0 1M0

Such an MPE exists and is computable, according
to Doraszelski and Satterthwaite (2010).4

4.2. Fixed Allocation
The above equilibrium characterization applies to
any allocation mechanism that satisfies that q4 · 5
is weakly increasing in a retailer’s order quantity,
which is true for fixed allocation. Therefore, we can
derive the solutions for fixed allocation by setting
Vi4q4s1m�1xj51�

′5 = Vi4q4s1m′�1xj51�
′5 for any m,

m′ = 01 0 0 0 1M in Equation (3) because current-period
orders do not affect a retailer’s future payoff. Nev-
ertheless, because of the property that fixed alloca-
tion does not depend on past sales, we can derive the
closed-form solution for the MPE without invoking
the threshold property. We simplify the state of the
world to include only the common and local demand
states. Because all retailers would behave myopically,
it is useful to derive their myopic sales quantity:

qM 4�1�5=

[

4�+ ��−w5+

2b

]

1 (4)

where 6 · 7 is the operator that finds the nearest integer
number of batches that maximizes the single-period
profit.

Proposition 2. Under fixed allocation, a Markov-
perfect equilibrium is a profile of order distributions
4ÑF 1ÑF 5, where ÑF is an M + 1 dimensional vector
given by � F

m4�5 =
∫

16xF 4�1�5 = m�7dF 4�51m = 01
0 0 0 1M1� ∈ A1 where xF 4�1�5 = min8qM 4�1�5, K/2 +

4K/2 − qM 4�1ä55+90

The second term in the expression of xF 4�1�5 is
retailer i’s maximum allocation, which is a sum of
two parts. The first part is his guaranteed allocation,

4 Uniqueness is generally not guaranteed in such dynamic stochas-
tic games. However, in our computational study, we have not found
any multiple equilibria even when we initiate the iterative algo-
rithm from different starting points.

whereas the second is the maximum residual capacity
unclaimed by the other retailer, which occurs when
he experiences the lowest local demand. Other equi-
libria exist, for example, setting xF 4�1�5 = qM 4�1�5
above gives a different equilibrium. Nevertheless,
these equilibria yield the same sales quantities. The
one we specify in Proposition 2 has the smallest order
quantities.

4.3. Symmetric Equilibria and
State-to-State Transitions

Notice that the definitions of sales quantity is sym-
metric in the sense that q14s1, s21 x11 x25 = q24s2, s1,
x2, x150 Given a sales quantity, the difference in
retailer profits results from idiosyncratic local demand
shocks. Because the distribution of local demand
shocks is identical for all retailers, it is reasonable to
suppose that their equilibrium behavior is symmetric.
From now on, we focus on symmetric MPE. Specifi-
cally, a symmetric equilibrium satisfies V14s11 s21�5 =

V24s2, s1, �5 and Ñ14s1, s2, �5 = Ñ24s2, s1, �5 for
all �0 Thus, we drop the retailer-denoting subscripts
and define V 4s1�5 ≡ V14s1�5 and �4s1�5 ≡ Ñ14s1�50
Using this definition, we can derive retailer 2’s value
and policy functions as V24s1�5 = V 4s21s11�5 and
�24s1�5=Ñ4s21s11�50

With the equilibrium policy functions we compute
the state-to-state transition probability:

P4s′1�′
� s1�5 =

M
∑

k=0

M
∑

l=0

�1k4s1�5�2l4s1�5

· 16s′
= q4s1k�1 l�57P4�′

� �50 (5)

We further use these probabilities to compute the
transient and limiting distributions of equilibrium
sales. Let P be the 4M + 152U × 4M + 152U transi-
tion matrix for the Markov process of the equilibrium
sales dynamics. The transient distribution over states
in period T is given by �4T 5 = �405P T , where �405 is
the 1× 4M +152U initial distribution. The limiting dis-
tribution over states solves �4�5 =�4�5P . The limiting
distribution of orders, denoted by �

4�5
orders1 can be con-

veniently calculated from �4�50 Let Porders be given by

Porders4x1�
′
� s1�5=

M
∑

k=0

M
∑

l=0

�1k4s1�5�2l4s1�5P4�
′
� �50

Then, �4�5
orders =�4�5Porders0

5. Numerical Results
In this section, we characterize the limiting and tran-
sient characteristics of the MPE. We aim to suggest
answers to three questions. First, does turn-and-earn
induce more sales over a long horizon? Second,
how does sales leadership, i.e., asymmetric alloca-
tion, change over time? Third, how does local demand
variation affect the variability of the supplier’s sales?
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5.1. Computational Algorithm and
Parameterization

Before we delve into the results, it is instructive to
describe the computational algorithm of our dynamic
programs. To compute the symmetric MPE, we use
a variant of the best-response iterative algorithm
described in Pakes and McGuire (1994). The algo-
rithm takes a value function V̂ 4s1�5 and a policy
function Ñ̂4s1�5 as its input and generates updated
value and policy functions as its output. Each itera-
tion proceeds as follows: First, we use the results in
Proposition 1 to compute retailer 1’s order distribu-
tion Ñ4s1�5 using V̂ 4s1�5 and retailer 2’s order distri-
bution Ñ̂4s21 s11�5. Second, we compute the updated
V 4s1�5 and Ñ4s1�5 using Equation (3). The iteration is
completed by assigning V 4s1�5 to V̂ 4s1�5 and Ñ4s1�5
to Ñ̂4s1�5. The algorithm terminates once the relative
changes in the value and the policy functions from
one iteration to the next are below a prespecified tol-
erance. For our numerical study, we set it at 10−4. All
programs are written in Matlab 7.

We assume that F 4 · 5 is a Beta distribution rescaled
over support 6−1117 with parameters 43135 (see the
online appendix for the specification of the distribu-
tion function). This distribution has a single mode at,
and is symmetric around, 0. We have considered other
distribution functions with a finite support, such as
uniform and triangular. We choose this distribution
over uniform distribution because we intend to use
one that puts more weight around the mean. This dis-
tribution also has an advantage over a triangular one
because of its smoothness, which generally facilitates
convergence of our dynamic program.

To help analyze the effect of demand transi-
tion probabilities, we apply the concept of stochas-
tic ordering of a stochastic process. A transition
matrix can be ranked according to the stochastic
first order (denoted by ≤st), and so does a stochas-
tic process. With identical initial distribution, demand
process X ′ with transition matrix P ′ is first-order
stochastically larger than demand process X with
transition matrix P if (i) P ≤st P

′ and (ii) P or P ′ is
≤st-monotone (Müller and Stoyan 2002). A sufficient
condition for (i) is P6i1∗7 ≤st P

′6i1∗7 for any i and a
sufficient condition for (ii) is P6i1∗7 ≤st P6i + 11∗7 for
any i0 For our computational study, we consider three
common demand states, A= 8�11�21�391 where �1 <
�2 < �3. We will refer to them as low, medium, and
high demand, respectively. We use a demand process
characterized by the following transition matrix with
1 >�1 ≥ �2 > 0:

P =









1 −�1 �1 0

1 −�1 �1 −�2 �2

0 1 −�2 �2









0

Table 1 Expected Myopic Sales Quantities Under No Capacity
Constraint

� 5 9 13 17 21 25 29 33 37 41

qM
0 � 2� 3� 4� 5� 6� 7� 8� 9� 10�

Checking conditions (i) and (ii) yields that the de-
mand process becomes first-order stochastically larger
as �1 or �2 increases. To simplify exposition, we focus
on a special case by setting �1 = �2 and denote �≡ �10
A larger � implies the probability of switching to
a higher (lower) demand state increases (decreases)
and thus leads to a first-order stochastically larger
demand. We explore the cases of �1 > �2 in the
extensions.

We set the order batch size � = 2. Like many
discrete dynamic programs, ours suffers from the
curse of dimensionality: The state space of the game
expands exponentially with the number of states and
actions. We thus have to trade off between a finer state
space (i.e., reducing the size of �5 and the flexibility
in the order quantities (i.e., allowing the retailers to
order any number of batches up to their maximum
allocation). Because we are interested in finding out
how much the equilibrium orders are different from
their myopic counterparts, we maintain an admittedly
crude state space but allow full order flexibility to
reduce computational burden.5

We set the slope of the linear demand function
b = 1, the constant wholesale price w = 10 The dis-
count factor � is set at 00952, corresponding to a 5%
interest rate. We vary the values of K1 A1 �1 and � as
each of the following experiments indicates. Expected
myopic sales quantities, qM0 1 can be calculated by sim-
ply setting � = 0 in Equation (4): qM0 ≡ qM 4�105, which
are tabulated in Table 1. We will refer back to these
numbers in our subsequent analysis.

5.2. Equilibrium Orders and Sales
We characterize steady-state properties of the MPE by
computing limiting distributions of the Markov pro-
cess associated with the dynamic game. We analyze
two sets of limiting distributions: one that is averaged
over all demand states and the other that is condi-
tional on a common demand state. For the remainder
of the paper in all figures and tables, we use “Ave”
to denote the former and L, M , and H to denote the
limiting distribution conditional on the low, medium,
and high demand states, respectively. Consider an
example with K = 8�, A = 851912191 � = 0091 and

5 Because of order lumpiness, capacity allocations may become a
fractional number of batches. We round a fractional number to the
nearest two integer numbers with weighted probabilities such that
the expectation is equal to the fractional number (see the online
appendix for details).
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Figure 1 Conditional Limiting Distributions of Orders
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Note. K = 8�, A= 851912191 �= 0091 and �= 4.

�= 00010 The steady-state equilibrium order quantities
for both retailers are 4�12�14�5 under fixed allocation,
but become 4�14�14�5 under turn-and-earn. The dif-
ference lies in the medium demand state—turn-and-
earn induces both retailers to order two more batches
than the myopic quantity.

When we increase local demand variability by
increasing �, dispersion of equilibrium orders occurs.
It is helpful to illustrate order distributions using a
three-dimensional graph. Figure 1 displays the limit-
ing distributions of orders conditional on the common
demand state for �= 4. The horizontal axes represent
the number of batches of equilibrium orders by retail-
ers 1 and 2. The vertical axis represents the probabil-
ity of that pair of orders. The supplier’s capacity, 8�1
determines the highest possible order, and thus the
maximum of the horizontal axes. Given the Markov
process of the game, there exists a single closed com-
municating class consisting of all the possible combi-
nations of orders. Therefore, the sum of the heights of
all vertical bars in a limiting distribution graph add
up to 1.

Despite dispersion of local demand, the modal
order quantities remain unchanged under fixed
allocation: 4�12�14�5. However, they change to
42�14�14�5 under turn-and-earn, as shown in Fig-
ure 1. The differences in the order quantities in the
low and medium demand states again suggest that
turn-and-earn induces the retailers to increase orders

and thus sales, consistent with the findings of Cachon
and Lariviere (1999a). However, our equilibria exhibit
a novel feature—two ex ante identical retailers may
end up with asymmetric allocations. Idiosyncratic
local demand shocks embedded in our model give
rise to the asymmetry. An important implication of
this property is the natural occurrence of sales leaders
and laggards, which leads to richer strategic dynam-
ics than those in Cachon and Lariviere (1999a).

Because it induces retailers to increase sales beyond
their myopic level, turn-and-earn leads to higher total
sales than the Pareto and fixed allocation. We also
know that the Pareto mechanism leads to less total
sales than the first best because of double marginal-
ization. Then, how does turn-and-earn compare to
the first-best allocation? Who benefits from turn-and-
earn? To answer these questions, we take the example
in Figure 1 and calculate expected sales and profits
under first best, Pareto, fixed, and turn-and-earn allo-
cation. The results are summarized in Table 2. In this
example, turn-and-earn induces higher sales than the
first best, and the highest sales increase occurs in the
medium demand state (shown in the columns marked
“M”). Obviously, the supplier’s profit is higher under
turn-and-earn than under the Pareto and fixed allo-
cation for a given wholesale price. However, turn-
and-earn leads to the lowest total retailer profits and
system profits. This suggests that when the whole-
sale price is fixed, turn-and-earn alleviates the double
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Table 2 Expected Sales 4�5 and Profits

Expected total sales Supplier’s profit Retailers’ profits System profits

M Ave M Ave M Ave M Ave

First best 4050 7059 — — — — 63036 194053
Pareto 4000 7054 8000 15008 54086 179040 62086 194022
Fixed 4000 7054 8000 15008 30034 173097 38034 189005
Turn-and-earn 7044 7089 14088 15079 5085 169051 20073 185030

Notes. K = 8�1 A= 85191219, �= 0091 and �= 4. Profits are normalized to per period.

marginalization problem by incentivizing retailers to
increase sales, but may induce more sales than opti-
mal for the system.

The retailers sell more in the low and medium
demand states to gain an allocation advantage should
demand go up and a capacity shortage occur in
the future. Indeed, because in this example �3 = 211
the expected myopic sales quantity is 5� for both
retailers, leading to a capacity shortage in the high
demand state given that the supplier’s capacity is 8�.
It appears that both capacity tightness and demand
characteristics may affect this incentive. To systemati-
cally explore this notion, we vary four key parameters
of the model: K, �21 �31 and �.

Figure 2 Expected Total Sales as a Function of K Parameterized by � Under Fixed 4F 5 and Turn-and-Earn 4T 5 Allocation
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Note. A= 85191219 and �= 4.

Figure 2 plots the expected total sales in steady
state as a function of K parameterized by �0 The
myopic sales quantities are 4�12�15�5 in the three
common demand states, which implies that (with no
local demand dispersion) below 2� capacity is always
tight and above 10� capacity is always ample. As a
result, turn-and-earn’s sales-inducing incentive effect
is noticeable only when capacity is mildly tight, i.e.,
tight for some higher demand states and ample for
some lower demand states, as seen in the top-left
panel of the figure. This result extends the two-period
and two-demand-state result of Cachon and Lariviere
(1999a) to a setting of multiple periods and multiple
demand states.
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Figure 3 Expected Total Sales as a Function of �2 Parameterized by � Under Fixed 4F 5 and Turn-and-Earn 4T 5 Allocation
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F : �=0.7
F : �=0.5
F : �=0.3
F : �=0.1
T : �=0.9
T : �=0.7
T : �=0.5
T : �=0.3
T : �=0.1

Note. K = 8�, A= 851 �21219, and �= 4.

Conditional on the low and medium demand states,
the top-right and bottom-left panels of the figure fur-
ther illustrate that the expected total sales under turn-
and-earn are increasing in �, suggesting an increase in
turn-and-earn’s incentive effect. In contrast, for fixed
allocation, because retailers sell their myopic quan-
tities, the conditional expected sales do not depend
on �. In the high demand state (the bottom-right
panel), capacity is always tight, thus making the
incentive effect of turn-and-earn moot. The key to
turn-and-earn’s incentives is the retailers’ forward-
looking behavior. They exchange today’s loss of prof-
its for tomorrow’s larger allotment of capacity. The
sacrifice made by the retailers today can only be
recouped when future demand is higher. When �
increases, the demand process becomes first-order
stochastically larger, and thus the probability of expe-
riencing higher demand in the future is raised, mak-
ing overselling today more profitable. Figure 2 also
shows that when averaged over all demand states,
� = 005 and 007 give the most significant increase
in sales under turn-and-earn. These results are not
contradictory—larger � means capacity is more likely
to be tight under either allocation scheme, making

turn-and-earn’s effect less obvious when averaged
across all demand states.

Whereas increasing � makes higher demand states
more likely to occur, increasing �2 or �3 raises the
demand levels of higher demand states. Both make
a larger capacity allocation more attractive to obtain
when excess capacity exists, because it entails a
potentially larger profit should demand increase and
capacity become constrained in the future. Indeed,
compared to fixed allocation, the increase in retailers’
sales in the low demand state under turn-and-earn
is increasing in �2, as shown in the top-right panel
of Figure 3. Similarly, the increase in retailers’ sales
in the low and medium demand states is increasing
in �3 (see Figure 9 in the online appendix).

5.3. Dynamics of Sales Leadership
An important objective of our paper is to study the
impact of longer horizon on the competitive ordering
behavior of retailers. How does retailer behavior in
low demand states change as a function of past sales?
Would a sales leader defend his allocation by ordering
more than his myopic quantity? Would a sales laggard
opportunistically take advantage of excess capacity to
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Table 3 Modal Sales States 4s11 s25 Under Turn-and-Earn After T
Periods When the Game Starts from 4s01 �05= 43�1 �1 �25

�= 0071 �3 = 37 �= 0071 �3 = 21 �= 0011 �3 = 37

T = 1 45�13�5 44�14�5 43�13�5
T = 25 45�13�51 44�14�5, 44�14�51 4�1 �5 44�14�51 43�13�51 4�1 �5

42�12�5

Note. K = 8�, A= 851131 �39, and �= 0001.

catch up? By characterizing the transient dynamics of
the MPE, we are able to shed some light on these
questions.

We start the game from an asymmetric sales posi-
tion, with one retailer having larger past sales than
the other, s0

1 = 3� and s0
2 = �1 i.e., the leader has a

two-batch sales lead over the laggard.6 The initial
common demand state is medium, i.e., �0 = �2. Our
results show that whether the leader would defend
his initial leadership in a lower demand state (i.e.,
medium or low) critically depends on two parame-
ters: the demand transition probability and demand
levels. Table 3 displays the retailers’ expected sales
after 1 period and 25 periods under different values
of � and �3.

Given �2 = 13, the myopic sales quantity is three
batches for the medium demand state. Table 3 shows
that the leader may aggressively defend his leader-
ship by increasing current sales beyond his myopic
level to 5� when � = 0071�3 = 371T = 1. This indi-
cates that at the medium demand state the sales
leader decides to sell two batches more than his
myopic quantity. Under the capacity constraint of
eight batches, the leader effectively sustains his lead-
ership by limiting his opponent’s sales to three
batches. On the other hand, the laggard may also
increase sales to catch up if there exists excess capac-
ity. In the case of � = 007, �3 = 21, T = 1, at the
medium-demand state both the leader and the lag-
gard sell four batches. In this case, the strategic benefit
of aggressive defence for the leader is much reduced
as �3 decreases from 37 to 21. Nonetheless he still sells
one batch more than his myopic level to prevent the
laggard from gaining an advantage. As a result, both
retailers end up on equal footing. When the chance
of going into a low demand state is very high (e.g.,
in the case of � = 0011�3 = 371T = 1), both the leader
and the laggard would give up completely and sell
their myopic quantity.

Although the game starts from the medium
demand state, after one period there is a positive
probability with which the low demand state will

6 It is worth noting that only the sales gap, i.e., s0
1 − s0

2 , matters to
the order dynamics under turn-and-earn allocation. Therefore, our
following results apply to any initial sales states with retailer 1
being two batches in the lead.

be reached, for which the myopic sales quantity is
�0 Thus, too much excess capacity exists, implying
that leadership is too costly to sustain. Therefore,
once the low-demand state is reached, any prior allo-
cation asymmetry would be eliminated. When � =

007, �3 = 371 42�12�5 becomes one of the modal sales
states after 25 periods, indicating the equilibrium
sales in the low demand state. It is interesting to note
that this is still one batch higher than the myopic level
for each retailer. This depicts the “fighting” between
the two retailers: Despite the low current demand,
it is worthwhile to fight for sales leadership as long
as future demand is sufficiently attractive (�3 = 37 as
opposed to 21) and is sufficiently likely to occur (�=

007 as opposed to 001). In these two contrasting cases,
4�1�5 is the sales in the low demand state. Neverthe-
less, no retailer is able to get ahead because of too
much excess capacity, and thus the supplier is the sole
winner of the fight.

It is worth noting that in the absence of the low
demand state, sales leadership can be retained perma-
nently for the example of �= 0071�3 = 37 shown ear-
lier. Because the leader’s equilibrium sales quantity is
five batches in both the high and medium demand
states, without the low demand state, the leader
would be able to hold out to his allocation advan-
tage forever. Hence, the possibility of extremely low
demand in the future prevents sales leadership from
becoming permanent in the long run. This semide-
fensible leadership is a distinct feature of our model
with multiple demand states. In contrast, a two-state
demand model, as has been used in Cachon and
Lariviere (1999a), yields only defensible or indefen-
sible leadership. How long this semidefensible sales
leadership would persist depends on demand tran-
sition probabilities. To show this, we plot the proba-
bility of leadership persistence over time in Figure 4

Figure 4 Probability of s1 − s2 > 0 After T Periods When the Game
Starts from 4s01 �05= 43�1 �1 �25
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Table 4 Coefficients of Variation of Total Sales

Fixed Turn-and-earn Change (%)

� L M H Ave L M H Ave L M H Ave

0.1 00322 00107 0 00599 00321 00101 0 00606 −002 −600 0 101
0.3 00322 00107 0 00636 00322 00091 0 00643 0 −1504 0 102
0.5 00322 00107 0 00478 00322 00102 0 00473 0 −408 0 −100
0.7 00322 00107 0 00289 00278 0 0 00257 −1306 −10000 0 −1100
0.9 00322 00107 0 00113 00276 00002 0 00055 −1404 −9805 0 −5106

Note. K = 8�, A= 851131219, and �= 005.

using transient distributions of equilibrium sales. As
� increases, i.e., as the demand process becomes first-
order stochastically larger, the probability of preserv-
ing leadership is higher over time.

In summary, �3 and � together determine the
value of leadership. The magnitude of high demand
affects the future profits of a larger capacity allotment,
whereas demand transition probabilities decide how
long the leader can hold out in the medium demand
state and come back to the high demand state. These
findings imply that in general the retailers find it
advantageous to maintain sales leadership for a short
run. A laggard may be punished for a while, but sales
leadership is too costly to maintain in the long run
when extremely low demand is likely to occur in the
future. In other words, an economic recession may act
as a sales equalizer that eventually relevels the play-
ing field, as in the Toyota example discussed in the
introduction.

5.4. Sales Variability
We have shown that turn-and-earn induces the retail-
ers to increase sales: A related question is, how does
it affect the variability of sales? With significant local
demand shocks, retailers may in equilibrium order
and thus sell different amounts for the same common

Figure 5 Limiting Distribution of Total Sales 4�5 Conditional on the Medium Demand State Under Fixed and Turn-and-Earn Allocation
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Note. K = 8�, A= 851131219, �= 007, and �= 40

demand state. To systematically compare sales vari-
ability, we compute the coefficient of variation (CV)
of expected total sales in steady state for a range of �
values and summarize in Table 4.

Conditional on a common demand state, Table 4
shows that turn-and-earn consistently leads to lower
sales variability. To explain this, we plot the histogram
of total sales in Figure 5 for the case of � = 007
from Table 4. The left plot illustrates that total sales
spread symmetrically around six batches under fixed
allocation. In contrast, the right plot shows that the
distribution of sales shifts to the right and concen-
trates at eight batches, the supplier’s capacity cap,
thereby reducing the variability. This suggests that
turn-and-earn’s incentive to increase sales seems to
have an inherent side effect—the capacity constraint
becomes more likely to bind, and sales variability is
thus reduced.

Averaged over all demand states, Table 4 shows
that the effect of turn-and-earn on sales variability
is a bit mixed. Two opposite effects take place here.
First, turn-and-earn reduces sales variation at each
demand state, as explained earlier. Second, because
turn-and-earn increases sales for the medium demand
state (most strongly), sales are less evenly distributed
across demand states. For the two cases where
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turn-and-earn increases average sales variability (�=

001 and 003), the second effect apparently dominates.
It is worth commenting on the fact that average

CVs do not always decrease under turn-and-earn
whereas conditional CVs do in our examples. For
a supply chain where the common demand state
is public knowledge, the state-dependent variability-
reducing effect of turn-and-earn is more relevant.
Such situations are conceivable because common
demand factors such as macroeconomic conditions
and product characteristics may uniformly affect all
retailers.

6. Extensions
We consider four extensions in this section to achieve
two objectives: First, how do retailers behave differ-
ently when the model context changes, e.g., in the
presence of more rival retailers (§6.1), or in a life-cycle
model (§6.2)? Second, are the main insights robust to
modifications in the definition of turn-and-earn? Sec-
tion 6.3 explores the impact of basing turn-and-earn
on the proportional rather than the absolute differ-
ence of past sales, whereas §6.4 studies a turn-and-
earn scheme using the moving average of past sales.
We continue to use the same set of parameter values
for the numeric examples unless otherwise noted.

6.1. N Retailers
Our model extends to N retailers in a straightforward
way. In this section, we briefly explain how the ana-
lytics can be modified to incorporate N retailers, and
relegate the details to the online appendix. The Bell-
man equation of retailer i becomes

Vi4s1�1�i5

≡ max
xi∈80�10001m̄�9

Ɛ6�i4s1�1�i1xi4s1�1�i51x−i4s1�1 ·557

+�Ɛ6Vi4s
′1�′5 � s1�1xi4s1�1�i51x−i4s1�1 ·571

where

x−i4s1�1 ·5 ≡
(

x14s1�1�151 0 0 0 1 xi−14s1�1�i−151

xi+14s1�1�i+151 0 0 0 1 xN 4s1�1�N 5
)

0

Table 5 Expected Sales 4�5 per Retailer

Two retailers Three retailers Change (%)

� L M H Ave L M H Ave L M H Ave

0.1 1 10303 2 10041 1 10319 2 10043 0 1023 0 0019
0.3 1 10437 2 1023 1 10515 2 10251 0 5043 0 1071
0.5 1 10794 2 10598 10001 10896 2 10633 0010 5069 0 2019
0.7 10112 10900 2 10872 10119 10914 2 10877 0063 0074 0 0027
0.9 10711 10948 2 10992 10711 10969 2 10994 0 1008 0 0010

Note. A= 851611391K = 4� (two retailers), K = 6� (three retailers), and �= 4.

We need the following algorithm to implement
the turn-and-earn allocation mechanism. Let ri be
retailer i’s reserved capacity and gi his guaranteed
allocation. Index the N retailers in increasing order of
sales. Given sales s and orders x, allocation q is deter-
mined iteratively:

Step 0. K̂ =K, N̂ =N1 q =Null.
Step 1. L= 0. For i = 11 0 0 0 1N , if qi = null, then ri =

min8si − s11 4K̂ −
∑N

j>i4sj − s1516qj = null75+9; else, ri = 0.
For i = 11 0 0 0 1N1 if qi = null, then gi = ri + 1/N̂ 4K̂ −
∑N

j=1 rj5; and if xi ≤ gi, then qi = xi, K̂ = K̂ − xi, L =

L+ 1.
Step 2. If L = 0, then for all qi = null 4i = 11 0 0 0 1N 5,

let qi = gi and stop; else, N̂ = N̂ −L.
Step 3. If N̂ = 0, stop; else, go to Step 1.

This algorithm extends the turn-and-earn mechanism
defined by Cachon and Lariviere (1999a) (and used
in §3 earlier) to the N retailer setting. Because a given
retailer may order less than his guaranteed alloca-
tion, the iterative procedure is necessary to reallocate
unclaimed capacity to those retailers who order more
than their guaranteed allocation. (Similar issues arise
with other allocation schemes; e.g., see the discussion
of uniform allocation in Cachon and Lariviere 1999b.)

The equilibrium properties characterized by Propo-
sition 1 applies to the case of N retailers (see the
online appendix for the modified proof). In the fol-
lowing, we numerically solve for the MPE for the case
of N = 3. An immediate question is as follows: Do
more retailers imply intensified competition for the
limited capacity of the supplier? To make the equi-
librium results comparable to the case of two retail-
ers, we set the supplier’s capacity proportional to the
number of retailers. Table 5 lists the expected sales
per retailer with different values of � under turn-
and-earn. A noticeable increase in per-retailer sales is
observed across all demand states, but it is not uni-
formly distributed. The medium demand state, where
we have seen the strongest incentive effect of turn-
and-earn in the two-retailer case, claims the highest
increase in sales per retailer.

It is worth noting that solving the multiretailer
game imposes a substantial computational burden.
Even for the three-retailer case, when M = 6, as
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Figure 6 Demand Process for the Life-Cycle Model
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used for the results in Table 5, the dimensional-
ity of the transition matrix becomes 11029 × 11029.
For a comparable four-retailer setting (M = 8), the
dimensionality increases to 191683 × 1916830 There-
fore, we are computationally constrained to explore
beyond three retailers. However, the consistency in
the results of the three-retailer case indicates that our
main results would be likely to extend to the setting
of more retailers. For future research, recent devel-
opment in the field of computational economics offer
promising opportunities for studying dynamic games
with a large number of firms (e.g., Pakes and McGuire
2001, Weintraub et al. 2008).

6.2. Life Cycle
Automobiles, like many other products, have a life
cycle with successive generations of the same prod-
uct. This affects how turn-and-earn is implemented
in practice. In the Pontiac example, the manufacturer
tied the capacity allocation of a new model, Sunfire,
to the sales of Sunbird, an old model. To proxy for a
life cycle, we consider a demand process illustrated
in Figure 6. We assume that the demand intercept,
�21 is identical in state 2O and 2N . Thus, the differ-
ence in those two medium demand states is solely
about whether it is likely to stay in a high demand
environment or whether it is likely to be stuck in a

Table 6 Expected Total Sales 4�5

Life-cycle model Base model

r L M(old) M(new) H Ave �1 �2 L M H Ave

0.1 2 6 60102 8 20448 00110 00011 2 60010 8 20448
0.3 2 6 60355 8 30766 00380 00114 2 60117 8 30770
0.5 2 6 60853 8 50713 00667 00333 2 60405 8 50702
0.7 2 60100 8 8 70514 00886 00620 20004 70812 8 70653
0.9 30968 70999 8 8 70995 00989 00890 30968 8 8 70995

Note. A= 851131219, K = 8�, and �= 4.

low demand environment. For fixed allocation or the
first best, this would not matter—the retailers’ order-
ing policies would not change from what we currently
have. However, this will matter for turn-and-earn if
pON is sufficiently low. That is, once you slip to having
an old product, you will be stuck with it for a while.

We consider a demand transition matrix such that
p1O = pON = pN3 = p33 = r and p11 = pO1 = pNO = p3N =

1 − r1 where r ∈ 40115. This transition matrix ensures
that as r increases the associated demand process
becomes first-order stochastically larger. Furthermore,
to compare the equilibrium results of the life-cycle
model to the base model, we calibrate their demand
processes to yield identical limiting distributions of
� by choosing appropriate r , �1, and �20 Table 6
shows the expected total sales of five pairs of such
demand processes. For each row in the table, despite
identical distributions of demand levels, the retailers’
incentives to oversell beyond the myopic level in the
medium demand state are quite different for the two
models. For the life-cycle model, selling a new prod-
uct in the medium demand state (i.e., 2N ) encourages
the retailers to sell a lot more than selling an old prod-
uct (i.e., in state 2O). The difference can go as high
as 30% when r = 007. In the medium demand state
of the base model, the retailers’ sales quantities are
somewhere in between those of state 2N and 2O in the
life-cycle model. Averaged across all demand states,
the expected total sales are fairly similar across the
two models (with 2% difference at most).

Taken together, these results suggest that the retail-
ers can take advantage of additional demand infor-
mation in determining how they adjust their sales
rates. Here, knowing that the product is old (or new)
allows the retailers to scale back (or increase) their
sales rates. Whether this benefits the retailers or sup-
pliers depends on the specific problem. Here, moder-
ate values of r (e.g., 005) result in the supplier seeing
higher sales as the retailers significantly increase sales
of a new product in the medium demand state. For
higher values of r (e.g., 007), new product sales are
capped by capacity so the reduction in the sales of old
products dominates and the supplier sees lower total
sales.
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Figure 7 Limiting Distribution of Sales
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Note. K = 6�, A= 851131219, �= 007, and �= 40

6.3. Proportional Turn-and-Earn
Under the turn-and-earn scheme defined earlier,
retailers’ guaranteed allocation depends on the
absolute difference in their past sales. Alternatively,
one could implement a scheme in which the guar-
anteed allocation depends on the relative difference
in past sales. This leads to proportional turn-and-
earn. Under this mechanism, the supplier reserves
4si/ŝ5K for retailer i, and thus ri = gi = 4si/ŝ5K1 where
ŝ =

∑N
j=1 sj 0 (Note that this differs from the propor-

tional scheme considered by Lee et al. 1997, which is
based on orders as opposed to past sales.) The equi-
librium structure under proportional turn-and-earn
can be characterized by the results in Proposition 1.
Because proportional turn-and-earn is based on past
sales, intuition suggests that it would also have a
similar effect as turn-and-earn. Our numerical study
shows that both mechanisms induce similar expected
total sales (see Figure 10 in the online appendix).

Although similar in expected total sales, the distri-
bution of sales among the retailers can be quite differ-
ent under the two mechanisms. Figure 7 illustrates an
example where proportional turn-and-earn induces
more asymmetry in sales than turn-and-earn. The lim-
iting sales distribution indicates that under turn-and-
earn the likelihood of 44�14�51 a symmetric state, is
much higher than those asymmetric states 43�15�5
and 45�13�50 Under proportional turn-and-earn, the
likelihood of those three states are much similar, indi-
cating an increase in the likelihood of the asymmet-
ric states. This observation is consistent across many
experiments. The intuition behind the result goes back
to how reserved capacity is calculated under the two
mechanisms. Recall that under turn-and-earn the dif-
ference in guaranteed allocation of two retailers is
�s1 − s2�. This is identical to that of proportional turn-
and-earn when s1 +s2 =K. However, when s1 +s2 <K1
the difference in guaranteed allocation under propor-
tional turn-and-earn is K�s1 − s2�/4s1 + s25 and thus is

greater than �s1 − s2�1 thereby creating a larger dispar-
ity in capacity allocation.

6.4. Moving Average Turn-and-Earn
Our base model considers a turn-and-earn scheme
using sales data of the immediate past period. To
factor in a longer history of past sales, we construct
an alternative scheme using the moving average of
past sales. Let s

4−t5
i represent retailer i’s sales quan-

tity t periods ago. A moving average of order L is
s̄i = 1/L

∑L
t=1 s

4−t5
i 0 Turn-and-earn can be redefined by

replacing si with s̄i in the definition given by §3.2.1.
The state of the world becomes 4s4−151 0 0 0 1 s4−t51�50
We set L = 21 although larger order of moving
average can be computed at the expense of a consid-
erable computational burden. Table 7 shows the dif-
ferences in expected total sales for the two versions
of turn-and-earn. Overall, moving average turn-and-
earn induces lower sales than turn-and-earn. More-
over, as �1 and/or �2 increases, i.e., as the demand
process becomes first-order stochastically larger, the
reduction of sales increases. Because moving aver-
age turn-and-earn makes capacity allocation stickier,
a sales leader incurs less cost to defend his leader-
ship whereas a laggard incurs more cost to catch up.

Table 7 Expected Total Sales 4�5

Fixed Turn-and- Moving average Change
�1 �2 allocation earn Turn-and-earn (%)

0.5 001 20351 20393 20363 −1023
0.5 003 20566 20713 20587 −4064
0.5 005 20840 30196 20840 −11013
0.7 005 30037 30478 30038 −12067
0.9 005 30193 30700 30193 −13070

Note. K = 4�, A= 85161139, and �= 4.
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Hence, using moving average of past sales dampens
the incentive effect of turn-and-earn.7

7. Conclusion
We have constructed a dynamic stochastic game of
order competition to study the incentive effect of
turn-and-earn, a common capacity allocation scheme
in the automobile industry. We apply the Markov-
perfect equilibrium framework developed in the
field of computational economics to characterize the
strategic ordering behavior of retailers. Earlier stud-
ies, specifically by Cachon and Lariviere (1999a),
are limited to a two-period, two-retailer, and two-
demand-state setting with identical retailer demand.
Using computed MPE, we show that turn-and-earn
remains effective in inducing more sales in a set-
ting with long horizon, multiple retailers, multiple
demand states, and private local demand shocks. Fur-
thermore, sales leadership in general is defensible in
the short run under certain conditions, but indefen-
sible in the long run when extremely low demand
occurs. Finally, we find that turn-and-earn induces
the retailers to absorb local demand shocks and thus
reduces the supplier’s sales variability. Although we
made some simplifying assumptions, such as state
discretization and lumpy orders, and our results are
numerical, we have found a rich set of equilibrium
characteristics that are absent in earlier analytical
results derived from a simpler model.

An extension worth considering for future work
is retailer competition for customers. When retailers
compete in the same market, the incentive for earn-
ing a larger allocation would be enhanced because a
retailer gains a larger market share if his competitor
has lower inventory. Another interesting extension is
to introduce asymmetry in demand, for example, one
retailer has a larger demand intercept than the other
for a given common demand state. Such asymmetry
in market size would lead to different marginal losses
in current profits due to increasing sales beyond the
myopic level, and thus affect retailer ordering behav-
ior. Neither of these extensions have been consid-
ered in the two-period setting. Incorporating them
may hinder analytical tractability and even compli-
cate computational study.

Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://msom
.journal.informs.org/.

7 As L goes to infinity, the game moves toward fixed allocation
because today’s sales will have a trivial impact on the moving
average.
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