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Are Momentum Profits Robust
to Trading Costs?

ROBERT A. KORAJCZYK and RONNIE SADKA∗

ABSTRACT

We test whether momentum strategies remain profitable after considering market
frictions induced by trading. Intraday data are used to estimate alternative measures
of proportional and non-proportional (price impact) trading costs. The price impact
models imply that abnormal returns to portfolio strategies decline with portfolio size.
We calculate break-even fund sizes that lead to zero abnormal returns. In addition
to equal- and value-weighted momentum strategies, we derive a liquidity-weighted
strategy designed to reduce the cost of trades. Equal-weighted strategies perform the
best before trading costs and the worst after trading costs. Liquidity-weighted and
hybrid liquidity/value-weighted strategies have the largest break-even fund sizes:
$5 billion or more (relative to December 1999 market capitalization) may be invested
in these momentum strategies before the apparent profit opportunities vanish.

THERE IS A GROWING LITERATURE on the predictability of stock returns based on
the information contained in past returns. At very short horizons, such as a
week or a month, returns are shown to have negative serial correlation (rever-
sal), while at 3 to 12 month horizons, they exhibit positive serial correlation
(momentum). During longer horizons, such as 3 to 5 years, stock returns again
exhibit reversals.1 The momentum of individual stocks is extensively examined
by Jegadeesh and Titman (1993, 2001). They show that one can obtain superior
returns by holding a zero-cost portfolio that consists of long positions in stocks
that have outperformed in the past (winners), and short positions in stocks that
have underperformed during the same period (losers).

To date, no measures of risk have been found that completely explain mo-
mentum returns. A number of authors have found that the long-term rever-
sals are not robust to risk adjustment (Fama and French (1996), Lee and
Swaminathan (2000), and Grinblatt and Moskowitz (2003)). However, the in-
termediate return continuation has been a more resilient anomaly. Fama and
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French find that a three-factor asset pricing model cannot explain the returns of
the intermediate-term momentum portfolios. Grundy and Martin (2001) study
the risk of momentum strategies and conclude that while factor models can
explain most of the variability of momentum returns, they fail to explain their
mean returns (also see Jegadeesh and Titman (2001)). Lee and Swaminathan
(2000) study the interaction between momentum and turnover and find that
there is a link between momentum and value strategies. Like Fama and French
(1996), they find that momentum returns are not explained by the Fama and
French (1993) three-factor model. Momentum has also been shown to be robust
across national financial markets (see, e.g., Rouwenhorst (1998), Chui, Titman,
and Wei (2000), and Griffin, Ji, and Martin (2002)). Some view this unexplained
persistence of intermediate-term momentum returns throughout the last sev-
eral decades as one of the most serious challenges to the asset-pricing literature
(Fama and French (1996)).

In the absence of a risk premium-based explanation for momentum prof-
its, an important question is whether there are significant limits to arbitrage
(Shleifer and Vishny (1997)) that prevent investors from trading sufficiently to
drive away the apparent profits. While limits to arbitrage do not explain the un-
derlying causes for the existence of seemingly profitable momentum strategies,
they may be sufficient for their persistence.

We investigate the effect of trading costs, including price impact, on the prof-
itability of particular momentum strategies. In particular, we estimate the size
of a momentum-based fund that could be achieved before abnormal returns
are either statistically insignificant or driven to zero. We investigate several
trading cost models and momentum portfolio strategies and find that the esti-
mated excess returns of some momentum strategies disappear after an initial
investment of $4.5 to over $5.0 billion2 is engaged (by a single fund) in such
strategies. The statistical significance of these excess returns disappears after
$1.1–$2.0 billion is engaged in such strategies. Therefore, transaction costs, in
the form of spreads and price impacts of trades, do not fully explain the return
persistence of past winner stocks exhibited in the data. This anomaly remains
an important puzzle.

These break-even fund sizes represent marginal investments over and above
those already implemented by traders in this market. Thus, as in all anomaly-
based trading strategies, we are unable to assess infra-marginal profits earned
by existing traders.

There are several components of trading costs that differ dramatically in size
and in ease of measurement. The components that can be measured with the
least error are the explicit trading costs of commissions and bid/ask spreads.
When trading an institutional-size portfolio, these proportional costs can be
swamped by the additional nonproportional cost of price impact and the

2 The dollar amounts reported throughout the paper are expressed relative to market capital-
ization at the end of December 1999. That is, we report the dollar amount at the end of 1999 that
constitutes the same fraction of total market capitalization as the initial investment in February
1967.
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“invisible costs” of post-trade adverse price movement (Treynor (1994, p. 71)).
The nature of the price impact of trades has been the subject of extensive
theoretical and empirical studies (e.g. Kyle (1985), Easley and O’Hara (1987),
Glosten and Harris (1988), Hasbrouck (1991a, 1991b), Huberman and Stanzl
(2000), and Breen, Hodrick, and Korajczyk (2002)). The economic importance
of price impact is demonstrated by Loeb (1983), Keim and Madhavan (1996,
1997), and Knez and Ready (1996), who show that transaction costs increase
substantially as the size of an order increases.

Incorporating the explicit trading costs (commissions and spreads) into port-
folio returns has occurred in the literature for some time. For example, Schultz
(1983) and Stoll and Whaley (1983) investigate the effect of commissions and
spreads on size-based trading strategies. A number of studies investigate the ef-
fects of trading costs on prior-return-based (momentum and contrarian) trading
strategies. Ball, Kothari, and Shanken (1995) show that microstructure effects,
such as bid/ask spreads, significantly reduce the profitability of a contrarian
strategy. Grundy and Martin (2001) calculate that at round-trip transactions
costs of 1.5%, the profits on a long/short momentum strategy become statisti-
cally insignificant. At round-trip transactions costs of 1.77%, they find that the
profits on the long/short momentum strategy are driven to zero.

Incorporating nonproportional price impacts of trades into trading strategies
has only recently received significant attention. Knez and Ready (1996) study
the effects of price impact on the profitability of a trading strategy based on the
weekly autocorrelation and cross-autocorrelation of large-firm and small-firm
portfolios. They find that the trading costs swamp the abnormal returns to the
strategy. Mitchell and Pulvino (2001) incorporate commissions and price-impact
costs into a merger arbitrage portfolio strategy. They find that the trading costs
reduce the profits of the strategy by 300 basis points per year.

There is a pronounced reversal of momentum around the turn of the year
that is caused by the turn of the year size effect (Jegadeesh and Titman (1993)
and Grundy and Martin (2001)). Keim (1989) finds that this pattern is due
largely to microstructure effects, since there are distinct seasonal patterns in
the probability that the closing price is a bid price or an ask price. Sadka (2001)
examines single-month past-return-based strategies at the turn of the year,
since these strategies exhibit the highest excess returns during December and
January, incorporating, as we do here, the costs of price impact. He concludes
that only a small amount can be invested before the apparent profit opportu-
nities vanish. We do not attempt to exploit the turn of the year reversals in the
trading strategies studied here.

Chen, Stanzl, and Watanabe (CSW)(2002) estimate the maximal fund size
attainable before price impacts eliminate profits on size, book-to-market, and
momentum strategies. They find that maximal fund sizes are small for all
strategies. Lesmond, Schill, and Zhou (2003) find that trading costs eliminate
the profits on the strategies they study. While our results are broadly consis-
tent with these studies for the strategies they examine, we find that there are
alternative strategies that provide greater profits. We discuss the differences
between the results in these papers and our results later in the paper.
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We study the profitability of long positions in winner-based momentum
strategies after accounting for the cost of trading. We incorporate several mod-
els of trading costs, including proportional and nonproportional costs. Two pro-
portional cost models are based on quoted and effective spreads. We study two
alternative price-impact models (nonproportional costs): one based on Glosten
and Harris (1988), and the other based on Breen et al. (2002). In addition to
value-weighted and equal-weighted trading strategies commonly found in the
literature, we derive a liquidity-weighted portfolio rule that maximizes, under
simplifying assumptions, post-price-impact expected return on the portfolio.
We also study strategies that combine liquidity-weighted and value-weighted
(buy and hold) strategies. The liquidity-weighted portfolio is derived through a
static optimization problem, rather than a fully dynamic portfolio setting. For
the price-impact models, trading costs are nonproportional, and therefore costs,
as a percentage of trade size, grow with the size of the portfolio being traded. We
calculate the size of the portfolio that (1) eliminates the statistical significance
of the portfolio abnormal return, (2) drives the level of abnormal return to zero,
and (3) drives the portfolio Sharpe ratio to that of the maximal Sharpe ratio
obtained from combinations of the Fama and French (1993) market, size, and
book-to-market portfolios.

In Section I, we discuss the momentum literature and the particular portfolio
strategies that we investigate. In Section II, we introduce measures of propor-
tional and nonproportional (price-impact) trading costs. A trading model that
incorporates price impacts is developed and an optimal trading strategy with
forecastable price impacts is derived in Section III. The performance of various
momentum strategies is evaluated in Section IV. We analyze the sensitivity of
the results to alternative samples, trading rules, and assumptions in Section V.
Concluding remarks are presented in Section VI.

I. Momentum Trading Strategies

Following Jegadeesh and Titman (1993), we define momentum-based strate-
gies by the length of the period over which past returns are calculated, J, and
the length of time the position is held, K. This paper, and much of the liter-
ature, uses monthly data, so J and K are measured in months. Some studies
assume that the momentum trading strategy is implemented at the end of
ranking period and held for K months. Others, in order to avoid microstructure
effects, wait a certain period of time before implementing a trading strategy.
We call this waiting period a “skip” period and denote its length S. The triplet
(J, S, K) describes the momentum strategies. For example, with J = 12, S = 0,
and K = 3, the strategy would rank stocks at time t by the cumulative return
from the end of month t − 12 to the end of month t, while the investment period
would be from the end of month t to the end of month t + K (if S = 1, then the
investment period would be from the end of month t + 1 to the end of month
t + K + 1).

“Winners” are those firms with the highest ranking-period returns and
“losers” are those stocks with the lowest ranking-period returns. In much of
the literature, stocks with the top 10% ranking-period returns are defined as
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“winners” and stocks with the lowest 10% ranking-period returns are defined
as “losers,” and we follow this convention.

Jegadeesh and Titman (1993) implement strategies with J = {3, 6, 9, 12}, S =
{0, 0.25} (i.e., no skip period, and a skip period of one week), and K = {3, 6, 9, 12}.
Jegadeesh and Titman (1993, Table I) report the returns on the losers’ decile,
on the winners’ decile, and on the zero-cost strategy of taking a long position
in the winners’ decile and a short position in the losers’ decile. They report
that all of the zero-cost momentum portfolios have positive returns; all, except
one, have statistically significant returns; and the most profitable long/short
strategy is the J = 12/S = 0.25/K = 3 strategy. Fama and French (1996) find
significant abnormal returns for a J = 11/S = 1/K = 1 strategy. Grundy and
Martin (2001) study a J = 6/S = 1/K = 1 strategy and find that it yields sig-
nificant abnormal returns.

Our sample consists of all stocks included in the Center for Research in Se-
curity Prices (CRSP) monthly data files from February 1967 to December 1999.
From 1967 to 1972, the CRSP data files include New York Stock Exchange
(NYSE) and American Stock Exchange (AMEX) stocks; after 1972, Nasdaq
stocks are added to the sample. Table I contains average returns, in excess
of the one-month Treasury-bill return, of portfolios of past winners (top decile)
and losers (bottom decile). The strategies include ranking periods (J) of 2, 5,
and 11 months, skip periods (S) of one month, and holding periods (K) of 1, 3, 6,
and 12 months. With a holding period of K, the return on the portfolio strategies
consists of equal-weighted average returns from the strategies implemented at
the end of the previous K months.3 The previous literature typically uses equal
weights (EW) or value (measured by market capitalization) weights (VW) to
form portfolios. In Table I, we use the same EW and VW strategies. We discuss
alternative weighting schemes below.

We conduct the analysis first using only NYSE-listed stocks and subsequently
using the entire universe of stocks (NYSE, AMEX, and Nasdaq) available on
CRSP. The results for EW strategies are reported in Panel A of Table I, sep-
arately for winners and losers. Similar to Jegadeesh and Titman (1993), we
conclude that, ignoring price impacts, the most profitable strategies for equal-
weighted long positions in winners and short positions in losers are 11/1/1 and
11/1/3. The 5/1/6 trading strategy also exhibits high mean return.

While the momentum anomaly is the existence of significant returns to win-
ners in excess of losers, some past research has found that most of the re-
turn to a long/short momentum trading strategy is due to the short position
in losers rather than to the long position in winners. For example, Hong, Lim,
and Stein (2000, Table III) find that between 73 and 100% of the long win-
ners/short losers momentum portfolio excess return is determined by the re-
turn difference between the loser portfolio (bottom 30% of past returns) and
middle return portfolio (middle 40% of past returns) for size deciles two to nine.

3 Alternatively, one might consider strategies that require rebalancing only once, at the end of
the non-overlapping K-period investment period, instead of rebalancing a fraction of the portfolio
every month. We have analyzed such strategies and found them to underperform the strategies
above after including price impact costs.
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Table I
Average Excess Returns to Momentum Strategies

A momentum strategy is defined by the triplet (J, S, K), where J is the ranking period (according
to past J-month cumulative return), S is a skip period (set to one month in all the strategies below),
and K is the holding period. Every month stocks are sorted according to the chosen ranking period
(J). After skipping one month (S), portfolios are formed using stocks in the top decile (winners)
and in the lower decile (losers). The portfolios are held for K months. This process is repeated
every month, while a 1/K fraction of each portfolio is rebalanced. The time-series means of momen-
tum portfolio monthly returns (excess of the risk-free rate), as well as the associated t-statistics
(two-digit numbers), are presented below for various ranking and holding periods. The analysis is
performed separately using NYSE-listed stocks, and using all NYSE, AMEX, and Nasdaq stocks.
Panel A uses equal weights for each stock while forming the portfolios, and Panel B uses value (mar-
ket capitalization) weights. The average monthly excess returns of the NYSE-composite and the
NYSE/AMEX/Nasdaq-composite are 0.0061 and 0.0072 (equal-weighted), and 0.0053 and 0.0056
(value-weighted), respectively. The analysis uses data for the period February 1967 to December
1999 (395 months).

NYSE NYSE + AMEX + Nasdaq

K K

J 1 3 6 12 J 1 3 6 12

Panel A: Equal-Weighted Strategies

Winners
2 0.0098 0.0101 0.0108 0.0112 2 0.0077 0.0084 0.0089 0.0094

3.13 3.24 3.45 3.53 2.27 2.53 2.69 2.80
5 0.0128 0.0132 0.0139 0.0124 5 0.0108 0.0111 0.0114 0.0097

4.04 4.15 4.36 3.89 3.23 3.34 3.43 2.93
11 0.0170 0.0160 0.0146 0.0117 11 0.0147 0.0134 0.0116 0.0085

5.13 4.80 4.41 3.59 4.26 3.92 3.44 2.54

Losers
2 0.0055 0.0050 0.0048 0.0051 2 0.0056 0.0042 0.0043 0.0052

1.44 1.35 1.33 1.44 1.38 1.03 1.07 1.34
5 0.0029 0.0028 0.0029 0.0044 5 0.0046 0.0037 0.0038 0.0052

0.74 0.71 0.76 1.18 1.07 0.85 0.90 1.27
11 0.0012 0.0014 0.0026 0.0057 11 0.0028 0.0029 0.0042 0.0075

0.29 0.34 0.66 1.45 0.63 0.67 0.95 1.73

Panel B: Value-Weighted Strategies

Winners
2 0.0070 0.0074 0.0072 0.0077 2 0.0085 0.0091 0.0083 0.0084

2.44 2.70 2.65 2.82 2.66 2.97 2.78 2.81
5 0.0081 0.0087 0.0096 0.0085 5 0.0099 0.0100 0.0103 0.0088

2.80 3.09 3.43 3.04 3.09 3.23 3.34 2.89
11 0.0117 0.0117 0.0106 0.0087 11 0.0130 0.0128 0.0111 0.0084

3.84 3.90 3.51 2.93 3.92 3.91 3.42 2.66

Losers
2 0.0035 0.0034 0.0034 0.0025 2 −0.0024 −0.0012 −0.0002 −0.0001

1.06 1.11 1.12 0.86 −0.65 −0.35 −0.06 −0.03
5 0.0018 0.0023 0.0014 0.0019 5 −0.0054 −0.0039 −0.0025 −0.0010

0.53 0.69 0.42 0.61 −1.42 −1.05 −0.70 −0.27
11 −0.0025 −0.0015 −0.0002 0.0022 11 −0.0083 −0.0065 −0.0040 0.0006

−0.72 −0.41 −0.06 0.65 −2.10 −1.65 −1.02 0.16
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Grinblatt and Moskowitz (2003, Table II) find a stronger relation between re-
turns and past returns (for a J = 12/S = 1/K = 1 strategy) for losers than for
winners. Jegadeesh and Titman (2001, Table IV) find larger abnormal returns
(in absolute value) for loser portfolios than for winner portfolios. Lesmond et
al. (2003) find that between 53% and 70% of the profits on long/short strategies
come from the short side.

Despite the evidence that greater momentum profits are obtained from past
losers versus past winners, we limit our analysis to winners alone. The reason
stems from the potential asymmetry of trading costs between engaging in a
long position and short-selling. The nature of short-selling execution, especially
large positions, involves additional costs not fully captured by our measure of
price impact. For example, losers are stocks that have extreme past underper-
formance, and as such they are biased to small firms, which may be difficult
to short-sell. We show below that losers are much less liquid than winners, as
shown by their higher price impact coefficients. In addition, implementing the
short side of momentum strategies may violate the up-tick rule. Although there
is evidence that the costs of short-selling are not sufficient to eliminate momen-
tum profits (Geczy, Musto, and Reed (2002)), we choose the more conservative
approach of studying past winner-based portfolio strategies.4 Additionally, the
strategy is conservative to the extent that we ignore potential income the long
strategy could earn through securities lending. The persistence of winners is an
important anomaly on its own, since the excess returns of winners exhibited in
the data are statistically significant. Although restricting the analysis to win-
ners and to long strategies would potentially bias toward not finding significant
post-transactions costs return, we do in fact find significant returns.

Since the 11/1/3 and 5/1/6 strategies are profitable and similar to those ex-
tensively studied in the literature, we will focus on these strategies. We will
do this for winners only. Without considering price concessions and using only
NYSE-listed stocks, these winners-based strategies earn excess returns of 1.17
and 1.60% (raw returns of 1.71 and 2.13%) per month for 11/1/3 VW and EW,
respectively, and excess returns of 0.96 and 1.39% (raw returns of 1.49 and
1.93%) per month for 5/1/6 VW and EW, respectively. Their Sharpe ratios (not
reported in the table) are 0.20, 0.24, 0.17, and 0.22, respectively. For compari-
son, the mean excess return of the Standard & Poors (S&P) 500 portfolio over
the sample period is 0.61% per month with a Sharpe ratio of 0.13.5

4 The existing literature indicates that the winners-only strategy is conservative relative to the
long/short strategy before trading costs. Given that losers are less liquid, it might be the case that
the strategy is not conservative on an after-trading cost basis.

5 Since momentum arbitrage strategies exhibit a reversal during January, one might consider
altering our investment strategies accordingly. We note that the January reversal is mainly a
loser phenomenon (see, e.g., Sadka (2001)), and has little effect on winners. The average returns
during January are as follows: Equal-weighted strategies earn 3.87% (11/1/3) and 4.05% (5/1/6)
for winners and 8.56% (11/1/3) and 8.08% (5/1/6) for losers. Value-weighted strategies earn 1.99%
(11/1/3 winners), 2.03% (5/1/6 winners), 3.64% (11/1/3 losers), and 3.32% (5/1/6 losers). We proceed
to investigate strategies based on long winners throughout the entire year.
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II. Measures of Trading Costs

We study the effects on the profitability of the past winner-based momentum
strategies implied by four alternative measures of trading costs. Two of the
measures are proportional trading cost models, and are therefore independent
of the size of the portfolio traded. These are based on quoted and effective
spreads. The remaining two measures are nonproportional trading cost models
and reflect the fact that the price impact of trading increases in the size of the
position traded. The price-impact measures are based on Glosten and Harris
(1988) and Breen et al. (2002). All of the liquidity measures are estimated using
the transaction data from the Trade and Quotation (TAQ) data supplied by the
NYSE. Our momentum strategies cover a much longer time period than that
covered by the TAQ data. We first describe the in-sample estimation of the
different trading cost models and then introduce a method of estimating them
outside the initial estimation period.

A. In-Sample Estimation

A.1. Proportional Cost Models: Effective and Quoted Spreads

For each trade in the TAQ data for our sample firms, the effective percent-
age half-spread is the absolute value of the transaction price and midpoint
of quoted bid and ask, divided by the bid/ask midpoint. Quoted percentage
half-spreads are measured minute by minute as the ratio of half the quoted
bid–ask spread and the bid/ask midpoint. Monthly estimates of these two mea-
sures are obtained as their simple average throughout the month. We de-
note kE

t and kQ
t as the average effective and quoted half-spreads for month t,

respectively.

A.2. Nonproportional Cost Model I: Breen et al. (2002)

For nonproportional trading costs we use two alternative specifications of the
price-impact function. One is the price impact estimated in Breen et al. (2002).
This (Breen–Hodrick–Korajczyk, BHK) measure posits a proportional relation
between percentage returns and net share turnover over 30-minute duration
time periods:

�pi,t

pi,t−1
= λBHK

i × Turnoveri,t , (1)

where pi,t is the last transaction price of asset i in time period t, �pi,t = pi,t −
pi,t−1 is the price impact associated with the transactions in period t, λBHK

i is
asset i’s price impact coefficient, and Turnoveri,t is the net number of shares
traded (multiplied by 1,000) divided by the number of shares outstanding for
firm i. Trades are signed according to the price relative to the quote midpoint
(see Lee and Ready (1991)). Buyer-initiated trades correspond to positive val-
ues of Turnoveri,t and seller-initiated trades correspond to negative values. This
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specification is motivated by the linear pricing rule of Kyle (1985), which ex-
presses price changes as a linear function of net volume. Breen et al. (2002)
use scaled measures (i.e., net turnover rather than net volume, and returns
rather than price changes) in order to obtain more meaningful cross-sectional
and time-series comparisons of price impact. Using returns rather than price
changes does induce convexity in the price impact, which we discuss later. Has-
brouck (1991b) finds that the convex versus linear specification does not affect
his results significantly.

A.3. Nonproportional Cost Model II: Glosten and Harris (1988)

Our second specification for the price impact function is from Glosten and
Harris (1988, equation (5)). The Glosten and Harris (GH) specification allows
a decomposition of the price impact into fixed and variable components. The
regression model is

�pi,t = αi + λGH
i qi,t + �i�di,t + εi,t , (2)

where �pi,t is the price change of stock i from trade t − 1 to trade t as a con-
sequence of a (signed) trade of qi,t shares of the stock. As before, every trade
is classified as a buy or a sell according to the transaction price relative to
the bid/ask midpoint. The sign of a trade is denoted di,t and is assigned a
value of +1 for a buy and −1 for a sell. The difference between the sign of
a current trade and the previous trade is denoted �di,t. The regression coeffi-
cient λGH

i represents the variable cost of trading, while �i represents the fixed
costs.

A.4. Shape of the Price Impact Function

Theoretically, the permanent component of the price impact function should
be linear (e.g., Kyle (1985) and Huberman and Stanzl (2000)). Empirical stud-
ies often find concave price impact functions (see, e.g., Hasbrouck (1991a),
Hausman, Lo, and MacKinlay (1992), and Keim and Madhavan (1996)). Our
cost functions are either convex (BHK) or linear (GH). (For an illustration of
the different trading cost functions see Figure 1.) We believe that the use of
linear and convex price impact functions is reasonable in our case for several
reasons. First, the choice of trade size is endogenous. Those large trades that
researchers observe in the data are likely to be ones for which the price impact
is low (i.e., due to credible signaling that the trader is uninformed). Otherwise,
the trade would be broken into smaller trades (Bertsimas and Lo (1998)). It is
not plausible to assume that the naive momentum trading strategies discussed
in the literature could be executed under these favorable conditions. Second,
concave empirical price-impact functions may be observed in the data due to
leakage of information while a block trade is being “shopped” (see, e.g., Nelling
(1996)). That is, the measured price impact for a block underestimates the true
price impact, thus leading to unattainable concavity in the measured price
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Figure 1. Transaction cost functions. In this paper we consider four different measures of
transaction costs: Two nonproportionate costs, the Breen-Hodrick-Korajczyk (2002) measure, and
the Glosten-Harris (1988) measure; and two proportionate costs, effective spreads and quoted
spreads. The Breen-Hodrick-Korajczyk measure is based on the model �pi,t/pi,t = λBHK,i�qi,t,
where �pi,t/pi,t is the relative price change of stock i as a result of trading a net total of qi,t
(signed) shares in a 30-minute interval (t). The Glosten-Harris measure is based on the model
�pi,t = λGH,i�qi,t + ψi�di,t, where �pi,t is the absolute price change as a result of trading qi,t
(signed) shares at time t (here t represents event time), and di,t is an indicator for buyer-initiated
(+1) or seller-initiated (−1) trade. Effective spreads are measured as the absolute price change
relative to the midpoint of quoted bid and ask. Quoted spread is measured as the ratio between the
quoted bid–ask spread and the midpoint (half the quoted spread is considered as cost). The figure
above illustrates these different functions.

impact function. Last, if the true price-impact functions are concave, then our
results are conservative, since we overestimate the costs of trading for large
trades.

A.5. Assumed Trading Interval

The measure of time differs across the two price impact specifications. In the
BHK formulation, equation (1), trades are aggregated over 30-minute intervals
so that �pi,t is the change in the last transaction price from time interval t − 1
to time interval t, and Turnoveri,t is the signed (net) turnover in time interval
t. In the GH formulation, equation (2), time is defined in terms of trades. That
is, qi,t is the signed size of trade t, and �pi,t is the price change of stock i from
trade t − 1 to trade t.

A.6. Time Series of Trading Costs

We use intraday data to estimate the price impact coefficient each month,
τ, (τ = 1, . . . , T), for our cross-section of firms. This provides a time series of
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coefficients, λBHK
i,τ , λGH

i,τ , and �i,τ . We estimate the time series of monthly coeffi-
cients using the TAQ data over the period January 1993 (the beginning date of
TAQ) to May 1997. The quoted and effective half-spreads, kQ

i,τ and kE
i,τ , are esti-

mated using the same sample. The resulting sample consists of 6,513 firms, not
all of which have data for each month. For the average month there are 3,699
firms with data. Approximately two-thirds of the firms trade on the NYSE
and AMEX, while one-third of the firms trade on Nasdaq. We estimate λBHK

i,τ
separately for NYSE/AMEX and Nasdaq firms. For computational reasons we
estimate λGH

i,τ and �i,τ using NYSE firms only.

B. Out-of-Sample Estimation

Since our momentum strategies cover a much longer time period than that
covered by the TAQ data, we need a method of estimating the coefficients out-
side the initial estimation period. We do this by estimating the cross-sectional
relation (over January 1993 to May 1997) between the trading cost estimates
(λBHK

i,τ , λGH
i,τ , �i,τ , effective spreads, kE

i,τ , and quoted spreads, kQ
i,τ ) and a set of pre-

determined firm-specific variables meant to be proxies for market-making costs
(due to adverse selection and carrying costs). We use this cross-sectional rela-
tion to estimate price impact in the out-of-sample period using the firm-specific
predetermined variables that are observable in the out-of-sample period.

For example, for the BHK specification, equation (1), let �̂τ be the estimated
vector of coefficients from the cross-sectional relation:

λ̂BHK
τ = X τ−1�τ + υτ , (3)

where λ̂BHK
τ is the Nτ × 1 vector of price-impact coefficients of Nτ firms esti-

mated for month τ , and Xτ−1 is the Nτ × k matrix of predetermined variables
for the cross-section of firms with Xi,τ−1 = (1, X1,i,τ−1, . . . , X9,i,τ−1). The prede-
termined variables consist of (1) the market cap of firm i at the end of month
τ − 1 divided by the average market cap of CRSP firms, minus one; (2) total
volume for firm i from month τ − 3 to month τ − 1 divided by the total volume,
over the same period, for the average NYSE firm, minus one; (3) firm i’s stock
price at the end of month τ − 1 divided by the price at the end of month τ − 7,
minus one; (4) the absolute value of variable 3; (5) a dummy variable equal to
unity if the firm is included in the S&P 500 index; (6) the stock’s dividend yield;
(7) the R2 of firm i’s returns regressed on returns of the NYSE index over the
preceding 36 months; (8) a dummy variable equal to unity if the firm is traded
on NYSE; and (9) the inverse of stock price of the previous month.

As in Fama and MacBeth (1973), we use the time-series average of the
monthly estimates, �̂τ , to estimate the average cross-sectional coefficient vector,
�̂ = (�̂1 + �̂2 + · · · + �̂T )/T . To estimate the price impact for firm i over month
τ , we calculate the product of �̂ and X i,τ−1.

λ̂BHK
i,τ = X i,τ−1�̂. (4)
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While the coefficient �̂ is estimated over the 1993 to 1997 time period, the pre-
determined variables are observable before the momentum trading strategy is
implemented. The predetermined variables are constructed to avoid scale dif-
ferences across the time period. For example, while the market capitalization
of a large firm in 1967 is very different from the market capitalization of a
large firm in 1997, a large firm will always have a high relative market capi-
talization. The same type of cross-sectional regression approach is taken to es-
timate the coefficients for the GH model, λGH

i,τ and �i,τ , and effective and quoted
spreads, kE

i,τ and kQ
i,τ . The results of the cross-sectional regressions, equation

(3), are reported in Table II. In general, the t-statistics for the cross-sectional
coefficients are quite large. Table III presents details of the distribution of the
predicted spread and price-impact measures obtained from the cross-sectional
regressions, such as equation (4) for λ̂BHK

i,τ . Panel A of Table III compares the
parameters for the winner decile and loser decile for the 11/1/1 strategy. Panel B
presents an equivalent comparison of winners and losers for the 5/1/1 strategy.
By every metric, the loser stocks are less liquid, on average, than the winner
stocks.

III. Trading Models with Price Impacts

The typical momentum strategies investigated in the literature are not op-
timized to take into account the price impact costs of trading. To incorporate
transaction costs of trades, we first develop the formulation of the total cost of
a trade.

A. Cost of a Trade

We start the discussion of the cost of execution of trades with a general deriva-
tion. Denote the prevailing market price of an asset by p. A purchase of q units
of this asset would cost a total of x as follows:

pq +
∫ q

0
f (p, q) dq = x, (5)

where f (p, q) is the price impact cost function and the price acts as a state
variable that could influence the cost function. This formulation implicitly as-
sumes that the trade of q shares is divided into many infinitesimal trades (as
in Bertsimas and Lo (1998)) and that over the trading period there is no price
reversion.6

The BHK specification for price impact generates an exponential price-impact
function. In the context of equation (5), the price impact cost function is ex-
pressed as f (p, q) = p(eλ̄q − 1) where λ̄ is defined as λBHK scaled by the number

6 The assumption of no price reversion throughout the trading process somewhat relaxes the
need to define the time horizon of the trade, as long as the time horizon for expected return begins
after the trade is fully executed. This assumption is plausible for market orders and especially for
situations in which a trade must be executed as soon as possible.
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of shares outstanding. For the GH specification, the trading costs may be de-
scribed by f (p, q) = λGHq + �p. Similar to the fixed costs in the GH model,
proportional trading costs may be expressed as f (p, q) = kp, where k is a con-
stant proportional cost (in our study, kE and kQ are the effective and quoted
half-spreads, respectively).

B. Trading Strategies with Price Impact

Once a specific momentum strategy and initial investment amount are cho-
sen, we calculate the monthly returns net of trading costs, assuming that the
strategy is self-financed. For brevity, we only include here a description of the
general methodology. The explicit trading model may be found in Appendix A.

The trading strategy determines which stocks are included in the portfolio
every month and the weight of each of these stocks in the portfolio. The ac-
tual number of shares traded while rebalancing the portfolio at the beginning
of every month is determined by satisfying a generalized portfolio version of
equation (5), given total value of the investment portfolio at the end of the pre-
vious month and the required weights of each stock in the portfolio. The price
impact costs result in the total investment amount being lower after rebalanc-
ing. We assume that the monthly returns observed on CRSP are earned only on
the amount invested after the costs of rebalancing. Therefore, the net monthly
returns, calculated as the ratio between the monthly values of the investment
portfolio just before rebalancing, are lower than the observed returns on CRSP
(see Figure 2 for an illustration of the portfolio value process).

Since the nonproportional price-impact costs increase with the amount of
investment, the average monthly returns of any given momentum strategy
decrease with the amount of initial investment. The proportional price-impacts
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Figure 2. The process of investment level. The figure above illustrates the innovation of
level of investment according to the trading model assumed in this paper. At time t, just before
rebalancing, the total amount invested in the portfolio is xt. Due to transaction costs induced by
rebalancing, the actual amount invested after rebalancing drops to x̄t . Consequently, the expected
returns, denoted by Rt, drop to rt.
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(i.e., effective and quoted spreads) induce a fixed decrease in portfolio returns
independent of the amount of initial investment.

As mentioned earlier, standard momentum strategies are not optimized to
take into account the price impact costs of trading. It is conceivable that
liquidity-conscious portfolios, which attribute more weight to more liquid stocks,
would potentially earn higher net average returns. Therefore, we also inves-
tigate the performance of liquidity-weighted momentum portfolios, i.e., the
weight of each stock in the portfolio is proportional to its market value and
inversely proportional to its liquidity measure. This trading rule is optimal for
the BHK specification, under some fairly restrictive conditions (see Appendix
B). We apply a similar liquidity-weighting strategy under the GH specification,
realizing that doing so is somewhat ad hoc.

IV. Performance Evaluation of Momentum Strategies

We wish to evaluate the performance of various momentum-based trading
strategies. For proportional transactions cost models, a trading strategy’s per-
formance is independent of the size of the portfolio. For nonproportional price
impact transactions costs, the performance of the trading strategy declines
with the size of the portfolio. Therefore, we are interested in determining the
amount that a single portfolio manager could invest before the performance of
momentum strategies breaks even with that of the benchmark.

A. Benchmark Asset Pricing Model

We compute Sharpe ratios and abnormal returns (α) relative to the three-
factor model of Fama and French (1993) for different initial investment levels.
Using the Fama-French (1993) three-factor model, we estimate the time-series
regression

RW,t − R f ,t = αW + βW,t RM,t + sW,tSMBt + hW,tHMLt + εW,t , (6)

where RW,t − Rf ,t is the monthly return of the past-winner momentum portfo-
lio (W ≡ (J, S, K)), in excess of the one-month Treasury bill return (Rf ,t); RM,t,
SMBt, and HMLt are the Fama–French factors.7 The conditional exposures of
the momentum portfolio to the three factors are denoted by βW,t, sW,t, and hW,t.

Given that the composition of momentum-based portfolio strategies, by defi-
nition, is based on past returns, it is also based partially on conditional factor
risk. For example, if the return on the market is high over the ranking period,
our winner portfolio will tend to include high market risk assets. Conversely, if
the return on the market is low over the ranking period, our winner portfolio
will tend to include low market risk assets. This time variation in conditional

7 See Fama and French (1993) for a description of the construction of the factor portfolio returns.
A description of the factor construction and the return series are available from Ken French at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html, February 5, 2004.
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systematic risk is discussed in a number of papers (e.g., Chopra, Lakonishok,
and Ritter (1992), Jones (1993), and Grundy and Martin (2001)). Grundy and
Martin derive a model in which momentum-based portfolios have conditional
factor risk exposures that are linear functions of the ranking-period factor port-
folio returns. While other effects, such as leverage effects, may make the relation
more complex (Chopra et al.), we rely on the results of Grundy and Martin and
model the momentum portfolio’s conditional factor risk as a linear function of
the ranking-period factor returns. That is

βW ,t = aβ + bβ RM ,W ,t + cβSMBW ,t + dβHMLW ,t ,

sW ,t = as + bs RM ,W ,t + csSMBW ,t + dsHMLW ,t ,

hW ,t = ah + bh RM ,W ,t + chSMBW ,t + dhHMLW ,t

(7)

where RM,W,t, SMBW,t, and HMLW,t are the average cumulative (excess) returns
of the factors over the K overlapping ranking periods of length J used to de-
fine the momentum strategy. Plugging the formulation of the conditional factor
loadings from equation (7) into equation (6), we have the following regression
model

RW ,t − R f ,t = αW + aβ RM ,t + bβ RM ,t × RM ,W ,t + cβ RM ,t × SMBW ,t

+ dβ RM ,t × HMLW ,t + asSMBt + bsSMBt × RM ,W ,t

+ csSMBt × SMBW ,t + dsSMBt × HMLW ,t + ahHMLt

+ bhHMLt × RM ,W ,t + chHMLt × SMBW ,t

+ dhHMLt × HMLW ,t + εW ,t .

Figure 3 plots the estimated time-varying factor risk exposures, β̂W ,t , for the
11/1/3 winner portfolio, along with the unconditional factor sensitivity (figures
for ŝW ,t and ĥW ,t are available from the authors). The figure also includes the
ranking-period market factor return, RM,W,t. As predicted by the analysis of
Grundy and Martin (2001), there is significant time variation in risk that is re-
lated to ranking-period factor returns, as in equation (7). Although we estimate
β̂W ,t , ŝW ,t , and ĥW ,t as functions of RM,W,t, SMBW,t, and HMLW,t, the figure only
plots the own-factor ranking-period return. The 11/1/3 equal-weighted winner
portfolio has estimated factor loadings that range from 0.73 to 1.48 (time series
average of 1.06) for the market factor, from 0.19 to 2.13 (average of 1.01) for the
size factor, and from −0.68 to 0.47 (average of −0.07) for the book-to-market
factor. For comparison, the unconditional factor loadings are 1.05, 0.97, and
−0.09, respectively. The unconditional factor loadings are similar to the values
of 1.13, 0.68, and 0.04 found for a 11/1/1 strategy by Fama and French (1996,
Table VII).

For comparison purposes we also estimate an unconditional, one-factor CAPM
specification. The market risk, βM, is 1.23 and 1.20 (1.26 and 1.22) for VW
(EW) 11/1/3 and 5/1/6 strategies, respectively. The pretrading cost CAPM ab-
normal returns, αW , are similar to, but generally smaller than those reported for
the conditional three-factor model reported in Table IV. The CAPM alphas are
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Figure 3. Conditional factor loadings of momentum (11/1/3 equal-weighted strategy).
Factor loadings are estimated through the time-series regression

RW ,t − R f ,t = α + aβ RM ,t + bβ RM ,t RM ,W ,t + cβ RM ,tSMBW ,t + dβ RM ,tHMLW ,t

+ asSMBt + bsSMBt RM ,W ,t + csSMBt SM BW ,t + dsSMBtHMLW ,t

+ ahHMLt + bhHMLt RM ,W ,t + chHMLtSMBW ,t + dhHMLtHMLW ,t + εt

where RW,t − Rf ,t is the monthly excess return of the 11/1/3 equally weighted momentum portfolio,
RM,t, SMBt, and HMLt are the Fama and French (1993) factors, and RM,W,t, SMBW,t, and HMLW,t
are the corresponding cumulative (excess) returns of the factors. Conditional factor loadings βW,t,
sW,t, and hW,t are then calculated through

βW ,t = aβ + bβ RM ,W ,t + cβSMBW ,t + dβ H M LW ,t

sW ,t = as + bs RM ,W ,t + csSMBW ,t + dsHMLW ,t

hW ,t = ah + bh RM ,W ,t + chSMBW ,t + dhHMLW ,t

The time-series of the conditional factor loading βW,t, as well as the cumulative (excess) return of
the market portfolio, are plotted above (similar plots for the other factor loadings, sW,t and hW,t,
are available from the authors upon request). Unconditional loadings of the momentum strategy
are obtained via a standard Fama and French time-series regression, i.e., constraining all the
coefficients above, except for α, aβ , as, and ah, at zero; they are also plotted above. The analysis
uses monthly returns of all NYSE, AMEX, and Nasdaq stocks available on CRSP for the period
March 1967 until December 1999.

statistically significant with t-statistics in the range of 2.5 to 2.7 (compared to
3.5 to 8.9 for the conditional three-factor model reported in Table IV).

B. Abnormal Momentum Profits with Proportional Costs

Our analysis is restricted to 11/1/3 and 5/1/6 strategies, since they exhibit
significant performance before price impacts (see Table I) and are similar to
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Table IV
Performance under Proportionate Transaction Costs

We evaluate the performance of momentum trading strategies according to the trading model devel-
oped here, using proportionate transaction costs. We form a portfolio in the beginning of February
1967 according to a chosen momentum strategy with a certain initial amount of investment. The
portfolio is rebalanced on a monthly basis, following the trading rule of the chosen strategy, until
the end of December 1999. The proportionate costs considered here include effective and quoted
spreads. Effective spreads are measured as the absolute price relative to midpoint of quoted bid
and ask. Quoted spread is measured as the ratio between the quoted bid-ask spread and the mid-
point (half the quoted spread is considered as trading cost). Transaction costs are estimated on a
monthly basis, using NYSE-listed stocks for the period January 1993 to May 1997. Then, using
cross-sectional relations between the different liquidity measures and pre-determined firm charac-
teristics (see Table II), the spreads are re-estimated for the entire sample period, February 1967 to
December 1999. Assuming that the estimated price spreads are perfectly foreseeable, we rebalance
the portfolio every month while keeping it self-financing, after considering the execution costs of
trades. For every momentum-based trading strategy we calculate the time series of monthly re-
turns, net of transaction costs. Three performance measures are reported: (1) The intercept (alpha)
of the conditional Fama and French (1993) regressions; (2) The t-statistic associated with alpha;
(3) The Sharpe ratio of the portfolio; and (4) The slope of the investment frontier of a set consist-
ing of four assets: the three Fama and French (1993) portfolios and the momentum portfolio (this
is calculated as the maximum attainable Sharpe ratio of a combination of the four assets). The
maximum attainable Sharpe ratio of the universe containing only the Fama-French three factors
is 0.23. Since we use proportionate transaction costs, all performance measures are invariant to
the initial investment. The analysis uses monthly returns of all NYSE stocks available on CRSP.

Max Sharpe Ratio
t-Stat Sharpe Ratio of Momentum

Alpha of Alpha of Momentum and FF Factors

Panel A: 11/1/3 Momentum Strategy

Equal-Weighted

Raw return 0.0080 8.92 0.24 0.44
Return net of effective 0.0061 6.86 0.21 0.38
Return net of quoted 0.0054 6.08 0.20 0.35

Value-Weighted

Raw return 0.0057 4.54 0.19 0.32
Return net of effective 0.0045 3.59 0.17 0.29
Return net of quoted 0.0040 3.17 0.16 0.28

Panel B: 5/1/6 Momentum Strategy

Equal-Weighted

Raw return 0.0059 8.07 0.22 0.41
Return net of effective 0.0041 5.60 0.19 0.34
Return net of quoted 0.0035 4.72 0.18 0.32

Value-Weighted

Raw return 0.0033 3.46 0.17 0.29
Return net of effective 0.0022 2.31 0.15 0.26
Return net of quoted 0.0017 1.82 0.14 0.25
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trading strategies that are extensively studied in the literature. The results
for VW and EW momentum portfolios with proportional transactions costs are
shown in Table IV for NYSE-listed stocks.

The estimated abnormal returns, α̂, ignoring transactions costs, are 80 and
57 basis points per month for the EW and VW 11/1/3 momentum strategies,
respectively. The value for the EW strategy is higher than the 59 basis points
found with an unconditional three-factor model by Fama and French (1996,
Table VII) for a 11/1/1 strategy. For the 5/1/6 strategy, the abnormal returns are
59 and 33 basis points per month for the EW and VW strategies, respectively.
These are smaller than the 148 basis point abnormal return found by Grundy
and Martin (2001, Table I (panel B)) for an EW 6/1/1 strategy; smaller than the
70 basis point abnormal return (relative to an unconditional one-factor model)
found by Jegadeesh and Titman (1993, Table III (panel B)) for an EW 6/0/6
strategy; and similar to the 12 to 47 basis point abnormal return (relative to an
unconditional three-factor model) found by Lee and Swaminathan (2000, Table
VA) for an EW 6/0.25/6 strategy. All four abnormal returns (EW and VW for
11/1/3 and 5/1/6) are statistically significant.

With proportional transactions costs equal to the effective spread, α̂ is 61
and 45 basis points with t-statistics of 6.86 and 3.59 for EW and VW 11/1/3
momentum strategies, respectively. For the 5/1/6 strategy, the abnormal returns
are 41 and 22 basis points per month for the EW and VW strategies, with t-
statistics of 5.60 and 2.31.

For proportional transactions costs implied by the quoted spread, α̂ is 54
and 40 basis points with t-statistics of 6.08 and 3.17 for EW and VW 11/1/3
momentum strategies, respectively. For the 5/1/6 strategy the abnormal returns
are 35 and 17 basis points per month for the EW and VW strategies, with t-
statistics of 4.72 and 1.82. The results indicate that proportional spread costs
do not eliminate the statistical significance of momentum profits (with the
exception of using quoted spreads for the 5/1/6 VW strategy).

We also calculate the improvement in the Sharpe ratio when the momentum
strategies are added to the three Fama-French factor portfolios. This is done
by calculating the maximal slope of the tangency portfolio, with and without
momentum strategies. In our sample, an investment frontier spanned by the
three Fama-French factors has a maximum attainable Sharpe ratio slope of
0.23. The last column in Table IV shows the maximal Sharpe ratio obtainable
from the momentum portfolio and the three Fama-French factors. Ignoring
transactions costs, adding the 11/1/3 EW momentum strategy to the Fama-
French factors increases the attainable slope to 0.44. When effective and quoted
spreads are considered as proportional trading costs, the maximal Sharpe ratios
are 0.38 and 0.35, respectively. Both 11/1/3 and 5/1/6 (EW and VW) strategies
improve the investment frontier, even after considering proportionate spread
costs.

C. Abnormal Momentum Profits with Price Impact Costs

We now turn to the nonproportional-cost, price impact models. In addition to
calculating the performance of value-weighted (VW) and equal-weighted (EW)
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momentum portfolios, we also investigate liquidity-weighted (LW) momentum
portfolios. The LW portfolios are constructed using the simplifying assumption
of Corollary 1 (in Appendix B) that all assets in the winner portfolio have the
same expected return.8 Additionally, we investigate the performance of port-
folios whose weights are convex combinations of the VW and LW weights. We
study the performance of these strategies as we vary the initial amount invested
at the end of January 1967. We report a December 1999 equivalent to this 1967
dollar amount by computing the 1999 value that constitutes the same fraction
of total market capitalization as the initial investment in January 1967. The
translation ratio between 1967 and 1999 is 29.7. Every month, the portfolios
are rebalanced according to the rules dictated by the trading strategies. These
rules define both the stocks to be included in the portfolio (according to the
different ranking and holding periods) and their weight in the portfolio. The
portfolios are self-financing, since no additional funds are added to or removed
from the portfolios during the entire investment period. The net returns are cal-
culated using the trading model discussed in Section III. Since the set of firm
characteristics used to predict price impact, Xt−1, is predetermined at time t,
the strategies are adapted to the information set available at the time of each
trade, and therefore these strategies are admissible. However, for much of the
sample, � is estimated with future data.

C.1. Breen et al. (2002) Price Impact Specification

We first investigate the performance after price impacts implied by the BHK
specification in equation (1). The results for the 11/1/3 strategy applied to
NYSE-traded firms are given in Figure 4. In Figure 4a we plot the estimated
portfolio abnormal returns, α̂, for several weighting strategies as a function
of the level of initial investment (expressed in terms of December 1999 mar-
ket capitalization). Price impact quickly drives away the profitability of equal-
weighted strategies. Abnormal returns are driven to zero with investment port-
folios larger than $2 billion for value-weighted strategies. However, for the
liquidity-weighted (LW) strategy, or the 50/50 weighting of the LW and VW
strategies, α̂ is driven to zero only after approximately $5 billion is invested.

Figure 4b provides an estimate of the monthly dollar value creation (α̂ times
the level of investment) for different levels of investment. For the LW and the
combined LW/VW portfolios, value creation is maximized with an initial invest-
ment of approximately $2.5 billion. In Figure 4c, we plot the maximal Sharpe
ratio attainable through combinations of Treasury bills, the three Fama-French
factor portfolios, and long positions in the winner momentum portfolio. A hori-
zontal line (at a value of 0.23) is drawn at the maximal Sharpe ratio attainable
through combinations of Treasury bills and the three Fama-French factor port-
folios only. These results mirror those in Figure 4a: the EW Sharpe ratio drops

8 The definition of LW differs across the BHK and GH price-impact models. Corollary 1 directly
addresses the BHK case, and therefore we use weights proportional to MVEi/λ

BHK
i (where MVEi

is the market value of equity for asset i). For the GH case we use a weighting scheme that is similar
in spirit. Since there are fixed and variable costs in that model, LW are calculated as the average
between weights p2

i /λGH
i and 1/�̄i (see Appendix A, equation (A17)).
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Figure 4. Performance evaluation of momentum strategies (NYSE, Breen-Hodrick-
Korajczyk). We evaluate the performance of momentum trading strategies using the trading
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to that of the factor portfolios for low levels of investment; the VW Sharpe ratio
drops to that of the factor portfolios for a level of investment around $2 billion;
and the LW and LW/VW Sharpe ratios drop to that of the factor portfolios for a
level of investment around $5 billion. The performances of the 5/1/6 strategies
are similar to those of the 11/1/3 strategies, with the exception that the 5/1/6
strategies exhibit lower break-even levels. For brevity, these results are not
included in Figure 4 and are available from the authors upon request.

C.2. Glosten and Harris (1988) Price-impact Specification

We now turn to performance, assuming price impacts implied by the GH
specification, equation (2). The results for the 11/1/3 strategy applied to NYSE-
traded firms are given in Figure 5. The basic patterns are similar to those in
Figure 4. In Figure 5a we plot the estimated portfolio abnormal returns, α̂, for
momentum strategies as a function of the level of initial investment. As with
the previous specification, price impact quickly drives away the profitability
of equal-weighted strategies. Abnormal returns are driven to zero with invest-
ment portfolios larger than $3 billion for value-weighted strategies. However,
for the liquidity-weighted (LW) strategy, α̂ is driven to zero only after over $5
billion is invested. For the 50/50 weighting of the LW and VW strategies, α̂

is driven to zero after approximately $4.5 billion is invested. Figure 5b plots
α̂ times the level of investment for different levels of investment. As before,
for the LW and the combined LW/VW portfolios, value creation is maximized
with portfolios investing approximately $2.5 billion. In Figure 5c we plot the
maximal Sharpe ratio attainable through combinations of Treasury bills, the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 4— Continued

model developed here. Specifically, we implement the 11/1/3 strategy using various weighting
schemes (equal weights (EW), value weights (VW), liquidity weights (LW), and a convex combi-
nation (VW + LW)/2). We form a portfolio in the beginning of February 1967 according to a chosen
momentum strategy with a certain initial monetary amount of investment. We rebalance the port-
folio on a monthly basis, following the trading rule of that strategy, until the end of December 1999.
The execution costs of trading any stock i are assumed to follow the model �pi/pi = λi�qi, where
�pi/pi is the relative price improvement as a result of trading �qi (signed) shares. The price impact
coefficients λi are calculated as the fitted values of cross-sectional regressions of measured price
impacts on firm characteristics. These regressions used the Trades and Quotes data for the period
January 1993 until May 1997. Assuming that the estimated price impacts are perfectly foreseeable,
we rebalance the portfolio every month while keeping it self-financing, after considering the price
impact of trades. For every momentum-based trading strategy and initial investment, we calculate
the time series of monthly returns, net of price impacts. Four performance measures are reported:
(a) the intercept (alpha) of the conditional Fama and French (1993) regressions, (b) alpha multiplied
by the amount of investment, and (c) the slope of the investment frontier of a set consisting of four
assets: the three Fama and French (1993) portfolios and the momentum portfolio (this is calculated
as the maximum attainable Sharpe ratio of a combination of the four assets). The initial investment
is quoted relative to market capitalization of December 1999. The analysis uses monthly returns
of all NYSE stocks available on CRSP.
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Figure 5. Performance evaluation of momentum strategies (NYSE, Glosten-Harris). We
evaluate the performance of momentum trading strategies using the trading model developed here.
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three Fama-French factor portfolios, and the winner momentum portfolio. A
horizontal line is drawn at the maximal Sharpe ratio attainable through com-
binations of Treasury bills and the three Fama/French factor portfolios. As in
Figure 4, the Sharpe ratios mirror the values of α̂: the EW Sharpe ratio drops
to that of the factor portfolios for low levels of investment; the VW Sharpe ratio
drops to that of the factor portfolios for a level of investment around $2 billion;
and the LW and LW/VW Sharpe ratios drop to that of the factor portfolios for a
level of investment around $4.5 to $5 billion.

V. Robustness of the Results

We check for the robustness of the results in several dimensions. We be-
gin (in Section V.A) by extending the cross-sectional sample to include AMEX
and Nasdaq stocks in addition to the NYSE stocks previously examined. This
has two possible offsetting effects. The added stocks are less liquid, on aver-
age, than NYSE stocks, suggesting lower break-even fund size. However, with
more stocks held in the strategy, a fund of a given size has a smaller posi-
tion in any given stock, and therefore should have lower price impact. The
second effect dominates. In Section V.B we augment the momentum strategies
with a momentum/volume strategy based on the findings of Lee and Swami-
nathan (2000). Since the augmented momentum strategy tends to invest in
less liquid stocks, it underperforms pure momentum strategy (after trading
costs).

Our results seem to be at odds with some recent studies. In Section V.C, we
compare our approach to two papers. In some dimensions the results are not

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5— Continued

Specifically, we implement the 11/1/3 strategy using various weighting schemes (equal weights
(EW), value weights (VW), liquidity weights (LW), and a convex combination (VW + LW)/2). We
form a portfolio in the beginning of February 1967 according to a chosen momentum strategy with
a certain initial monetary amount of investment. We rebalance the portfolio on a monthly basis,
following the trading rule of that strategy, until the end of December 1999. The execution costs of
trading any stock i are assumed to follow the model �pi,t = λi�qi,t + ψi�di,t, where �pi,t is the
relative price improvement as a result of trading qi,t (signed) shares at time t (here t represents
event time), and di,t is an indicator for buyer-initiated (+1) or seller-initiated (−1) trade. The price
impact coefficients λi and ψ i are calculated as the fitted values of cross-sectional regressions of
measured price impacts on firm characteristics. These regressions used the Trades and Quotes
data for the period January 1993 until May 1997. Assuming that the estimated price impacts
are perfectly foreseeable, we rebalance the portfolio every month while keeping it self-financing,
after considering the price impact of trades. For every momentum-based trading strategy and
initial investment, we calculate the time series of monthly returns, net of price impacts. Four
performance measures are reported: (a) the intercept (alpha) of the conditional Fama and French
(1993) regressions; (b) alpha multiplied by the amount of investment; and (c) the slope of the
investment frontier of a set consisting of four assets: the three Fama and French (1993) portfolios
and the momentum portfolio (this is calculated as the maximum attainable Sharpe ratio of a
combination of the four assets). The initial investment is quoted relative to market capitalization
of December 1999. The analysis uses monthly returns of all NYSE stocks available on CRSP.
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Figure 6. Performance evaluation of momentum strategies (NYSE, AMEX, and Nasdaq,
Breen-Hodrick-Korajczyk). We evaluate the performance of momentum trading strategies
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as different as they appear at first glance. However, there remain important
differences in approaches and results. Finally, in Section V.D, we argue that
the assumptions used here are, on balance, conservative in the sense that true
break-even portfolio sizes are likely to be larger than those reported here.

A. Extending the Admissible Set of Assets

We apply the BHK price-impact model, (equation (1)), to a strategy that in-
vests in AMEX and Nasdaq stocks, in addition to NYSE stocks. Expanding the
sample in this manner has two offsetting effects. First, the newly included firms
are likely to be smaller and less liquid, on average, than the NYSE stocks. This
would tend to reduce the break-even investment amounts for the expanded
sample. Second, with a larger sample of firms, a portfolio of a given size can
spread those funds across a greater number of firms. Since the trading required
in any single stock is lower, the price impact cost is lower. This would tend to
increase the break-even investment amounts for the expanded sample. Figure
6 compares the performance of EW and VW weighting of 11/1/3 and 5/1/6 strate-
gies. After price impacts, VW strategies dominate EW strategies and the 11/1/3
strategy dominates the 5/1/6 strategy.

Because of the dominance of VW 11/1/3 strategies in Figure 6, in Figure 7
we only look at the performance of VW, LW, and LW/VW 11/1/3 strategies.
In comparing Figures 7a to c to Figures 4a to c , all three strategies have
larger break-even investment amounts with the expanded sample. This is true
in terms of the portfolio size that drives α̂ to zero and the size that drives
the maximal Sharpe ratio to that of the Fama and French factors. Turning to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 6— Continued

using the trading model developed here. Specifically, we implement the 11/1/3 and 5/1/6 strategies
using various weighting schemes (equal weights (EW), and value weights (VW)). We form a portfolio
in the beginning of February 1967 according to a chosen momentum strategy with a certain initial
amount of investment. We rebalance the portfolio on a monthly basis, following the trading rule of
that strategy, until the end of December 1999. The execution costs of trading any stock i are assumed
to follow the model �pi/pi = λi�qi, where �pi/pi is the relative price improvement as a result of
trading �qi (signed) shares. The price-impact coefficients λi are calculated as the fitted values of
cross-sectional regressions of measured price impacts on firm characteristics. These regressions
use the Trades and Quotes data for the period January 1993 until May 1997. Assuming that the
estimated price impacts are perfectly foreseeable, we rebalance the portfolio every month while
keeping it self-financing, after considering the price impact of trades. For every momentum-based
trading strategy and initial investment, we calculate the time series of monthly returns, net of
price impacts. Four performance measures are reported: (a) the intercept (alpha) of the conditional
Fama and French (1993) regressions; (b) alpha multiplied by the amount of investment; and (c) the
slope of the investment frontier of a set consisting of four assets: the three Fama and French (1993)
portfolios and the momentum portfolio (this is calculated as the maximum attainable Sharpe ratio of
a combination of the four assets). The initial investment is quoted relative to market capitalization
of December 1999. The analysis uses monthly returns of all NYSE, AMEX, and Nasdaq stocks
available on CRSP.
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Figure 7. Performance evaluation of momentum strategies (NYSE, AMEX, and Nasdaq,
Breen-Hodrick-Korajczyk). We evaluate the performance of momentum trading strategies
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Figures 4b and 7b, the fund size that creates maximal value is also larger for
the expanded sample. Therefore, the advantage of spreading the investment
over more assets (hence a lower price impact) outweighs the disadvantage in
investing in assets with higher average price impact coefficients.

B. Volume Weighting

Lee and Swaminathan (2000) present evidence that past trading volume pro-
vides a link between momentum and “value” trading strategies. They find that
low volume stocks earn higher subsequent returns, on average, than high vol-
ume stocks. In particular, they find that “high (low) volume winners (losers)
experience faster momentum reversals” (p. 2018). Moreover, they find that low
volume stocks display many of the characteristics of “value” stocks while high
volume stocks display many of the characteristics of “glamour” stocks. This sug-
gests that variants of the momentum strategy that tilt the portfolio toward low
volume stocks might outperform a simple momentum strategy. The potential
downside to such strategies is that they may lead to large trading costs, since
low volume stocks might be illiquid.

We analyze two such low-volume, winner-based strategies. We restrict our
analysis to the 11/1/3 strategy. In the first strategy, the stocks in the winners’
decile are weighted by the inverse of their turnover over the ranking period
(Lee and Swaminathan use turnover as the measure of trading volume). In the
second strategy, the portfolio weights for stocks in the winners’ decile are propor-
tional to market capitalization and inversely proportional to their turnover over
the ranking period. For both the NYSE sample and the NYSE/AMEX/Nasdaq

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 7— Continued

using the trading model developed here. Specifically, we implement the 11/1/3 strategy using var-
ious weighting schemes (value weights (VW), liquidity weights (LW), and a convex combination
(VW + LW)/2). We form a portfolio in the beginning of February 1967 according to a chosen mo-
mentum strategy with a certain initial amount of investment. We rebalance the portfolio on a
monthly basis, following the trading rule of that strategy, until the end of December 1999. The ex-
ecution costs of trading any stock i are assumed to follow the model �pi/pi = λi�qi, where �pi/pi
is the relative price improvement as a result of trading �qi (signed) shares. The price impact co-
efficients λi are calculated as the fitted values of cross-sectional regressions of measured price
impacts on firm characteristics. These regressions use the Trades and Quotes data for the period
January 1993 until May 1997. Assuming that the estimated price impacts are perfectly foreseeable,
we rebalance the portfolio every month while keeping it self-financing, after considering the price
impact of trades. For every momentum-based trading strategy and initial investment, we calculate
the time series of monthly returns, net of price impacts. Four performance measures are reported:
(a) the intercept (alpha) of the conditional Fama and French (1993) regressions; (b) alpha multiplied
by the amount of investment; and (c) the slope of the investment frontier of a set consisting of four
assets: the three Fama and French (1993) portfolios and the momentum portfolio (this is calculated
as the maximum attainable Sharpe ratio of a combination of the four assets). The initial investment
is quoted relative to market capitalization of December 1999. The analysis uses monthly returns
of all NYSE, AMEX, and Nasdaq stocks available on CRSP.
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sample, the strategies have positive values of α̂, ignoring transactions costs.
However, the estimated abnormal return of the strategies becomes negative
before the portfolios reach an initial investment of $500 million. The first strat-
egy applied to the full NYSE/AMEX/Nasdaq sample has a negative α̂ with an
initial investment of merely $1 million. Thus, the low-volume winners’ strate-
gies seem to entail relatively large price impact costs.

C. Comparison to Other Approaches

Chen et al. (2002) analyze break-even fund sizes for several anomalies (based
on size, book-to-market ratios, and momentum), and conclude that the break-
even fund sizes are much smaller than those reported here. The methodology
employed here differs from theirs in many dimensions. However, the difference
between our reported break-even levels and theirs is due mainly to two effects,
one purely mechanical and one substantive difference in the trading strategy.
The mechanical difference is the fact that they report sizes in terms of 1963
values and we report them in terms of 1999 values. When similar EW and VW
strategies are compared on the same basis, our break-even fund sizes are typ-
ically smaller than theirs. We chose to express break-even fund sizes at the
end of the sample to facilitate comparisons to currently existing funds (dis-
cussed below). The substantive trading strategy difference is that we introduce
a liquidity-weighted strategy that significantly increases the break-even invest-
ment levels versus the value-weighted and equal-weighted strategies typically
studied.

A third difference is that, even before any transactions costs, the CSW re-
turns are much lower than ours. In fact, they do not find that momentum
leads to statistically significant profits in three of the four strategies studied
(the significant strategy is value-weighted over the 1963 to 2000 period). Our
before-transactions cost returns are closer to those found in the previous liter-
ature (e.g., Jegadeesh and Titman (1993, 2001)).9 We find that the difference
is due mainly to the use of non-overlapping holding periods (rebalancing the
whole portfolio every K periods) in CSW, while Jegadeesh and Titman (1993,
2001) and we use overlapping periods (rebalancing a Kth of the portfolio every
period). A very small amount of the reported difference between our numbers
and those of CSW is due to the fact that we have a skip month and they do not,
resulting in some return reversals in their strategy due to bid/ask bounce.

9 Their equally weighted average annual return on the winners-losers 12/0/6 strategy is 3.6%
(1963–2000). Our equally weighted average monthly return on the winners-losers 11/1/6 strategy
is 1.19% (NYSE) and 0.74% (NYSE/AMEX/Nasdaq) (1967–1999). By comparison, Jegadeesh and
Titman (1993) find an equally weighted average monthly return on the winners-losers 12/0/6 strat-
egy of 1.14% (NYSE/AMEX) and an average return on the winners-losers 12/0.25/6 strategy of 1.21%
(NYSE/AMEX) (1965–1989). Jegadeesh and Titman (2001) update their original analysis and find
equally large returns. The CSW value-weighted average annual return on the winners-losers 12/0/6
strategy is 9.4% (1963–2000). Our value-weighted average monthly return on the winners-losers
11/1/6 strategy is 1.08% (NYSE) and 1.51% (NYSE/AMEX/Nasdaq) (1967–1999). Jegadeesh and
Titman (1993, 2001) do not report value-weighted results.
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Lesmond et al. (2003) find that proportional trading costs eliminate the
profits on the strategies they study. They study equal-weighted strategies,
which we also find to be unprofitable. However, their estimates of proportion-
ate spread costs are higher than our estimates. Comparing our averages in
Table III (panel B) to their’s in Table II shows that their spreads are higher by
factors ranging from 1.18 to 5.55 (i.e., from 18% higher to 455% higher). While
our results are broadly consistent with theirs for the EW strategies they study,
we find that there are alternative VW and LW strategies that provide greater
profits.

D. Effects of Relaxing Assumptions

Any analysis is predicated on a set of underlying assumptions. We feel that,
on balance, our break-even fund sizes are likely to be conservative (i.e., too
small).

The empirical evidence in Breen et al. (2002) indicates that the predicted
price impacts were substantially higher than the actual price impacts, on av-
erage. They compare the predicted price impact (from the cross-sectional re-
gressions, similar to equation (3)) to the actual price impact experienced by a
sample of institutional traders (using data from the Plexus Group). There are
a number of potential explanations for this upward bias in the predicted price
impacts. For example, our strategies are implemented at the end of each month
without any attempt to “trickle out” the trades beyond the price impact esti-
mation interval. Since the BHK price impact coefficients are measured over a
30-minute interval, we are implicitly assuming that the month-end rebalanc-
ing takes place over a 30-minute interval. The GH price impact coefficients are
measured on a trade-by-trade basis, so in that case, we are implicitly assum-
ing that the month-end rebalancing takes place in a single trade. Certainly an
astute portfolio manager might choose to transact in a more patient fashion,
thereby reducing price impact costs. Also, if momentum traders can signal to
the market that they are not informed, they might be able to execute trades
more favorably than assumed here. However, transacting in a more patient
manner imposes other potential costs, such as the failure to execute the trade.
Also, the results in Keim and Madhavan (1997) do not indicate that technical
traders have lower trading costs.

We assume either linear or convex price impact functions rather than concave
price impacts. If the concavity observed empirically is obtainable, rather than
being due to information leakages or credible signaling by uninformed traders,
then we should be able to invest larger quantities profitably, leading to larger
break-even fund sizes.

In applying the GH model, we do not account for discreteness of prices when
estimating λGH

i,τ and �i,τ . Glosten and Harris (1988) find that ignoring discrete-
ness has little effect on estimates of λGH

i,τ , but leads to upward-biased estimates
of �i,τ . Thus, our trading costs would be lower and our break-even fund size
larger if we accounted for price discreteness in the parameter estimation.
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There is a pronounced momentum reversal around the turn of the year
(mainly exhibited by losers rather than winners). While these do not appear to
be exploitable in isolation (Sadka (2001)), one could improve the performance
of the momentum strategies studied here by incorporating knowledge of the
reversal into the trading strategy. We have not done so, leading to break-even
investment levels that are smaller than strategies designed to take advantage
of the turn-of-the-year effect.

We look at a strategy of investing in past winners only. Much of the litera-
ture also studies strategies that take long positions in past winners and short
positions in past losers. Most papers find that a larger share of the abnormal
returns (without trading costs) to this long/short strategy is due to the short
positions in past losers. Thus, before trading costs, investing only in winners is
conservative, in that it leads to lower abnormal returns. This does not neces-
sarily carry over to the after-trading-costs case since the losers are less liquid
on average (see Table III).

The liquidity-weighted strategy we study makes a number of simplifying as-
sumptions whose relaxation might lead to more profitable trading rules and
higher break-even levels of investment. The liquidity-based portfolios that we
have examined are based only on partial optimization. The optimization results
in a myopic trading rule, which is used in our empirical analysis. An extension
of the static optimization to a dynamic setting should result in the superior per-
formance of strategies designed to account for price impacts. We derive optimal
weights for any set of expected returns, but our empirical results rely on the
simplifying assumption of Corollary 1, that expected returns are the same for
all assets in our “winner” momentum portfolio. Performance might be improved
by a better model of expected returns.10

While we have incorporated spread and price impact costs of trading, we
have not taken into account direct commissions. This is a case in which the
assumption may lead to an overestimate of the break-even investment level.
Given that the estimated price impacts are, on average, larger than the actual
price impacts by more than the level of commissions (from Breen et al. (2002)),
we feel that the net effect is still toward underestimating the break-even fund
size.

While time variation in expected liquidity is considered in our analysis, we do
not consider liquidity risk for the benchmark factor model nor for the portfolio
selection problem. Momentum portfolios may experience exposure to systematic
shifts in liquidity (as suggested in Pástor and Stambaugh (2003) and Sadka
(2003)) and, therefore, may earn a premium associated with systematic liquidity
risk. This subject should be the focus of future research.

10 We have estimated expected returns using several momentum-based models. The strategies
based on these expected returns underperform those that assume equal expected returns. This
is due to the failure of the models to explain either the level of expected returns, or the cross-
sectional variation of expected returns, or both. Note that not only is the cross-sectional variation
an important input to our model, but also the actual level of expected returns, since the ratio of
expected return over price impact is a crucial input to our model.
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VI. Conclusions

This paper tests whether momentum-based strategies that previously have
been shown to earn high abnormal returns remain profitable after considering
price impact induced by trading. The paper develops a methodology to include
liquidity in a trading model and demonstrates the importance of such mea-
sures for the performance evaluation of trading strategies. We find that when
price impact is ignored, the 11/1/3 and 5/1/6 strategies earn significant abnor-
mal returns relative to a conditional version of the Fama and French (1993)
three-factor asset pricing model. The strategies remain profitable when trans-
action costs are proportional costs equal to the effective and quoted spreads. The
11/1/3 strategy outperforms the 5/1/6 strategy and equal-weighted strategies
outperform value-weighted strategies.

In contrast to the results ignoring price impact costs, both 11/1/3 and 5/1/6
momentum strategies perform better, post-price impact, using value weights
rather than equal weights. For example, the zero-α break-even point is 200
million dollars for the 11/1/3 EW strategy, while it is more than 2 billion dollars
for an 11/1/3 VW strategy. This is due to the fact that value-weighting is concen-
trated in more liquid stocks than equal-weighting. Equal-weighted portfolios
have higher price impact costs. Trading costs are crucial for equally weighted
strategies, since their performance measures decrease dramatically even when
a relatively small investment is considered. These results are especially im-
portant in light of recent momentum literature, which concentrates on equally
weighted strategies. For example, Fama and French (1996), Grundy and Mar-
tin (2001), Yao (2001), and Lesmond et al. (2003) study 11/1/1, 6/1/1, 6/0/6, and
6/0/6 equally weighted strategies, respectively. These strategies seem to be less
tractable in the context of transaction costs. The results are consistent across
two alternative measures of price impact from Glosten and Harris (1988) and
Breen et al. (2002), with the GH measure leading to slightly larger break-even
points. We construct alternative momentum strategies by taking price impacts
into account while choosing the portfolio weights. Our LW strategies provide
higher post-price impact abnormal returns relative to VW strategies. Portfo-
lio strategies that have weights that are convex combinations of the LW and
VW weights often provide abnormal returns similar to the LW portfolios. The
estimated excess returns of some momentum strategies disappear only after
$4.5 to over $5.0 billion (relative to market capitalization in December 1999) is
engaged in such strategies.

Whether the break-even fund sizes calculated here are large or small is some-
what in the eye of the beholder. A break-even fund size of $4.5 to over $5.0 billion
(where α̂ is driven to zero) is small relative to the total market capitalization of
the NYSE ($11.7 trillion). Chen et al. (2002, Table XIII) report data on hedge
fund sizes by investment style. From the sample of hedge funds in the TASS
database, a break-even fund size of $5.0 billion represents 2.7% of total value of
hedge funds, 8.9% of total value of Arbitrage hedge funds, and 34.2% of Trend
Follower hedge funds (see Chen et al. (2002), Table XIII). As noted above, there
are reasons to believe that attainable break-even fund sizes are larger than
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those calculated here. Hence they would represent larger fractions of the hedge
fund universe. The profitability of the strategies is in addition to the profits
already earned by momentum-based investors in the market over the sample
period.

Accounting for the price impact of trading leads to a large decline in the
apparent profitability of some previously studied momentum-based strategies,
particularly equally weighted strategies. However for other strategies, such as
VW and LW strategies, the size of the break-even portfolios (with the likelihood
that the break-even sizes are underestimated) suggests that transaction costs
do not appear to fully explain the return persistence of past winner stocks
exhibited in the data. This anomaly remains an important puzzle.

Appendix A: Trading Models with Price Impacts

The BHK model of price impacts generates an exponential price-impact func-
tion. Turnoveri,t is

Turnoveri,t ≡ �qi,t(
Shares Outstanding

)
i,t

, (A1)

where �qi,t is the net number of shares bought/sold of asset i at period t in
month τ . Substituting (A1) in equation (1) we have

�pi,t

pi,t
= λBHK

i,τ(
Shares Outstanding

)
i,τ

�qi,t . (A2)

By defining

λ̄BHK
i,τ ≡ λBHK

i,τ(
Shares Outstanding

)
i,τ

, (A3)

equation (A2) is further simplified to

�pi,t

�qi,t
= λ̄BHK

i,τ pi,t . (A4)

Therefore, in the limit as �qi,t → 0, the supply function is given by

pi,t = pi,teλ̄BHK
i,τ qi,t , (A5)

where pi,t and pi,t are the post- and pre-trade prices of asset i, and qi,t is the
net traded at t. In the context of equation (A5), the price impact cost function
is expressed as

f (p, q) = p(eλ̄q − 1). (A6)
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Therefore, the total price impact of a trade of qi,t shares is calculated through∫ q
0 f (p, x) dx:∫ qi,t

0
pi,t

(
eλ̄BHK

i,τ x − 1
)

dx = pi,t
1

λ̄BHK
i,τ

[
eλ̄BHK

i,τ qi,t − 1
]

−pi,tqi,t

= MVEi,t

λBHK
i,τ

[
e

λBHK
i,τ

MVEi,t
pi,tqi,t − 1

]
−pi,tqi,t , (A7)

where MVEi,t is the market value of equity of asset i at time t. An illustration
of the price impact function is provided in Figure 1.

Define xt as the value of the portfolio at time t, before rebalancing, and x̄t as
the value after rebalancing. The momentum-based trading strategy, consisting
of purchasing the stocks in the past winner decile, implicitly defines which
stocks are included in the portfolio. The stocks that need to be traded at time t
are divided into two mutually exclusive sets as follows:

I1,t = {
i : ωi,t > 0, ωi,t−1 ≥ 0

}
,

I2,t = {
i : ωi,t = 0, ωi,t−1 > 0

}
,

(A8)

where ωi,t is the portfolio weight associated with asset i at time t. The expression
I1,t consists of all stocks held at time t, which could include ones also held at time
t − 1 or those that are added to the pool of winners at time t. The expression I2,t
consists of stocks that were held at time t − 1 but are no longer in the winner
decile at t, and therefore need to be sold. The portfolio weights are percentages
of the actual investment after price impacts, x̄t . The purpose of defining I2,t
is to be able to include trading rules that require liquidation of assets, as an
input to an optimization problem defined later. Also, short-sale constraints are
imposed, since we only consider strategies consisting of long positions. Denoting
the (raw) return, without price impacts, of stock i for the period from t to t + 1
as Ri,t+1, the following recursive relations hold:

xt = x̄t−1

∑
i∈I1,t∪I2,t

ωi,t−1(1 + Ri,t),

Et[xt+1] = x̄t

∑
i∈I1,t

ωi,t(1 + Et[Ri,t+1]).
(A9)

Assume that the portfolio is rebalanced at time t. At the beginning of time t,
prior to trading for rebalancing purposes, the number of shares of each stock is
given by

qi,t = ωi,t−1 x̄t−1[1 + Ri,t]
pi,t

. (A10)

A trading strategy specifies the allocation of assets after rebalancing at time
t by assigning the weights ωi,t. Therefore, the number of shares of each asset
required after trading at time t is expressed as
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q̄i,t = ωi,t x̄t

pi,t
. (A11)

To solve for the post-trade portfolio value, x̄t , notice that the sum of the post-
trade value and the total price impact must equal the pre-trade value, xt. Ex-
plicitly, the following equality must hold:

x̄t +
∑

i∈I1,t∪I2,t

[
1

bi,t

[
ebi,t pi,t[q̄i,t−qi,t] − 1

]
− pi,t

[
q̄i,t − qi,t

]] = xt , (A12)

where bi,t is the price impact coefficient (t is any time during month τ ), adjusted
for firm size

bi,t ≡ λBHK
i,τ

MVEi,τ
. (A13)

Equation (A12) is a budget constraint to the investment. Notice, however, that
equation (A12) holds in equality, rather than weak inequality, because of the
implicit assumption that all available funds must be allocated. Therefore, the
investor must plan the investment strategy so that, after considering the price
impact of the trades, all the funds are allocated. To simplify the budget con-
straint, define

ai,t ≡ ωi,t−1 x̄t−1
(
1 + Ri,t

)
, (A14)

which is the monetary amount invested in stock i at the end of the previous
investment period. The budget constraint translates to

x̄t +
∑
i∈I1,t

[
1

bi,t

[
ebi,t[ωi,t x̄t−ai,t] − 1

]
− [

ωi,t x̄t − ai,t
]]

+
∑
i∈I2,t

[
1

bi,t

[
e−bi,tai,t − 1

] + ai,t

]
= xt . (A15)

Equation (A15) partitions the summation on the right-hand side so that the
assets liquidated due to change in the set of feasible assets are separated from
the rest of the assets. This is done because the summation associated with forced
liquidation acts as a constant term. Notice that to obtain reasonable values for
x̄t , the restriction 0 ≤ x̄t < xt must be imposed. The constraint implies that (a)
price impact costs are positive (x̄t < xt) and (b) price impact costs do not exceed
the amount traded (0 ≤ x̄t). However, since the total price impact is always
positive, for any amount of a nonzero trade, the restriction x̄t < xt holds by
construction. Thus, only x̄t ≥ 0 need be imposed.

Given x̄t from (A15), and expected returns Et[ri,t+1], we use equation (A9) to
find Et[xt+1]. Finally, the net expected return to a trading strategy, after price
impacts, is found by definition
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Et
[
rp,t+1

] = Et [xt+1]
xt

− 1. (A16)

For an illustration of the time-series process of the portfolio value see Figure 2.
For the GH specification, we state only the final results. The complete deriva-

tion of the trading model for linear price-impact costs is provided in Sadka
(2002). The trading costs due to the variable cost λGH may be described by
f (p, q) = λGHq, and the fixed costs as f (p, q) = �p. Thus, by redefining bi,t ≡
λGH

i,t /p2
i,t, and defining �̄i,t = �i,t/pi,t , equation (A15) translates to

x̄t + 1
2

∑
i∈I1,t

bi,t
[
ωi,t x̄t − ai,t

]2 +
∑
i∈I1,t

�̄i,t
∣∣ωi,t x̄t − ai,t

∣∣
+ 1

2

∑
i∈I2,t

bi,ta2
i,t +

∑
i∈I2,t

�̄i,tai,t = xt , (A17)

and the expected return to a trading strategy is again calculated by equa-
tion (A16).

Similar to the fixed costs in the GH model, proportional trading costs may
be expressed as f (p, q) = kp, where k is a constant proportional cost (in our
study, kE and kQ are the effective and quoted spreads, respectively). Under
these assumptions, equation (A15) translates to

x̄t +
∑
i∈I1,t

kE
i,t

∣∣ωi,t x̄t − ai,t
∣∣ +

∑
i∈I2,t

kE
i,tai,t = xt . (A18)

Notice that the formulation in equation (A18) is effectively independent of the
initial amount of investment; this can be proven through recursive induction.

Appendix B: Liquidity-Conscious Portfolios

In the framework developed above, an investment strategy at any given time
t is entirely defined by the assets’ weights and the actual investment amount.
Therefore, the static problem of finding the strategy with the highest expected
return every period, with the BHK specification of the price impact function,
is11,12

max
ωt

∑
i∈I1,t

ωi,t x̄t
(
1 + Et

[
Ri,t+1

])
(B1)

11 We focus only on the maximization of expected returns, without considering any control for
second moments.

12 Treating the optimization as a static, one-period problem does not take into account the multi-
period nature of momentum trading strategies and the consequent possibility of minimizing trading
costs through a buy-and-hold policy.
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s.t. x̄t +
∑
i∈I1,t

[
1

bi,t

[
ebi,t[ωi,t x̄t−ai,t] − 1

]
− [

ωi,t x̄t − ai,t
]]

+
∑
i∈I2,t

[
1

bi,t

[
e−bi,tai,t − 1

] + ai,t

]
= xt (B2)

∑
i∈I1,t

ωi,t = 1 (B3)

ωi,t ≥ 0 (B4)

x̄t ≥ 0. (B5)

To simplify the formulation of the problem, denote the following contempora-
neous auxiliary variable:

At ≡
∑
i∈I1,t

1
bi,t

+
∑
i∈I2,t

1
bi,t

[
1 − e−bi,tai,t

]
. (B6)

The budget constraint (B2) translates to

∑
i∈I1,t

1
bi,t

ebi,t[ωi,t x̄t−ai,t] = At , (B7)

where ai,t = 0 if asset i has not been included in the investment portfolio last
period. Furthermore, to reduce dimensionality, it is preferable to use levels of
investment rather than relative portfolio weights. For this reason, define the
monetary amount yi,t invested in stock i ∈ I1,t as

yi,t ≡ ωi,t x̄t . (B8)

Notice that this definition implies that

x̄t =
∑
i∈I1,t

yi,t . (B9)

So far no upper bound to investment has been imposed. However, in general,
such constraints may be required. Therefore, we add an upper bound, di,t, to
the investment allowed in each asset i. In most cases, the lower bound on an
investment in asset i is set to zero; however, we solve the problem for the general
case where the lower bound is set to ci,t. Suppressing the time index t, the static
optimization problem translates to

max
y

∑
i∈I1

yi
(
1 + E [Ri]

)
(B10)
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s.t.
∑
i∈I1

1
bi

ebi ( yi−ai ) ≤ A (B11)

ci ≤ yi ≤ di. (B12)

Notice that the budget constraint has been changed to a weak inequality in or-
der to formulate a convex optimization problem. Nevertheless, at the optimum,
the budget constraint is binding.

The optimal solution is characterized in Theorem 1, a more general version
of which is proven in Appendix C. (For a version of Theorem 1 for the GH price
impact function, see Sadka (2002)).

THEOREM 1: There exists a unique solution to the optimization problem above.
Ignoring the upper and lower bounds, the optimal trading strategy is character-
ized by

∀i ∈ I1 y∗
i = 1

bi
ln

[(
1 + E [Ri]

)
A∑

i∈I1

1 + E[Ri ]
bi

]
+ ai.

If our initial endowment is x0, none of which is invested (ai,0 = 0), the optimal
strategy at t = 0 is obtained by implementing the following specifications:

At = x0 +
∑
i∈I1

1
bi,0

,

ai,0 = 0 ∀i ∈ I1.

(B13)

To simplify the application of the liquidity-tilted portfolio rule of Theorem 1,
we add the simplifying assumption that all assets in the trading strategy (all
firms in the top past winners’ decile in the empirical work below) have the same
expected return.

COROLLARY 1: Assume that all assets in the restricted set of assets chosen by the
trading strategy have the same expected returns, and there are no upper bounds
to investment. Then, the optimal weights at time t = 0 are given by

ωi =
1
bi∑

i∈I1

1
bi

∀i ∈ I1. (B14)

Adding the assumption that all assets have identical price-impact coefficients,
λi = λ, yields market values as the optimal weights, since 1

bi
= MVEi

λ
.

The proof of Corollary 1 is given in Appendix C. Corollary 1 shows that market
values are optimal portfolio weights, under the assumption that price impacts
and expected returns are equal across firms included in the trading strategy. In
our empirical work below, we assume that all stocks in the winners’ decile have
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the same expected return. However, we allow the price-impact coefficients to
differ across firms.

Appendix C: Proofs

THEOREM 1: (general version): Define the sets

Z c =
{{

zc
i

}
i∈I1

: zc
i ≡ 1 + E [Ri]

ebi (ci−ai )

}
,

Z d =
{{

zd
i

}
i∈I1

: zd
i ≡ 1 + E [Ri]

ebi (di−ai )

}
,

Z = Z c ∪ Z d .

(C1)

Rank all assets in Z = {z(1), z(2), . . .} and for each index define the following sets
of indexes:

I(z) = {
i : i ∈ I1, zc

i ≥ Z (z) > zd
i

}
,

J(z) = {
j : j ∈ I1, Z (z) > zc

j

}
,

K (z) = {
k : k ∈ I1, zd

k ≥ Z (z)
}
.

(C2)

There exists a unique solution to the static optimization problem above. The
optimal trading strategy is characterized by

∀i ∈ I(z∗) y∗
i = 1

bi
ln

[
1 + E [Ri]

λ(z∗)

]
+ ai,

∀ j ∈ J(z∗) y∗
j = c j ,

∀k ∈ K (z∗) y∗
k = dk ,

(C3)

where z∗ and λ satisfy

Z (z∗) ≥ λ(z∗) > Z (z∗−1), (C4)

λ(z∗) =
∑

i∈I(z∗)
1 + E[Ri ]

bi

A − ∑
j∈J(z∗)

1
bj

ebj (c j −aj ) − ∑
k∈K(z∗)

1
bk

ebk (dk−ak )
. (C5)

Proof: The Lagrange formulation of the maximization problem is given by

L =
∑
i∈

yi
(
1 + E [Ri]

) + λ

(
A −

∑
i∈I1

1
bi

ebi ( yi−ai )

)

−
∑
i∈I1

µi ( yi − ci) −
∑
i∈I1

γi (di − yi) . (C6)
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The first-order conditions, along with the complementary slackness conditions,
are given by

∂L
∂ yi

= 1 + E [Ri] − λebi ( yi−ai ) − µi + γi = 0, (C7)

λ

(∑
i∈I1

1
bi

ebi ( yi−ai ) − A

)
= 0 λ ≥ 0, (C8)

µi ( yi − ci) = 0 µi ≤ 0, (C9)

γi (di − yi) = 0 γi ≤ 0. (C10)

In general, the solution requires the division of the set of assets, I1, into three
mutually disjoint sets I, J, and K (some of which may be empty) as follows:

I = {
i : µi = 0 ∧ γi = 0 (ci ≤ yi ≤ di)

}
,

J = {
j : µ j < 0 ∧ γ j = 0 ( y j = c j )

}
,

(C11)

K = {
k : µk = 0 ∧ γk < 0 ( yk = dk)

}
. (C12)

The first-order condition (C7) implies that

λebi ( yi−ai ) = 1 + E [Ri] − µi + γi. (C13)

Applying equation (C13) to each of the sets above yields

∀i ∈ I 1 + E [Ri] − λebi ( yi−ai ) = 0 =⇒ λ = 1 + E [Ri]
ebi ( yi−ai )

, (C14)

∀ j ∈ J µ j = 1 + E
[
R j

] − λebj (c j −aj ) < 0 =⇒ λ >
1 + E

[
R j

]
ebj (c j −aj )

, (C15)

∀k ∈ K γk = 1 + E [Rk] − λebk (dk−ak ) > 0 =⇒ 1 + E [Rk]
ebk (dk−ak )

> λ. (C16)

Also note that the upper bound and lower bound for every i ∈ I1 satisfies ci ≤ di
by definition. This implies that

∀i ∈ I1
1 + E [Ri]

ebi (ci−ai )
≥ 1 + E [Ri]

ebi (di−ai )
. (C17)

Notice that the theorem includes definitions of the sets I, J, and K using the
index z∗ (see equations (c2) and (c3)). One may verify that at optimum, the
definitions of these sets ((c11) and (c12)) must coincide with their corresponding
definitions given in the proposition. The set I contains the assets that are traded
as an interior solution; the set J corresponds to the assets traded at their lower
bound; and the set K corresponds to the assets traded at their upper bound.
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To solve for λ, multiply the budget constraint (equation (8) with equality) by
λ, and plug it in the left-hand side of the first-order condition (equation (C13)).
This procedure results in

λ =
∑

i∈I1

1 + E[Ri ] − µi + γi
bi

A
. (C18)

Using the above expressions for µj and γk (equation (8)), we obtain the following
equation:

λ =
∑

i∈I
1 + E[Ri ]

bi
− λ

∑
j∈J

1
bj

ebj (c j −aj ) − λ
∑

k∈K
1
bk

ebk (dk−ak )

A
. (C19)

Solving for λ from equation (C19) yields the following expression:

λ =
∑

i∈I
1 + E[Ri ]

bi

A − ∑
j∈J

1
bj

ebj (c j −aj ) − ∑
k∈K

1
bk

ebk (dk−ak )
. (C20)

Finally, the second-order conditions for maximum must be satisfied:

∂2L
∂ y2

i

= −λbiebi ( yi−ai ). (C21)

By construction, λ > 0. Thus, we conclude that ∂2L/∂ y2
i,t ≤ 0, and therefore the

necessary conditions for optimality are satisfied. The optimization problem is
of a convex nature and thus the solution found above satisfies necessary and
sufficient conditions of optimality.

The interpretation of Theorem 1 follows basic economic principles. The value
zc

i is the ratio of marginal return and marginal cost for the first dollar, above
the lower bound ci, invested in asset i. Similarly, zd

i is the ratio of marginal
return and marginal cost for the last dollar, below the upper bound, invested in
asset i. The ratio of marginal return and marginal cost may be viewed as the
marginal net return. Due to increasing marginal costs and constant marginal
returns, the marginal net return for any asset i decreases between zc

i and zd
i .

For this reason, the extreme marginal net returns for all assets are sorted in
a descending fashion. Then, funds are allocated to the assets according to the
latter ordering. The allocation is stopped when the budget constraint is met.
This is controlled by the multiplier λ(z∗). Q.E.D.

Proof of Corollary 1: Assuming At = x0 and ai,0 = 0 (∀i ∈ I1), and omitting
the expressions associated with the lower and upper bounds, we have

yi = 1
bi

ln

[
x0 + ∑

i∈I1
(1/bi)∑

i∈I1
(1/bi)

]
, (C22)
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and therefore the weights are calculated as

ωi = yi∑
i∈I1

yi
= 1/bi∑

i∈I1
(1/bi)

. (C23)

Since bi = λi/MVEi, assuming that all price impact coefficients are equal,
produces

ωi = MVEi∑
i∈I1

MVEi
. (C24)

Q.E.D.
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