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Abstract

We provide an axiomatic foundation for a maxmin expected utility over a set of priors (MMEU) decision rule
in an environment where the elements of choice are Savage acts. The key axioms are stated using statewise
combinations as in Gul [Gul, F., 1992. Savage's theorem with a finite number of states. Journal of Economic
Theory 57, 99-100]. 0O 2000 Elsevier Science S.AA. All rights reserved.
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1. Introduction

This paper provides an axiomatic foundation for a maxmin expected utility over a set of priors
(MMEU) decision rule in an environment where the elements of choice are Savage (1954) acts. This
characterization complements the original axiomatization of MMEU developed in a lottery-acts (or
Anscombe and Aumann, 1963) framework by Gilboa and Schmeidler (1989). MMEU preferences are
of interest primarily because they provide a natural and tractable way of modeling decision makers
who display an aversion to uncertainty or ambiguity. In Casadesus-Masanell et al. (1999), we
characterized an MMEU rule over Savage acts using axioms stated in terms of standard sequences, a
measurement theory construction (see Krantz et al., 1971). In contrast, the key axioms here involve
statewise combinations of acts (as defined below). Statewise combinations have the advantage that
they look much like the convex combinations used in Anscombe—-Aumann and von Neumann—
Morgenstern style theories. Thus, as in Gul (1992), they allow one to transfer much of the intuition
from these settings to a setting with Savage acts. The disadvantage of this approach is that it is less
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general than the one in Casadesus-Masanell et al. (1999): the theory here will imply the existence of a
binary partition of the state space over which subjective expected utility holds.

The remainder of the paper presents a set of axioms and a theorem proving the equivalence between
these axioms and an MMEU rule. The novel axioms are weakenings of Gul (1992, Assumption 2)
act-independence condition. Results in Nakamura (1990) and Gilboa and Schmeidler (1989) are
useful for the proofs.

2. Notation and framework

(2 isthe set of states. A state in (2 is represented by w. 3 is an algebra of subsets of (2. Events are
elements of 3. X =[mM]C R, m<M is the set of prizes or outcomes. A (Savage) act f is a function
f:02 . X. A simple act is an act with only finitely many distinct values. A simple act is 3-measurable
if {w € Q|f(w) EW} € 3 for al WC X. F isthe set of al 3-measurable acts defined as the closure in
the supnorm of all 3-measurable ssimple acts. A set G C F is closed if it is closed in the supnorm. A
constant act f is one for which f(w) = x for al w € {2, for some x € X; we denote this constant act by
x* or simply x when no confusion would result. F* is the subset of F consisting of all constant acts.
For any event BE 3 and x, Y € X, xgy denotes f € F such that f(w) = x for € B and f(w) =y for
w £ B; such acts are referred to as B-measurable. The event (2 — B is denoted B®. For f,g,h € F and
B €3, if h(w) ~f(w)z9(w) for al o € 2 then h is a statewise combination of f and g over the event
B. 2 isthe set of al finitely additive probability measures P:3 —[0,1]. Finaly, > isabinary relation
on F. Note that this environment is similar to that in Savage (1954) with the difference that we
impose more structure on the prize set (X). The important aspect of this structure is that X is
connected and separable. This will allow the non-singleton set of states in our theory to be of any size,
finite or infinite.

3. Axioms
Axiom 1. (Weak order) > is complete and transitive.

Definition 3.1. An event B is ordered non-null if there exist x, y and z in X with x<y=<z such that
XgZ#YgZ An event B is ordered non-universal if there exist x, y and z in X with z<y=<x such that

ZX* Z5Y.

Note that since we impose restrictions on the ordering of X, y and z, our definitions of non-null and
non-universal (borrowed from Nakamura, 1990) are weaker than the corresponding notions in Savage
(1954). See Casadesus-Masandll et al. (1999) for an explanation of why these are the appropriate
notions.

Axiom 2. (Structure) (@) x>y 0O x* >y*. (b) There exists an event A€ 3 such that A and A° are
ordered non-null and ordered non-universal.

Part (9 is purely a simplifying assumption. The event A identified here is used in Axioms 5, 6 and
7 below.
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Axiom 3. (Continuity) For al f € F, the sets M(f) ={g € F|g=f} and W(f) ={g € F| f =g} are closed.

Axiom 4. (Monotonicity) (a) For al f, g€ F, if f(w) >g(w), for dl w € 2 thenf >=g. (b) If BE Y is
ordered non-null and z>=x >y, then x;z>y,z If BE 3 is ordered non-universal and x >y >z, then

ZX > Z,Y.

Observe that part (a) is weak monotonicity, and part (b) is strict monotonicity on ordered non-null
and non-universal events.

Axiom 5. (A-act-independence) Let X, X,, ¥, Vo, Z, and z, € X and let f=X,,X,, g=VY,,Y, and
h=z,z. If f', g’ €F are such that, for either B=A or B=A", f'(w)~h(w)sf(w) and g'(w)~
h(w)gg(w) for al w € 2 then, f>g=f'>qg’.

This axiom imposes act-independence (as introduced in Gul, 1992) only for A-measurable acts and
the events A and A°. In words, given A-measurable acts f, g and h and given the event B= A or
B= A" if f' is a statewise combination of h and f over the event B and g’ is a statewise combination
of h and g over the event B, then preference between f and g is the same as between f’ and g'. As
discussed in Gul (1992), act-independence is analogous to the independence axiom in the theory of
expected utility over lotteries.

These first five axioms guarantee the existence of an expected utility representation for A-
measurable acts. That is, there exists a strictly increasing and continuous function u:X - R and
p €(0,1) such that if x, y, v, we& X then

XY ZUW e pu(X) +(1 = p)u(y) = pu(v) +(1 = pjuw).

Moreover, u is unique up to positive affine transformations and p is unique.

How do preferences extend from A-measurable acts to all acts? If act-independence is required to
hold for al acts and non-null events, expected utility preferences result (see Gul, 1992; Chew and
Karni, 1994). This act-independence is too strong for MMEU as it is incompatible, for example, with
the Ellsberg Paradox (Ellsberg, 1961). We now develop the appropriate weakening of act-in-
dependence.

Definition 3.2. (Ghirardato et al., 1998) Two acts f and g are affinely related if there exist « = 0 and
B ER such that either u(f(w)) = au(g(w)) + B for adl w € 2 or u(g(w)) = au(f(w)) + B for al
w E ().

The key is the use of statewise combinations over the event A to form what will turn out to be sets
of affinely related acts. This requires the following definitions:

Definition 3.3. A set SCF contains all statewise combinations over the event Aif f,, f, € S and for
al we N, f(w)~f(waf(w) impliesf €S

Definition 3.4. Fix f € F. We define S|, ={flUF*. Let S' D S, be the smallest closed set containing
al statewise combinations over the event A.

It can be shown that given an act f, the set S" may be constructed by the following iterative method:
at each step i = 1,2,3,... we produce a set
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SI={f' EF:f ()~ (w)af} “(w),fordl o € Qwhere f} %, f,*€S! }

Finaly, S" isthe closure of U [_,S! CF. Observe that S| consists of statewise combinations over the
event A of either f or a constant act with either f or a constant act. By the expected utility
representation for A-measurable acts, we end up with either a constant utility act or a positive affine
transformation of the state-by-state utility of f. Either way the resulting acts are affinely related to f.
To form S}, we take any two actsin S| and combine them statewise over A. Since both of these acts
are affinely related to the act f, the resulting act will also be affinely related to f. This argument plus
continuity shows that S’ consists only of acts that are affinely related to f. In fact, if f is not a constant
act, the set S' contains all acts that are affi nely related to f.

Axiom 6. (S-act-independence) For any f, g, h € F such that there exist |, k €{f,g} for which f, h€S
and g, hess, if f', g €F are such that, for either B=A or B=A", f'(w)~h(w)sf(w) and
0 (w)~hw)g0(w) for dl w € 2 then, f =g= f'>=g'".

Using the representation for A-measurable acts and the definition of S', it can be shown that the
axiom applies only if: (1) h isaconstant act; or (2) h is not a constant act, but f, g and h are pairwise
affinely related. 3

It is useful to compare S-act-independence to the certainty-independence (C-independence) axiom
of Gilboa and Schmeidler (1989):

(C-independence) For any acts f and g, any constant act h, and any « € (0,1), if f', g’ are such that,
f'=af +(1—a)hand g’ = ag + (1 — a)h then, f >g-= f'>g’.

Note that the convex combination operation is defined statewise and is well-defined since acts in
their setting are functions from states to probability distributions over prizes. C-independence relaxes
the independence axiom of Anscombe and Aumann (1963) so that it is only required to hold when the
third act, h, is a constant act.

S-act-independence and C-independence are quite similar in form, with two salient differences.
First, statewise combinations over A or A° replace convex combinations. Second, as pointed out in
possibility (2) above, S-act-independence applies to some h which are not constant acts. In fact, the
first difference leads to the second one. In an Anscombe—Aumann framework, al probabilities in the
unit interval are available. Consequently, to express the fact that preference is preserved by
homogeneous transformations (of utility), one need only consider convex combinations of the act in
guestion and a constant act. In contrast, the only probabilities that are available through statewise
combinations over A are those of A and A°. For example, if the revealed probability of A happens to
be 1/3 and we want to show that multiplying the utility of a pair of acts by 1/2 preserves the
preference ordering between them, we cannot construct the *1/2-acts' through statewise combinations
over A without taking combinations of two non-constant acts. This is why we cannot restrict h to be a
constant act in the S-act-independence axiom.

The final axiom, act-uncertainty aversion, restricts the way that act-independence can be violated. It
requires that the decision-maker weakly likes to smooth utilities across states of the world, since this
leaves her less exposed to any uncertainty or ambiguity about the probability of various states.
Specifically it modifies Gilboa and Schmeidler (1989) uncertainty aversion axiom by replacing
convex combinations with statewise combinations over A.

Axiom 7. (Act-uncertainty aversion) For dl f,g,f' €F, if f~g and f'(w) ~ f(w) o 0(w) for dl w € 2
then, f' >f.
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See Casadesus-Masanell et al. (1999) for a discussion relating this type of uncertainty aversion
axiom to recent alternatives suggested by Epstein (1999) and Ghirardato and Marinacci (1998).

4. A representation theorem

Theorem 4.1. Let > be a binary relation on F. Then > satisfies Axioms 1—7 if and only if there
exists a continuous and strictly increasing function u:X — R, and a non-empty, compact and convex
set € of finitely additive probability measures on 3 such that

[f=g]- [minpe%fUOfsz minPE%JUOQdP] forall fandg€EF.

Furthermore, there exists an event A€ 3 and a p €(0,1) such that P€ € implies P(A) = p.
Moreover, u is unique up to positive affine transformations and the set € is unique.

Proof. We sketch sufficiency; necessity is omitted. Axioms 1-5 imply versions of the appropriate
axioms of Nakamura (1990) using events A and A°. Apply Nakamura's Theorem 1 to yield an
expected utility representation for A-measurable acts. The continuity axiom and structure axiom part
(@ guarantee that u is continuous and strictly increasing. Let p be the probability of A. Let K = u(X).
We normalize u such that K =[ — 2,2].

We now construct a functional J:F — R that represents preferences. For any constant act f = x € X
we define J(f) = u(x). For general acts f € F, let J(f) = u(c), where c is the certainty equivaent of f.
Continuity ensures that ¢ exists.

Let B be the space of bounded (in the supnorm), 3-measurable, real valued functions on (2. For
v €ER, we denote by v* the element of B that assigns y to every w. Let B(K) be the subset of
functions in B with values in K. Observe that for f €F, uof € B(K), and for d € B(K) there exists
f €F such that uof =d.

Define the functional 1:B(K) - R by l(uef) = J(f). Since J represents preferences, it is clear that |
does as well. It can be shown that an extension of | to B satisfies the following properties:

(i) 11%) = 1;
(ii) (I is monotonic) For al a, bE B, a=Db implies I(a) = I(b);

(iii) (I is homogeneous of degree 1) For al bEB, a =0, I(ab) = al(b);
(iv) (I is C-independent) For al beB, y €R, I(b+ y*)=I(b) + I(y*); and,
(v) (I is superadditive) For al a, beB, I(a+ b)=1(a) + I(b).

Properties (i) and (ii) on B(K) are immediate. The proof of (iii) on B(K) uses S-act-independence
heavily. Then extend | to al of B by homogeneity. This preserves homogeneity and monotonicity.
Now (iv) and (v) can be shown for the extension of | by arguments similar to those in Gilboa and
Schmeidler (1989).

Properties (i)—(v) imply the existence of the minimum expectation over a set of measures
representation. This is a fundamental lemma variations of which have been proved by, for example,
Gilboa and Schmeidler (1989), Chateauneuf (1991) and Marinacci (1997). O
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