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NOTES AND COMMENTS

ON THE SMOOTH AMBIGUITY MODEL: A REPLY

BY PETER KLIBANOFF, MASSIMO MARINACCI, AND SUJOY MUKERJI1

We find that Epstein’s (2010) Ellsberg-style thought experiments pose, contrary to
his claims, no paradox or difficulty for the smooth ambiguity model of decision making
under uncertainty developed by Klibanoff, Marinacci, and Mukerji (2005). Not only
are the thought experiments naturally handled by the smooth ambiguity model, but
our reanalysis shows that they highlight some of its strengths compared to models such
as the maxmin expected utility model (Gilboa and Schmeidler (1989)). In particular,
these examples pose no challenge to the model’s foundations—interpretation of the
model as affording a separation of ambiguity and ambiguity attitude or the potential
for calibrating ambiguity attitude in the model.

KEYWORDS: Ambiguity, smooth ambiguity model, Ellsberg, ambiguity aversion, am-
biguity hedging, multiple priors, full state space, second order acts, separation of ambi-
guity from ambiguity attitude.

1. INTRODUCTION

EPSTEIN (2010) DESCRIBED TWO Ellsberg-style (Ellsberg (1961)) thought ex-
periments and argued that they pose difficulties for the smooth ambiguity
model of decision making under uncertainty developed by Klibanoff, Mari-
nacci, and Mukerji (2005) (henceforth KMM). We revisit these thought exper-
iments and argue that they lend no support to the critical conclusions Epstein
draws from them. We demonstrate that the first thought experiment and all its
suggested variations are handled quite naturally and completely by the smooth
ambiguity model if one takes care to formally model the information the de-
cision maker has available. Regarding the second experiment, we elaborate
on the behavioral distinction that it provides between the smooth ambiguity
model and models such as the maxmin expected utility (MEU) model (Gilboa
and Schmeidler (1989)), and explain why the behavior predicted by the smooth
ambiguity model is intuitive. Our discussion of these examples highlights and
reinforces the relative strengths of the smooth ambiguity model, including the
degree of separation between ambiguity attitude and belief it affords, and the
range of ambiguity attitudes it accommodates.

To fix ideas and remind the reader of the model’s functional form, consider
in an Anscombe and Aumann (1963) setting2 a state space Ω endowed with an
event σ-algebra Σ, a space X of simple lotteries over a set of real outcomes

1We thank Robin Cubitt, Fabio Maccheroni, Bob Nau, Ben Polak, Peter Wakker, the co-editor,
and two anonymous referees for helpful comments and discussions. Marinacci gratefully acknowl-
edges the financial support of ERC (advanced grant, BRSCDP-TEA).

2Here, as in Epstein (2010), we use an Anscombe–Aumann version of the original KMM
model.
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containing [−1�1], and a set Δ of all probability measures π :Σ → [0�1] on Ω.
Let σ(Δ) be the smallest σ-algebra on Δ that makes the functions π �→ π(E)
measurable for all E ∈ Σ. The smooth ambiguity model represents preferences
� over Σ-measurable simple acts f :Ω→ X using the functional

V (f ) =
∫
Δ

φ

(∫
Ω

u(f (ω))dπ(ω)

)
dμ(π)�(1.1)

where u :X → R is nonconstant affine, φ :u(X)→ R is strictly increasing, and
μ :σ(Δ)→ [0�1] is a probability measure on Δ.

The model also represents preferences �2 over suitably σ(Δ)-measurable
second order acts f :Δ→ X using the functional

V 2(f)=
∫
Δ

φ
(
u(f(π))

)
dμ(π)


Notice that � and �2 agree when restricted to lotteries X (i.e., to constant acts
and constant second order acts, respectively). Moreover, for ease of exposition
we call Ω the first order state space and Δ the second order state space.

As it is also useful in what follows, recall that the α-MEU model represents
preferences over acts according to

U(f) = αmin
π∈C

∫
Ω

u(f (ω))dπ(ω)+ (1 − α)max
π∈C

∫
Ω

u(f (ω))dπ(ω)�(1.2)

where α ∈ [0�1] is a weight and C ⊆ Δ is a w∗-compact set of probabilities.
When α= 1, we get the MEU model.

2. THOUGHT EXPERIMENT 1: STATE SPACES AND INCORPORATING
INFORMATION

The experiment takes Ellsberg’s (1961) three-color urn (an urn with three
balls divided among red (R), blue (B), and green (G)) and adds a construction
urn,3 containing three balls each of which has a label r, b, or g. The individual
is told that exactly one of the balls in the construction urn is labeled r. A draw
from this construction urn will determine the composition of the Ellsberg
three-color urn. Specifically, if r is drawn from the construction urn, the Ells-
berg urn will contain one ball of each color, denoted (1R�1B�1G), and, sim-
ilarly, draws of b or g result in compositions (1R�2B�0G) and (1R�0B�2G),
respectively, in the Ellsberg urn. Apart from the usual bets on the color of a ball
drawn from the Ellsberg urn, Epstein (2010) also considered bets on the com-
position of the Ellsberg urn (equivalently, bets on the type of ball drawn from

3Epstein (2010) called this the second-order urn. A referee suggested the term “construction
urn” instead. We adopt the latter terminology.
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the construction urn). He argued that the standard ambiguity averse choices
over bets about the color drawn from the Ellsberg urn should imply ambiguity
averse choices over bets about the color of the ball drawn from the construction
urn. He claimed that this behavior is incompatible with the smooth ambiguity
model. All of his criticisms of the smooth ambiguity model stem from this al-
leged incompatibility. Below, we show that there is no incompatibility and that
this behavior follows from the smooth ambiguity model quite naturally once
one adopts, which Epstein (2010) does not, a state space adequate to incorpo-
rate the information provided to the individual in the experiment.

2.1. Modeling of the First Thought Experiment

The only change we make to the description of the thought experiment is to
have the construction urn contain six balls rather than three (and thus exactly
two balls labeled r rather than one). We do this so as to treat both the basic
thought experiment and Epstein’s elaborations on it using the same setup.

In Epstein’s interpretation, the first order state space is the set of possible
draws from the Ellsberg urn, {R�B�G}. Thus, his set of second order states
must be the set of probability distributions over this first order state space.4
This state space can incorporate some of the information given to the individ-
ual in the experiment—specifically, the information about the possible compo-
sitions of the Ellsberg urn. This information rules out all but three such sec-
ond order states, πr , πb, and πg, each corresponding to a possible draw from
the construction urn, r, b, or g. These are represented by the columns in Ta-
ble I, while the rows represent Epstein’s first order states. The numbers give
the probabilities of the first order states conditional on a given second order
state.

Notice, however, that Epstein’s state space is too sparse to incorporate the
given information about the composition of the construction urn (such as the

TABLE I

EPSTEIN’S STATE SPACE

2nd Order States

πr πb πg

Draws From the Construction Urn

1s
tO

rd
er

St
at

es Draws From Ellsberg Urn r b g

R 1
3

1
3

1
3

B 1
3

2
3 0

G 1
3 0 2

3

4Recall that a second order state space, by definition, is isomorphic to the set of probability
distributions over the first order states.
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information that exactly two of the six balls are labeled r). This information
does not correspond to an event in Epstein’s state space and, therefore, beliefs
cannot be conditioned on it. This is worrisome, since conditioning behavior on
this information is key to the thought experiment.

We now present a state space that is rich enough to incorporate all the
given information as events.5 The first order state space is the set of pos-
sible pairs of draws from both the construction urn and the Ellsberg urn,
{r� b�g}×{R�B�G}. The set of second order states is then the set of probability
distributions over this first order state space. This state space can incorporate
both types of information given to the individual in the experiment: (i) how
the distribution over draws from both urns is determined by the composition
of the construction urn and (ii) that exactly two of the six balls in the construc-
tion urn are labeled r.6 In particular, this information rules out all but the five
second order states π1� 
 
 
 �π5 described in the five columns of Table II, each
corresponding to a possible composition of the construction urn. The rows in
the table represent first order states. As in the previous table, the numbers give

TABLE II

A FULL STATE SPACE

2nd Order States

π1 π2 π3 π4 π5
Composition of the Construction Urn

1s
tO

rd
er

St
at

es

Draws (2r�4b�0g) (2r�3b�1g) (2r�2b�2g) (2r�1b�3g) (2r�0b�4g)

(r�R) 2
18

2
18

2
18

2
18

2
18

(r�B) 2
18

2
18

2
18

2
18

2
18

(r�G) 2
18

2
18

2
18

2
18

2
18

(b�R) 4
18

3
18

2
18

1
18 0

(b�B) 8
18

6
18

4
18

2
18 0

(b�G) 0 0 0 0 0
(g�R) 0 1

18
2

18
3
18

4
18

(g�B) 0 0 0 0 0
(g�G) 0 2

18
4

18
6
18

8
18

5Such a construction was not given as much prominence in an earlier version of this reply.
We thank an anonymous referee, Bob Nau (see Nau (2010)), and Ben Polak for emphasizing the
importance of a more detailed treatment (and working out many of the details).

6This explains why, for example, considering the first order state space {R�G�B} together with
a putative second order state space {composition of construction urn × {r� g�b}} would not be an
adequate state space. In terms of the probability of the first order states, this putative second
order space collapses to Epstein’s second order space, {r� g�b} and, therefore, suffers from the
same inability to handle the information that two of the six balls in the construction urn are
labeled r.
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the probabilities of the first order states conditional on a given second order
state. They are derived by considering the color compositions consistent with
the information in (ii) and then using (i) to translate those into probabilities
of the draws. Notice that the conditional probabilities are all multiples of 1

18 ,
since there are 6 × 3 = 18 possible pairs of drawn balls from the two urns. For
example, the probability of observing (b�R) given π1 is 4

6 × 1
3 = 4

18 .
To see that with this fuller state space, ambiguity aversion in the smooth

ambiguity model implies the behavior posited by Epstein in this thought ex-
periment, take φ strictly concave, let μ be any strictly positive probability dis-
tribution over π1� 
 
 
 �π5, and normalize u so that u(100) = 1 and u(0) = 0.
Consider bets with stakes 100 if win and 0 if lose. Suppose, as seems reason-
able given symmetry of the situation, that betting on π1 (i.e., betting that the
construction urn has composition (2r�4b�0g)) is indifferent to betting on π5

and, similarly, that betting on π2 is indifferent to betting on π4. These indiffer-
ences imply μ(π1)= μ(π5) and μ(π2)= μ(π4). Then, according to the smooth
ambiguity model, betting on R is strictly preferred to betting on B, while bet-
ting on B∪G is strictly preferred to betting on R∪G (i.e., f1 � f2 and f4 � f3 in
Epstein’s (2010, pp. 2088–2089) notation), and betting on r is strictly preferred
to betting on b, while betting on b ∪ g is strictly preferred to betting on r ∪ g
(i.e., F1 � F2 and F4 � F3 in Epstein’s notation). Furthermore, again as Epstein
suggested is intuitive, the preferences are stronger in the case of bets on the
color drawn from the construction urn compared to those on the Ellsberg urn,
since less is known about the composition of the construction urn.7

The larger lesson is that in decision models with a state space (whether Sav-
age (1972) or others), properly incorporating information requires that the in-
formation be modeled as an event in the state space, that is, a subset of states.
Marschak and Radner (1972, p. 48), in their classic book, which shaped the
way information is modeled in economics, wrote:


 
 
 an information signal represents a subset of the states of the environment; in the formu-
lation of a decision problem, the states of the environment must be described in sufficient
detail to cover not only those aspects relevant to the payoff function, but also those aspects
relevant to the type of information on which the decisions may be based.

Often, in practice, this is done implicitly, with the “full state space” in the back-
ground and reduced form updating used to calculate the change in beliefs. This
is perfectly fine as a shortcut as long as it leads to the same conclusions as an
analysis using the full model. Epstein’s analysis is an illustration of how this
shortcut can lead one astray: with his chosen reduced form modeling, one ob-
tains different results than when one uses the full model. With a full state space,
the information in the thought experiment about the composition of the con-
struction urn must correspond exactly to ruling out some states. Notice that

7For the calculations behind the claims in this paragraph as well as those in the next subsection,
see Appendix A.1.
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with Epstein’s choice of first and second order state spaces, this fails to hold:
the fact that exactly two of the six balls in the construction urn are labeled r is
consistent with all possible outcomes of draws from the construction urn and
the Ellsberg urn. In contrast, in the full state space this information eliminates
all but five of the second order states.

2.2. Variations on the First Thought Experiment

Next, consider Epstein’s (2010, Section 2.4) extension of the first thought
experiment (Scenario I) to consider a new scenario (Scenario II) in which the
subject is additionally told that there is at least one b and at least one g ball
in the construction urn. This extra information is easily captured in our state
space: second order states π1 and π5 become null events. How does behavior
compare across the two scenarios according to the smooth ambiguity model?
Take uI = uII = u and again normalize so that u(100) = 1 and u(0) = 0. Take
φI = φII = φ strictly concave. Let μI be any strictly positive probability distri-
bution over π1� 
 
 
 �π5. Let μII be the Bayesian update of μI that reflects the
new information (so π1 and π5 are given zero weight and the rest maintain the
same relative weights as in Scenario I). Epstein asked for the following intu-
itive rankings to be satisfied: (i) a bet on b is indifferent to a bet on g in each
scenario; (ii) a bet on r has the same certainty equivalent in each scenario;
(iii) a bet on R is strictly preferred to a bet on B in each scenario; and (iv) the
certainty equivalent of a bet on B is higher in Scenario II than in Scenario I.
One can calculate that given our assumptions above, all of these rankings fol-
low. This shows that to accommodate the difference in behavior between the
two scenarios, all that needs to change is μ, and, furthermore, the required
change is a natural reflection of exactly the information difference between
the two situations. Therefore, this example reinforces our interpretation that
in the smooth ambiguity model there is a separation of beliefs and attitudes
(toward ambiguity and toward risk), and that μ reflects information/belief. Ep-
stein used these scenarios to argue that the change in information required
changing φ to get plausible behavior, as that was true using Epstein’s state
space, which, as noted, cannot incorporate information of the kind given. On
this basis, he challenged the interpretation of φ as reflecting ambiguity attitude
and μ as reflecting beliefs or information. This led him to claim that efforts to
calibrate an individual’s φ in a context of interest (e.g., financial markets), by
examining the behavior of that individual in another environment (e.g., real
or hypothetical Ellsberg experiments), have no justification. Our discussion
demonstrates that this, and similar examples, provide no basis for such a claim.

Epstein (2010, Section 2.5) used a final variation on the first thought experi-
ment to argue that nonreduction of objective compound lotteries is implicit in
the smooth ambiguity model. To support this, he compared Scenario I above
to a scenario (call it Scenario III) in which complete information about the
composition of the construction urn is given to the individual. If this change in
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information were modeled (as Epstein suggested) by leaving μ unchanged but
informally interpreting it as objective, then the individual would be facing an
objective two-stage lottery and, Epstein argued, would be forced by the smooth
ambiguity model to treat it just as he did when it was ambiguous and, therefore,
differently than the corresponding reduced lottery. We find that this analysis is
flawed in the same way as Epstein’s analysis of the comparison between Sce-
narios I and II above. Specifically, he carried out his analysis in a setting too
sparse to incorporate the change in information (i.e., going from partial to full
information about the composition of the construction urn). Given the state
space we use above, such a change is seen to correspond to μ going from a
nondegenerate to a degenerate distribution: there is no longer any uncertainty
about the composition of the construction urn. In such a scenario, the smooth
ambiguity model treats all events as unambiguous, reduces all uncertainty to
risk, and becomes a standard expected utility preference. Thus, no nonreduc-
tion of objective probabilities is implied.8

2.3. Testability

Epstein (2010, Section 2.3) partially anticipated our resolution of the first
thought experiment and claimed that such a reformulation of the state space
would render our assumption of expected utility over second order acts (KMM,
Assumption 2) unfalsifiable when the construction urn exists only “in the mind
of the decision-maker.” We have several responses to this. First, it seems to us
that there is no reason to dismiss a model simply because some of its implica-
tions might not be testable in a particular environment. It is clear that there
are environments, such as the first thought experiment with two physical urns,
where implications regarding second order acts are testable. Furthermore, im-
plications regarding (first order) acts are testable even in situations where im-
plications for second order acts might not be.

Second, when the construction urn exists only in the mind, if one were to
take observability seriously, the informational assumptions in Epstein’s own
analysis become unfalsifiable. To see this, recall that some of the informational
assumptions used to describe the thought experiment (e.g., that the construc-
tion urn contains exactly two r balls) exactly correspond to the kind of events

8As Epstein (2010, p. 2094) suggested, “Think of the corresponding exercise for a subjective
expected utility agent in an abstract state space setting.” Suppose we do think in this way. The
only formal sense in which one may learn that some distribution is “true” is through the process
of updating beliefs over a full state space that includes all possible observations. This is the stan-
dard Bayesian model, where the state space is the Cartesian product of parameters and signals.
Learning in such a setting corresponds to updating by eliminating states that include signals that
did not occur. Thus, as more and more observations accumulate, the prior may become concen-
trated on the “true” parameter. Exactly as we suggest here, the standard modeling of learning the
truth corresponds to a prior becoming degenerate.
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(our second order events) that Epstein complains would be unobservable in
this case.

Additionally, one might worry that there is too much freedom if one is al-
lowed to choose the state space after seeing the results of an experiment de-
signed to test the model. However, our guiding principle in choosing the state
space does not rely on the results and is the one prescribed by Marschak and
Radner (1972): that it should incorporate any relevant information available
to the decision maker. In addition, recall that once the (first order) state space
is fixed, there is no further freedom, as the second order state space must be
isomorphic to the set of probability distributions over the first order states.

2.4. Ambiguity of and Ambiguity Attitude Toward Second Order Events

Having shown that the first thought experiment is readily handled by the
smooth ambiguity model, we turn to a more general question raised by the
spirit of the example: Given that the smooth ambiguity model allows the
individual to view some (first order) events as ambiguous (as evidenced by
Ellsberg-type behavior), should not such Ellsberg-type behavior toward (the
intuitively more amorphous) second order events also be allowed? Not only
is such behavior allowed, but, using a definition of ambiguous event that we
proposed in KMM based on Ellsberg’s two-color thought experiment, we show
that it occurs precisely when one would expect it to.

Specifically, whenever, and only when, an event is ambiguous, the naturally
associated second order events are also ambiguous. In Proposition A.1, stated
and proved in Appendix A.2, we show that ambiguity of a first order event
E implies that nonnull and nonuniversal second order events concerning the
probability of E are treated as ambiguous. This emphasizes the point that the
smooth ambiguity model property of expected utility evaluation of second or-
der acts does not mean that the decision maker treats these acts as based on
unambiguous events.

Moreover, ambiguity aversion for acts and second order acts is tied together:
φ strictly concave implies strict ambiguity aversion in both domains. In particu-
lar, this tells us that behavior reflecting, for example, strict ambiguity aversion
over (first order) acts and ambiguity neutrality or seeking over second order
acts is ruled out by the smooth ambiguity model.9

3. THOUGHT EXPERIMENT 2: HEDGING ACROSS SOURCES OF AMBIGUITY

Consider the second thought experiment proposed by Epstein (2010, Sec-
tion 3). There are two urns, each containing 50 balls divided among red (R)

9For a formal statement and proof of the result on ambiguity aversion, see Section 5.3 of the
working paper version (Klibanoff, Marinacci, and Mukerji (2011)). We also note that the smooth
ambiguity model satisfies a recently proposed notion of two-stage probabilistic sophistication;
see Amarante, Halevy, and Ozdenoren (2011). This sophistication is perfectly compatible with
Ellsberg-type behavior.
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TABLE III

ACTS WITH UTILITY PAYOFFS FOR EXPERIMENT 2

R1R2 R1B2 B1R2 B1B2

f1 1 1 0 0
f2 1 0 1 0
1
2 f1 + 1

2 f2 1 1
2

1
2 0

g1
1
2

1
2

1
2

1
2

g2
1
2 0 1 1

2

and blue (B). An individual is told that the relative proportions of red and blue
in each urn are determined independently. One ball is drawn from each urn.
The individual considers bets on the colors of the drawn balls with outcomes
c∗ > c and the 50–50 lottery (c∗� 1

2 ; c� 1
2). Assume that lotteries are evaluated

according to an expected utility function u, normalized so that u(c∗) = 1 and
u(c) = 0. We can then write the acts that Epstein considered with contingent
utility payoffs as given in Table III (where R1B2 is the event that a red ball is
drawn from the first urn while a blue ball is drawn from the second urn, etc.).

Epstein argued that 1
2f1 + 1

2f2 ∼ f1 ∼ f2 and g1 � g2 are natural for a strictly
ambiguity averse individual, and showed that these preferences are incompati-
ble with any smooth ambiguity model with a concave φ. We agree with the intu-
ition for g1 � g2, but disagree that 1

2f1 + 1
2f2 ∼ f1 ∼ f2 is natural for an ambiguity

averse individual and think there is good reason to expect 1
2f1 + 1

2f2 � f1 ∼ f2.
The evaluation of f1 depends on the ratio of red to blue in urn 1, but not on the
composition of urn 2. Similarly, the evaluation of f2 depends on only the ratio
of red to blue in urn 2 and not on the composition of urn 1. In contrast, the
evaluation of 1

2f1 + 1
2f2 depends on the color compositions of both urns, but has

half the exposure to the uncertainty about the ratio in each urn compared to f1

and f2. Recall that the determination of the two urn compositions is viewed as
independent. The act 1

2f1 + 1
2f2 thus diversifies the individual’s exposure across

the urns: it provides a hedging of the two independent ambiguities in the same
sense as diversifying across bets on independent risks provides a hedging of the
risks. To an individual who is averse to ambiguity (i.e., to subjective uncertainty
about relative likelihoods), such diversification is naturally valuable.

This value is reflected in the smooth ambiguity model with concave φ
through the fact that mean-preserving spreads in the subjective distribution
of expected utilities generated by an act are disliked.10 However, preferences

10Epstein (2010, p. 2096) remarked that our intuition does not rely on ambiguity and claimed
it would equally apply to cases where there was an objective distribution over expected utilities
(i.e., an “objective μ”). His reasoning ignores the fact that the individual’s dislike of variation in
expected utility is only when the variation comes from an ambiguous source: this is why it is am-
biguity aversion. Just as we discussed near the end of Section 2.1, what happens when μ becomes
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such as α-MEU that ignore all except (a fixed weighting of) the minimum and
maximum possible expected utilities miss the diversification aspect of this situ-
ation. This is extreme behavior, similar to an infinitely risk averse expected util-
ity individual not valuing diversification across independent risks. The smooth
ambiguity model delivers more moderate and, to us, reasonable behavior, as
it implies that such diversification is valued by ambiguity averse individuals,
while this value may vary in size as ambiguity aversion varies.11

The next result formally verifies this difference in behavior between the mod-
els. Let Ω = {R1�B1} × {R2�B2} be the (first order) state space. Consider a set
C ⊆ Δ of probabilities on Ω. Think of C as the set of probabilities in an α-
MEU model or the support of μ in a smooth ambiguity model. Denote the set
of probabilities of drawing red from urn i by Γi = {p(Ri) :p ∈ C}.12 Consider
the following properties on C:

Property 1: Γ1 = Γ2.
Property 2: Γi nonsingleton.
Property 3: If q ∈ Γ1 and q′ ∈ Γ2, there is p ∈ C such that p(R1) = q and

p(R2)= q′.
Property 1 reflects symmetry across the urns, as it says that the same set of

compositions is considered for each urn. Without it, there is no reason to ex-
pect f1 ∼ f2. Note that Property 1 corresponds to the concept of the urns being
indistinguishable (as proposed by Walley (1991) and used, e.g., in Epstein and
Schneider (2003)), but not necessarily identical, which would require p ∈ C
implies p(R1)= p(R2). Property 2 says there is ambiguity about the color com-
position of the urns. Without it, all of the acts in the example are unambiguous.
Property 3 seems a necessary condition for independence of the urn composi-
tions, as it says that any color composition of urn 1 could be combined with any
composition of urn 2.

We can now state the following result, which is proved in Appendix A.3.
Part (i) of the result references the condition

μ(p ∈ C :p(R1) ∈D)(3.1)

= μ(p ∈ C :p(R2) ∈ D) for all Borel sets D ⊆ [0�1]�

“objective” is that, properly modeled, learning eliminates the ambiguity (μ becomes degenerate)
and thus the variation in expected utility coming from an ambiguous source disappears.

11The smooth ambiguity model (and its close relatives Nau (2006), Ergin and Gul (2009), Seo
(2009), and Neilson (2010)) is not the only model that captures these intuitive choices. Many
other models in the ambiguity aversion literature, for example, invariant biseparable preferences
(Ghirardato, Maccheroni, and Marinacci (2004) and Amarante (2009)), variational preferences
(Maccheroni, Marinacci, and Rustichini (2006)), and vector expected utility preferences (Sinis-
calchi (2009)), have cases that are compatible with the choices that we claim are intuitive.

12For convenience, we use p and q for probabilities here rather than π. Note the use of p(Ri)
in place of the more formal p(Ri × {Rj 
=i�Bj 
=i}).
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which is meant to further reflect, in the smooth ambiguity model, the perceived
symmetry across urns.13

PROPOSITION 3.1: Suppose C ⊆ Δ is nonempty, is closed, and satisfies Proper-
ties 1–3. Then the following statements hold:

(i) Any smooth ambiguity preference with φ strictly concave and μ with sup-
port C and such that condition (3.1) holds14 has

1
2
f1 + 1

2
f2 � f1 ∼ f2 and g1 � g2


(ii) Any α-MEU preference with set of probabilities C has

1
2
f1 + 1

2
f2 ∼ f1 ∼ f2�

while g1 � g2 if and only if α> 1/2.

In the above result, Properties 1–3 ensure that there is some ambiguity that
1
2f1 + 1

2f2 hedges against. Suppose, for example, unlike in this thought experi-
ment, the two urns are known to have identical color compositions. Then the
events R1B2 and B1R2 would have unambiguously equal likelihoods, meaning
that, however ambiguity resolves (i.e., whichever p ∈ C governs the draws), it
resolves the same way for each (i.e., p(R1B2)= p(B1R2)). In this case, 1

2f1 + 1
2f2

would not be expected to provide a valuable hedge, as it diversifies only across
these two events when compared to f1 and f2. Proposition 3.1 does not apply
to this independent and identically distributed (i.i.d.) case, since the restriction
to identical color compositions violates the conjunction of Properties 2 and 3.
It may be shown that the smooth ambiguity model (as well as α-MEU) indeed
delivers 1

2f1 + 1
2f2 ∼ f1 ∼ f2 in the i.i.d. case.

Let us summarize our respective arguments regarding this interesting
thought experiment and its implications for the smooth ambiguity model: Ep-
stein argued that 1

2f1 + 1
2f2 ∼ f1 ∼ f2 and g1 � g2 are natural for a strictly ambi-

guity averse individual, leading to a seeming inconsistency in the modeling of
ambiguity attitude in the smooth ambiguity model through φ. We argue that
under strict ambiguity aversion, 1

2f1 + 1
2f2 � f1 ∼ f2 is the more natural behav-

ior. In this case, there is no conflict at all with g1 � g2, since both strict pref-
erences are generated by a strictly concave φ in the smooth ambiguity model.
Hence, we conclude, contrary to Epstein (2010), that the intuitive ambiguity
averse choices in thought experiment 2 are indeed captured by the smooth
ambiguity model, whereas they are not captured by the MEU (or α-MEU)

13The sets {p ∈ C :p(Ri × {Rj 
=i�Bj 
=i}) ∈ D} belong, for all Borel sets D ⊆ [0�1], to the Borel
σ-algebra of Δ (see, e.g., Aliprantis and Border (2006, Theorem 15.13)).

14Here the support of μ is defined as suppμ= ⋂{D closed :μ(D) = 1}.
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model. Beyond the specific issue of compatibility with the smooth ambiguity
model, this discussion and thought experiment highlight a point we feel is fun-
damental in thinking about ambiguity aversion—hedging across independent
but possibly nonidentical sources of ambiguity makes a lot of sense. Moreover,
recently, Cubitt, van de Kuilen, and Mukerji (2011) investigated experimen-
tally whether strict ambiguity aversion is associated with preference for the act
1
2f1 + 1

2f2 over its components and found evidence that it is.

4. CONCLUDING REMARKS

Our analysis of Epstein’s first thought experiment shows that his results are
due to the failure to use a state space that allows the incorporation of key
information that defines the experiment. When one analyzes the thought ex-
periment and the suggested variations using a full state space, the “paradox”—
the counterintuitive results claimed in Epstein’s analyses—all goes away. The
criticisms Epstein draws from his results (about foundations, interpretation,
separation, and calibration) similarly disappear. A significant way in which the
smooth ambiguity model adds to older frameworks is the ability to do mean-
ingful comparative statics in ambiguity and ambiguity aversion while allowing
great flexibility in the ambiguity of (first order) events and in ambiguity atti-
tude. This ability stems in part from the degree of separation of beliefs and
taste attributes in the representation; a separation that is, as was demonstrated
in our analysis, not challenged by Epstein’s (2010) first thought experiment.

In analyzing the second thought experiment, we clarify the differences in
behavior across models that the experiment illustrates and tie these differ-
ences to the intuitive idea that an ambiguity averse individual would want
to hedge across separate sources of ambiguity unless their ambiguity attitude
were extreme or the sources were guaranteed to have identical realizations
of the ambiguity. The smooth ambiguity model delivers this behavior while
α-MEU models cannot. In the latter, ambiguity aversion is modeled entirely
through preference kinks. The smooth ambiguity model allows us to explore
implications of ambiguity aversion that do not have their source in prefer-
ence kinks. Kinks are not implied by ambiguity averse or Ellsbergian behavior
(and, indeed, may be present without such behavior; see, e.g., Segal and Spi-
vak (1990)), yet they are what drives behavior in many applications of models
like MEU or Choquet expected utility (Schmeidler (1989)) to economics and
finance. Such kinks may indeed be important, but are a conceptually separate
phenomenon from ambiguity attitude per se, and it is valuable to have models
that separate the two.

All models have strengths and weaknesses, and the smooth ambiguity model
is no exception. However, this reply has shown that the thought experiments at
the heart of Epstein (2010) justify none of the criticisms he offers of the model.
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APPENDIX

A.1. Calculations Supporting Sections 2.1 and 2.2

Acts are real valued functions defined on Ω = {r� b�g} × {R�B�G}. For ex-
ample, bet f1 on R is given by

f1(ω) =
{

100� if ω ∈ {(r�R)� (g�R)� (b�R)},
0� else.

To see that f1 � f2, f4 � f3, F1 � F2, and F4 � F3, observe that

f1 � f2

⇔ φ

(
1
3

)
>μ(π1)φ

(
5
9

)
+μ(π2)φ

(
4
9

)

+μ(π3)φ

(
1
3

)
+μ(π4)φ

(
2
9

)
+μ(π5)φ

(
1
9

)
�

f4 � f3

⇔ φ

(
2
3

)
>μ(π1)φ

(
4
9

)
+μ(π2)φ

(
5
9

)

+μ(π3)φ

(
2
3

)
+μ(π4)φ

(
7
9

)
+μ(π5)φ

(
8
9

)
�

F1 � F2

⇔ φ

(
1
3

)
>μ(π1)φ

(
2
3

)
+μ(π2)φ

(
1
2

)

+μ(π3)φ

(
1
3

)
+μ(π4)φ

(
1
6

)
+μ(π5)φ(0)�

F4 � F3

⇔ φ

(
2
3

)
>μ(π1)φ

(
1
3

)
+μ(π2)φ

(
1
2

)

+μ(π3)φ

(
2
3

)
+μ(π4)φ

(
5
6

)
+μ(π5)φ(1)


Since μ(π1) = μ(π5) and μ(π2) = μ(π4), each of the four inequalities holds
because the subjective distribution of expected utilities on the right-hand side is
a mean-preserving spread of the (degenerate) distribution of expected utilities
on the left-hand side and φ is strictly concave.

That the differences in evaluations are larger for the bets on the draws from
the construction urn follows from strict concavity and the fact that the sub-
jective distributions of expected utilities from F2 and F3 are mean-preserving



1316 P. KLIBANOFF, M. MARINACCI, AND S. MUKERJI

spreads of those from f2 and f3 respectively, given that μ(π1) = μ(π5) and
μ(π2)= μ(π4).

The four behaviors Epstein suggested as desirable in the two scenarios may
be verified as follows: The symmetry of μI is inherited by μII through Bayes’
rule and together they assure (i); uI = uII = u ensures (ii); strict concavity of
φ plus symmetry of μI and μII (which ensures that the induced distribution of
expected utilities from betting on B is a mean-preserving spread of the distri-
bution of expected utilities from betting on R in each scenario) implies (iii);
and (iv) follows from the fact that the induced distribution of expected util-
ities from betting on B in Scenario I is a mean-preserving spread of that in
Scenario II together with strict concavity of φ.

A.2. Results Supporting Section 2.4

Here we show formally that ambiguity/unambiguity of first order events re-
sults in ambiguity/unambiguity of naturally associated second order events. To
discuss ambiguity of second order events, recall from KMM that (adapted here
to the Anscombe–Aumann setting) a second order act f 2 associated with an act
f is defined as

f 2(π) = lf (π) ∀π ∈ Δ�

where lf (π) ∈ X is the reduced lottery generated by f together with π. We
now use this notion to define associated second order events:

DEFINITION A.1: Given any E ∈ Σ, let IE be the second order act associated
with the act 1E .15 The collection of associated second order events is the sub-σ-
algebra σ(IE) of σ(Δ) generated by IE .

Observe that for any π ∈ Δ, IE(π) is the lottery assigning probability π(E)
to outcome 1 and the remaining probability to outcome 0. Therefore, given E,
the associated second order events are events like {π :π(E) ∈ D}, where D is a
Borel subset of [0�1]. We next write down the immediate adaptation to events
in σ(Δ) of our (KMM, Definition 7) definition of unambiguous events in Ω.

DEFINITION A.2: An event A ∈ σ(Δ) is unambiguous if, for each p ∈ [0�1]
and each x� y ∈ X such that x � y , either [xAy �2 px + (1 − p)y and py +
(1 − p)x �2 yAx]� [xAy ≺2 px + (1 − p)y and py + (1 − p)x ≺2 yAx], or
[xAy ∼

2 px+ (1 − p)y and py + (1 − p)x ∼
2 yAx]. An event is ambiguous if

it is not unambiguous.

151E is the indicator function for E. In this regard, note that throughout this section we adopt
the normalization u(0) = 0 and u(1) = 1.
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Notice that this definition declares an event to be ambiguous if it is im-
possible to calibrate the likelihood of the event against lotteries. The follow-
ing results relate formally, within the smooth ambiguity model, the ambigu-
ity/unambiguity of events in Ω with the ambiguity/unambiguity of their associ-
ated second order events.

PROPOSITION A.1: Fix a smooth ambiguity model with φ that has some open
interval of utility values over which it is strictly concave or strictly convex. An event
E ∈ Σ is unambiguous if and only if all the associated second order events are
unambiguous.

The proof makes use of the following two lemmas.

LEMMA A.1: Let (S� S�P) be any probability space. An S -measurable func-
tion ξ :S → R is constant P-almost everywhere (a.e.) if and only if P(A) ∈ {0�1}
for all A ∈ σ(ξ).

PROOF: Suppose ξ :S → R is constant P-a.e., that is, there is t̄ ∈ R such that
P(ξ = t̄)= 1. Set Et = (ξ ≤ t) for t ∈ R. The σ-algebra σ(ξ) is generated by the
chain {Et} of all lower contour sets. Since P(ξ = t̄) = 1, we have P(Et) ∈ {0�1}
for t ∈ R. Moreover, the collection Λ = {A ∈ S :P(A) ∈ {0�1}} is a λ-class. By
the Dynkin lemma, σ(ξ)⊆Λ.

As to the converse, suppose P(A) ∈ {0�1} for all A ∈ σ(ξ). Define F : R → R

by F(t) = P(Et). The cumulative density function F is increasing and right
continuous. Consider the interval I = {t ∈ R :F(t)= 1}. Set α= inf I. The right
continuity of F implies α ∈ I. Then P(ξ = α) = 1, since P(ξ ≤ α) = 1 and
P(ξ < α)= P(

⋃
n(ξ ≤ α− 1/n))= limn P(ξ ≤ α− 1/n)= 0. Q.E.D.

LEMMA A.2: Fix a smooth ambiguity model with φ strictly concave or strictly
convex over some open interval of utility values. An event A ∈ σ(Δ) is ambiguous
if and only if it is such that 0 <μ(A) < 1.

PROOF: Let A ∈ σ(Δ) be such that 0 < μ(A) < 1. Without loss of general-
ity, assume μ(A) ≥ 1/2 (if it is not, simply swap the roles of A and Ac). Let J
be an open interval of utility values over which φ is strictly concave or strictly
convex. For p ∈ [0�1] and x� y ∈ X such that x � y and u(x)�u(y) ∈ J, xAy
is evaluated as μ(A)φ(u(x)) + (1 − μ(A))φ(u(y)), while px + (1 − p)y is
evaluated as φ(pu(x) + (1 − p)u(y)). By continuity of φ and the fact that
0 <μ(A) < 1, there exists a p̂ ∈ (0�1) such that

μ(A)φ(u(x))+ (1 −μ(A))φ(u(y)) =φ(p̂u(x)+ (1 − p̂)u(y))


If φ is strictly concave on J, this equality implies μ(A) > p̂. Similarly, strict
convexity on J implies μ(A) < p̂.
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Similarly, there exists a q̂ ∈ (0�1) such that

μ(A)φ(u(y))+ (1 −μ(A))φ(u(x)) =φ(q̂u(y)+ (1 − q̂)u(x))


If φ is strictly concave on J, this equality implies 1 − μ(A) > 1 − q̂ and so
μ(A) < q̂. Strict convexity on J similarly implies μ(A) > q̂. Therefore, either
q̂ > p̂ and yAx ∼

2 q̂y + (1 − q̂)x ≺2 p̂y + (1 − p̂)x (under strict concavity) or
q̂ < p̂ and yAx ∼

2 q̂y + (1 − q̂)x �2 p̂y + (1 − p̂)x (under strict convexity).
This shows that A is ambiguous, since xAy ∼

2 p̂x + (1 − p̂)y and yAx �
2

p̂y + (1 − p̂)x.
For the other direction, it is enough to observe that μ(A) ∈ {0�1} implies

that A is unambiguous. Q.E.D.

PROOF OF PROPOSITION A.1: Observe that, denoting any lottery between
the outcomes 0 and 1 by the probability assigned to 1, we can view IE as a real
valued function given by IE(π) = π(E) for all π ∈ Δ. Since φ is strictly con-
cave or strictly convex on some open interval of utility values, by Theorem 3
of KMM, an event E ∈ Σ is unambiguous if and only if IE is constant μ-a.e.
By Lemma A.1, this happens if and only if μ(A) ∈ {0�1} for all A ∈ σ(IE). By
Lemma A.2, this is equivalent to requiring that all A ∈ σ(IE) are unambigu-
ous. We conclude that E ∈ Σ is unambiguous if and only if all A ∈ σ(IE) are
unambiguous, as desired. Q.E.D.

A.3. Proof of Proposition 3.1

Abbreviate p(R1 × {R2�B2}) by p(R1) and so on. Observe that Properties 2
and 3 imply that there exist p ∈ C such that p(R1) 
= p(R2).

(i) Suppose suppμ = C and μ(p ∈ C :p(R1) ∈ D) = μ(p ∈ C :p(R2) ∈ D)
for all Borel sets D in [0�1]. Since φ is strictly increasing, by Property 1 we have
{(φ ◦ p)(R1) :p ∈ C} = {(φ ◦ p)(R2) :p ∈ C}, and so

∫
Δ
(φ ◦ p)(R1)dμ(p) =∫

Δ
(φ ◦ p)(R2)dμ(p) because of the assumption on μ. Hence, f1 ∼ f2. On the

other hand,

φ

(
1
2
p(R1)+ 1

2
p(R2)

)

≥ 1
2
(φ ◦p)(R1)+ 1

2
(φ ◦p)(R2) ∀p ∈ suppμ�

with strict inequality if p(R1) 
= p(R2).

CLAIM 1: There is a Borel set A ⊆ suppμ, with μ(A) > 0, such that p(R1) 
=
p(R2) for all p ∈ A.

PROOF: As shown at the start of the proof, there is p ∈ suppμ such that
p(R1) 
= p(R2). Suppose first that p is an isolated point in suppμ. Then
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μ(p) > 0 and the claim trivially holds. Suppose that p is not an isolated
point in suppμ. Then Bε(p)∩ suppμ 
= ∅ for every neighborhood Bε(p) of p.
Since p(R1) 
= p(R2), by taking ε small enough, there is Bε(p) such that
p(R1) 
= p(R2) for all p ∈ Bε(p). By setting A = Bε(p) ∩ suppμ, this proves
the claim, since μ(A) > 0 because Bε(p) ∩ suppμ 
= ∅, for if μ(A) = 0, then
μ(Bε(p)) = μ(A)+μ(Bε(p)∩ (suppμ)c) = 0 and so suppμ ⊆ Bε(p)

c , a con-
tradiction (see Aliprantis and Border (2006, p. 442)). Q.E.D.

Claim 1 implies

∫
φ

(
1
2
p(R1)+ 1

2
p(R2)

)
dμ(p)

>
1
2

∫
(φ ◦p)(R1)dμ(p)+ 1

2

∫
(φ ◦p)(R2)dμ(p)�

that is, 1
2f1 + 1

2f2 � f1 ∼ f2.
Act g1 is evaluated as φ(1/2). Act g2 is evaluated as

∫
φ(1/2 + (p(B1R2)−

p(R1B2))/2)dμ(p). Define γ :Δ → R by γ(p) = 1/2 + (p(B1R2) −
p(R1B2))/2. Since p(B1R2) − p(R1B2) = p(R2) − p(R1), Claim 1 implies
γ(p) 
= 1/2 for all p ∈A. Therefore, by the Jensen inequality and the assump-
tion on μ, we have

∫
(φ ◦ γ)(p)dμ(p)

<φ

(∫
γ(p)dμ(p)

)

=φ

(∫ (
1
2

+ 1
2
(p(R2)−p(R1))

)
dμ(p)

)
= φ

(
1
2

)
�

that is, g1 � g2.
(ii) By Properties 1 and 3, maxp∈C p(R1)= maxp∈C p(R2) and minp∈C p(R1)=

minp∈C p(R2), as well as

max
p∈C

(
1
2
p(R1)+ 1

2
p(R2)

)
= 1

2
max
p∈C

p(R1)+ 1
2

max
p∈C

p(R2)�

min
p∈C

(
1
2
p(R1)+ 1

2
p(R2)

)
= 1

2
min
p∈C

p(R1)+ 1
2

min
p∈C

p(R2)


Hence, 1
2f1 + 1

2f2 ∼ f1 ∼ f2. From minp∈C(p(R2)−p(R1))= −maxp∈C(p(R2)−



1320 P. KLIBANOFF, M. MARINACCI, AND S. MUKERJI

p(R1)),

αmin
p∈C

(
1
2

+ 1
2
(p(R2)−p(R1))

)

+ (1 − α)max
p∈C

(
1
2

+ 1
2
(p(R2)−p(R1))

)

= 1
2

+ 1 − 2α
2

max
p∈C

(p(R2)−p(R1))�

and so g1 � g2 if and only if 1/2 > 1/2 + (1/2 −α)maxp∈C(p(R2)−p(R1)). By
Properties 2 and 3, maxp∈C(p(R2) − p(R1)) > 0, so that g1 � g2 if and only if
α> 1/2. Q.E.D.

REFERENCES

ALIPRANTIS, C. D., AND K. C. BORDER (2006): Infinite Dimensional Analysis (Third Ed.). Berlin:
Springer-Verlag. [1313,1319]

AMARANTE, M. (2009): “Foundations of Neo-Bayesian Statistics,” Journal of Economic Theory,
144, 2146–2173. [1312]

AMARANTE, M., Y. HALEVY, AND E. OZDENOREN (2011): “Two-Stage Probabilistic Sophistica-
tion,” Unpublished Manuscript, University of British Columbia. [1310]

ANSCOMBE, F., AND R. J. AUMANN (1963): “A Definition of Subjective Probability,” The Annals
of Mathematics and Statistics, 34, 199–205. [1303]

CUBITT, R., G. VAN DE KUILEN, AND S. MUKERJI (2011): “An Experimental Investigation of
Attitudes to Ambiguity,” Unpublished Manuscript, University of Oxford. [1314]

ELLSBERG, D. (1961): “Risk, Ambiguity and the Savage Axioms,” Quarterly Journal of Economics,
75, 643–669. [1303,1304]

EPSTEIN, L. G. (2010): “A Paradox for the ‘Smooth Ambiguity’ Model of Preference,” Economet-
rica, 78, 2085–2099. [1303-1305,1307-1311,1313,1314]

EPSTEIN, L. G., AND M. SCHNEIDER (2003): “IID: Independently and Indistinguishably Dis-
tributed,” Journal of Economic Theory, 113, 32–50. [1312]

ERGIN, H., AND F. GUL (2009): “A Subjective Theory of Compound Lotteries,” Journal of Eco-
nomic Theory, 144, 899–929. [1312]

GHIRARDATO, P., F. MACCHERONI, AND M. MARINACCI (2004): “Differentiating Ambiguity and
Ambiguity Attitude,” Journal of Economic Theory, 118, 133–173. [1312]

GILBOA, I., AND D. SCHMEIDLER (1989): “Maxmin Expected Utility With Non-Unique Prior,”
Journal of Mathematical Economics, 18, 141–153. [1303]

KLIBANOFF, P., M. MARINACCI, AND S. MUKERJI (2005): “A Smooth Model of Decision Making
Under Ambiguity,” Econometrica, 73, 1849–1892. [1303]

(2011): “On the Smooth Ambiguity Model: A Reply,” Working Paper 410, IGIER,
Università Bocconi. [1310]

MACCHERONI, F., M. MARINACCI, AND A. RUSTICHINI (2006): “Ambiguity Aversion, Robustness,
and the Variational Representation of Preferences,” Econometrica, 74, 1447–1498. [1312]

MARSCHAK, J., AND R. RADNER (1972): Economic Theory of Teams. New Haven: Yale University
Press. [1307,1310]

NAU, R. (2006): “Uncertainty Aversion With Second-Order Utilities and Probabilities,” Manage-
ment Science, 52, 136–145. [1312]

(2010): “Comment on ‘Three Paradoxes for the “Smooth Ambiguity” Model of Prefer-
ence’,” Unpublished Manuscript, Duke University. [1306]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AB06&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Ama09&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/AnsAum63&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/El61&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/Ep&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/ES&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/EG04&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/GMM04&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/GS89&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/KMM&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/MMRs&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Nau06&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AB06&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Ama09&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/AnsAum63&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/El61&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/Ep&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/ES&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/EG04&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/GMM04&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/GS89&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/KMM&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/MMRs&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Nau06&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E


SMOOTH AMBIGUITY MODEL: REPLY 1321

NEILSON, W. S. (2010): “A Simplified Axiomatic Approach to Ambiguity Aversion,” Journal of
Risk and Uncertainty, 41, 113–124. [1312]

SAVAGE, L. J. (1972): The Foundations of Statistics (Second Ed.). New York: Dover. [1307]
SCHMEIDLER, D. (1989): “Subjective Probability and Expected Utility Without Additivity,”

Econometrica, 57, 571–587. [1314]
SEGAL, U., AND A. SPIVAK (1990): “First Order versus Second Order Risk Aversion,” Journal of

Economic Theory, 51, 111–125. [1314]
SEO, K. (2009): “Ambiguity and Second-Order Belief,” Econometrica, 77, 1575–1605. [1312]
SINISCALCHI, M. (2009): “Vector Expected Utility and Attitudes Toward Variation,” Economet-

rica, 77, 801–855. [1312]
WALLEY, P. (1991): Statistical Reasoning With Imprecise Probabilities. London: Chapman & Hall.

[1312]

Dept. of Managerial Economics and Decision Sciences, Kellogg School of Man-
agement, Northwestern University, 2001 Sheridan Road, Evanston, IL 60208,
U.S.A.; peterk@kellogg.northwestern.edu,

Dept. of Decision Sciences and IGIER, Università Bocconi, 20136 Milano,
Italy; massimo.marinacci@unibocconi.it,

and
Dept. of Economics and University College, University of Oxford, Oxford OX1

3UQ, U.K.; sujoy.mukerji@economics.ox.ac.uk.

Manuscript received January, 2011; final revision received August, 2011.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Nei93&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/Sa&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/Sc&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/SS&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/Seo&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/Sin09&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/WA&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
mailto:peterk@kellogg.northwestern.edu
mailto:massimo.marinacci@unibocconi.it
mailto:sujoy.mukerji@economics.ox.ac.uk
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Nei93&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/Sc&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/SS&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/Sin09&rfe_id=urn:sici%2F0012-9682%28201205%2980%3A3%3C1303%3AOTSAMA%3E2.0.CO%3B2-E

	Introduction
	Thought Experiment 1: State Spaces and Incorporating Information
	Modeling of the First Thought Experiment
	Variations on the First Thought Experiment
	Testability
	Ambiguity of and Ambiguity Attitude Toward Second Order Events

	Thought Experiment 2: Hedging Across Sources of Ambiguity
	Concluding Remarks
	Appendix
	Calculations Supporting Sections 2.1 and 2.2
	Results Supporting Section 2.4
	Proof of Proposition 3.1

	References
	Author's Addresses

