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Incomplete Information Games with Ambiguity Averse 
Players†

By Eran Hanany, Peter Klibanoff, and Sujoy Mukerji*

We study incomplete information games with ambiguity averse 
 players. Our focus is on equilibrium concepts satisfying sequential 
optimality—each player’s strategy is optimal at each information set 
given opponents’ strategies. We show sequential optimality, which 
does not make any explicit assumption on updating, is equivalent to 
sequential optimality with respect to beliefs updated using a particu-
lar generalization of Bayesian updating. Ambiguity aversion expands 
the set of equilibria compatible with players sharing common ambig-
uous beliefs. We connect ambiguity aversion with belief robustness. 
Examples illustrate new strategic behavior, including strategic use of 
ambiguity, under ambiguity aversion. (JEL C73, D81, D83)

Dynamic games of incomplete information are the subject of a large  literature, 
both theory and application, with diverse fields including models of firm 

 competition, agency theory, auctions, search, insurance, and many others. In such 
games, how players perceive and react to uncertainty, and the way it evolves over the 
course of the game, is of central importance. In the theory of decision making under 
uncertainty, preferences that allow for decision makers to care about  ambiguity1 have 
drawn increasing interest (Gilboa and Marinacci 2013). That ambiguity may remain 
relevant in a  steady-state has been demonstrated in, e.g., Epstein and Schneider 
(2003b); Maccheroni and Marinacci (2005); and Klibanoff, Marinacci, and Mukerji 
(2009). We propose equilibrium notions for incomplete information games  involving 
ambiguity about parameters (which could be, for example,  privately known types 
of players). The parameter space is a modeling device to allow for players to be 
uncertain (which in our setting may include both ambiguity and risk) about the 
payoffs they and the others face and/or the strategies played by the other players. 

1 In this literature, ambiguity refers to subjective uncertainty about probabilities (see e.g., Ghirardato 2004).
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This allows us to examine effects of introducing ambiguity aversion in strategic set-
tings, static and dynamic. The definition and analysis of solution concepts capturing 
dynamic considerations, such as optimality of continuation strategies at each infor-
mation set, are the main contributions of the paper. Such optimality is absent from 
almost all existing literature on games with ambiguity averse players.

In our analysis, players have smooth ambiguity preferences (Klibanoff, Marinacci, 
and Mukerji 2005) and may be ambiguity averse. Such preferences for a player  i  
evaluate a behavior strategy profile  σ  by

    ∑ 
π∈Δ (Θ) 

    ϕ i   (  ∑ 
θ∈Θ

    U  i   (σ, θ) π (θ) )   μ i   (π) , 

where  Θ  is the parameter space modeling the incomplete information,   μ i    is a 
 subjective probability over  Δ (Θ)   (i.e., a  second-order probability over  Θ );   U  i   (σ, θ)   
is  i ’s expected payoff from  σ  given  θ ; and   ϕ i    is an increasing function, the con-
cavity of which reflects ambiguity aversion. All else equal, as   ϕ i    becomes more 
concave, player  i  becomes more ambiguity averse (see, e.g., Theorem 2 in 
Klibanoff, Marinacci, and Mukerji 2005). The presence of ambiguity is captured 
by  nondegeneracy of   μ i   . In the smooth ambiguity model, it is possible to hold the 
players’ information fixed (by fixing   μ i   ) while varying their ambiguity attitude from 
aversion to neutrality (i.e., replacing a more concave   ϕ i    with an affine one, which 
reduces preferences to expected utility). This facilitates a natural way to understand 
the effect of introducing ambiguity aversion into a strategic environment. Our focus 
is on extensive form games, specifically multistage games with perfect recall, and 
on equilibrium notions capturing perfection analogous to those in standard theories 
for ambiguity neutral players, such as subgame perfect equilibrium (Selten 1965), 
sequential equilibrium (Kreps and Wilson 1982) and perfect Bayesian equilibrium 
(PBE) (e.g., Fudenberg and Tirole 1991a, b).

We use, as a running example, a variation on the peace negotiation game pro-
posed by Greenberg (2000) motivated by the common practice of governments to 
manipulate expectations of rewards and punishments so as to encourage negotiat-
ing parties to cooperate. The game involves two small countries in peace negotia-
tions, but who, left on their own, would not agree to peace, and a large country that 
has the power to affect the small countries and desires peace between them. The 
large country hopes to induce cooperation by the small countries by leading each to 
believe that it will likely be punished by the large country if negotiations break down 
(or favored if negotiations succeed). However, uncertainty created by any single 
 mixture over which country to punish is inadequate to induce both small countries 
to agree to peace. More precisely, for the payoffs in the example, any (mixture 
over) choice of whom to punish/favor that the large country might make contin-
gent on the  success/ failure of the negotiation is insufficient to convince both small 
countries to reach agreement—any mixture that punishes one of them often enough 
is inadequate to incentivize the other. This is true irrespective of ambiguity aver-
sion. However, if the small countries are ambiguity averse, the large country can, 
by  taking steps to obscure the likelihood of who will be punished/favored, create 
ambiguity in the minds of the small countries and push both of them toward peace. 
Given sufficient ambiguity aversion of the small countries, it is thus in the strategic 
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interest of the large country’s government to try to behave in a way that makes it 
difficult for both negotiating parties to be confident that it will not be  punishing that 
party with high probability if negotiations break down.

We would like to model such behavior as an equilibrium (i.e., all parties best 
responding to the strategies of the others), capturing, through the use of ambiguous 
incomplete information about parameters and the possibility of conditioning strate-
gies on such parameters, the idea that, in the presence of ambiguity aversion, some 
players may choose to play in a manner that is perceived as ambiguous. In the con-
text of the example, one can think of this use of ambiguous incomplete information 
about parameters as a reduced form way of accounting for the fact that opportunities 
for fully learning which (mixture over) actions the large country will play after the 
negotiation are restricted. Motivation for such a reduced form may be, for instance, 
that political parties hold government office only temporarily and, over their time 
in office, mediate negotiations that are not identical, plausibly giving their strate-
gies an unpredictably changing nature that Bewley (1988, 35) identifies as essential 
when discussing how “Knightian”  uncertainty may exist in a steady state. Or it 
may be that players see only coarse descriptions of the parameter profiles realized 
in  previous plays of the game, implying that they are not able to pin down a unique 
empirical frequency for the parameter profile (coarse observability motivates, e.g., 
Lehrer’s (2012) notion of equilibrium with partially specified probabilities).

The uncertainty in a game could also be about payoffs (e.g., an entry game where 
the entrant is uncertain about the incumbent’s cost as in Section IVB) and, because 
of the relative novelty of the situation to one or more players, it is plausible that 
they (e.g., the entrant) view the uncertainty at least partially as ambiguity. In that 
example, the entrant is expert enough to figure out what (possibly mixed) action the 
incumbent would deploy were they to know the realized cost. However, unlike the 
incumbent, since the entrant has not actively participated in the market/industry 
they are entering, the entrant is not privy to the (possibly stochastic) law governing 
the realized cost, and also, unlike the incumbent, does not directly see the realized 
cost before having to make the entry decision. Thus we model the entrant as having 
ambiguous uncertainty about the parameter (e.g., cost) while being knowledgeable 
enough (e.g., about optimal pricing practices given costs and demand) to correctly 
anticipate the incumbent’s best response (e.g., pricing strategy) contingent on the 
parameter. More generally, except for the ambiguous nature of the parameter uncer-
tainty, this combination of uncertainty about parameters and correct anticipation of 
strategic behavior given the parameter is central to the standard notion of Bayesian 
(Nash) equilibrium (BNE). This motivates the approach of this paper, which starts 
by generalizing BNE with regard to the uncertainty about parameters and how 
 players react to that uncertainty.

We first define an  ex  ante (Nash) equilibrium concept allowing for aver-
sion to  ambiguity about parameters. When there is no parameter uncertainty, 
this is  simply  Nash equilibrium under complete information. When there are 
common beliefs and ambiguity neutrality, it becomes Bayesian Nash equilib-
rium. Next, we refine ex ante equilibrium by imposing perfection in the form of 
a  sequential  optimality  requirement—each player  i ’s strategy must be optimal at 
each  information  set, given the strategies of the other players and  i ’s beliefs at 
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that  information set. Sequential optimality does not make any explicit assumption 
on updating. When all players are ambiguity neutral, the definition of sequential 
 optimality reduces to the definition of ex ante equilibrium plus Kreps and Wilson’s 
(1982) sequential rationality. In this ambiguity neutral case, our results show that 
sequential optimality is equivalent to the version of Perfect Bayesian Equilibrium 
(PBE) described in Gibbons (1992, Chapter 4.1) despite the fact that Bayesian 
updating is assumed in the latter. As with PBE, a main motivation for sequential 
 optimality is ruling out ex  ante equilibria that depend crucially on  noncredible 
 off-path behavior and doing so in a way that strengthens subgame perfection. 
Sequential optimality and our subsequent analysis and extensions of it are the main 
contributions of the paper.

We show that sequential optimality is equivalent to sequential optimality with 
respect to beliefs updated using the smooth rule (Hanany and Klibanoff 2009), a 
generalization of Bayesian updating for smooth ambiguity preferences, which 
 coincides with Bayes’ rule under ambiguity neutrality.2 Thus, we show that analysis 
of sequential optima of a game may be undertaken under the as if assumption that 
all players use smooth rule updating, and in this sense, that sequential optimality, 
which does not assume particular updating, nonetheless provides a way of cutting 
through the vexing issue of what update rule to impose in dynamic games with 
ambiguity aversion. Moreover, we show that under a slight strengthening of the 
smooth rule, the absence of profitable  one-stage deviations can be used for verifying 
sequential optimality.

Our characterization of sequential optimality implies that it does not effectively 
restrict player  i ’s beliefs at information sets immediately following a deviation 
(though it does effectively restrict beliefs at  off-path information sets that are not 
immediately  off-path). We propose a refinement of sequential optimality restricting 
such beliefs: sequential equilibrium with ambiguity (SEA). In addition to sequen-
tial optimality, SEA imposes a generalization of Kreps and Wilson’s (1982) consis-
tency condition from their definition of sequential equilibrium. Our “as if ” result 
on updating under sequential optimality motivates the use of the smooth rule in 
this generalization. We show that in the definition of SEA, sequential optimality 
may be  equivalently replaced by the absence of profitable  one-stage deviations. 
This  implies that checking only  one-stage deviations with respect to smooth rule 
consistent beliefs is sufficient to establish that a strategy profile is an SEA. Under 
ambiguity neutrality, SEA and sequential equilibrium are equivalent. Finally, we 
establish that SEA exists for any finite multistage game with perfect recall and 
incomplete information, and for any specification of players’ ambiguity aversions 
and ex ante beliefs.

Section  IIIA provides results on comparative statics of the equilibrium set in 
ambiguity aversion that apply to any of the three notions of equilibrium mentioned 
above. First, for fixed beliefs, ambiguity aversion may change the  equilibrium set 

2 Under ambiguity aversion, the smooth rule may be thought of as applying Bayes’ rule to the measure in the 
local linear approximation of preferences at the given strategy profile. Such local measures have previously proved 
useful in economics and decision theory. See, e.g., Rigotti, Shannon, and Strzalecki (2008); Hanany and Klibanoff 
(2009); Ghirardato and Siniscalchi (2012).
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in a variety of ways—it can expand, shrink or simply change the set of  equilibria. 
Second, we take the point of view of an outside observer who is not willing to 
assume  particular beliefs when describing the equilibrium predictions of the 
 theory. Holding payoffs and the structure of the game fixed, ambiguity aversion 
expands the set of  equilibria compatible with players sharing a common belief 
(i.e.,   μ i   = μ  for all  players  i , running over all possible  μ ). Common beliefs are 
essential to this result. With  unrestricted heterogeneous beliefs (i.e., running over 
all  possible   μ i   ),  ambiguity aversion does not affect the set of equilibria. If, as in 
some existing  literature, we were instead to limit attention to pure strategies (both 
in terms of the  equilibrium profile and, crucially, in terms of the deviations against 
which optimality is checked),  ambiguity aversion expands the set of such equilibria 
even when we run over  unrestricted heterogeneous beliefs.

Ambiguity averse behavior is often viewed as a robust response to doubts about 
beliefs (e.g., Hansen 2007). We describe a sense in which this robustness extends 
to properties of equilibria. Section  IIIB defines robustness of an equilibrium to 
increases in ambiguity aversion and shows that this is related to a type of belief 
robustness (Theorem 9).

Section  IV contains an example of a Milgrom and Roberts-style (1982) limit 
pricing entry game with ambiguity about the incumbent’s cost. We show that limit 
pricing arises in an SEA. The limit pricing in our example is part of a  semi-pooling 
equilibrium and succeeds in deterring some entry. Pooling equilibria are often 
 sensitive to beliefs. We provide conditions under which this limit pricing is robust 
to increased ambiguity aversion on the part of the entrant, and then apply Theorem 
9 to conclude that under these same conditions ambiguity aversion can make the set 
of beliefs supporting limit pricing as large as desired.

Another example in Section IV is a principal,  multi-agent communication game. 
The principal is shown to strictly benefit from conditioning his cheap talk message 
to the agents on a payoff-irrelevant, ambiguous event. Our analysis of this exam-
ple establishes that increasing the ambiguity of communication can be sequentially 
optimal, and, moreover, can occur as part of an SEA. In the context of communica-
tion games and mechanism design, sequential optimality may be viewed as ensuring 
that players both react optimally to any information they receive and that participa-
tion or design are taken optimally from an ex ante perspective.

Section V discusses some possible extensions of our approach, including to other 
models of ambiguity averse players’ preferences. Finally, in addition to the  discussion 
of alternative approaches following Theorem 2 in Section IIB, Section VI discusses 
closely related literature (especially Battigalli et al. 2019 and Pahlke 2018) and 
compares it to our theory. The print Appendix contains all proofs for results from 
Section II and some further analysis. The proofs for results from the remaining sec-
tions and some further analysis are contained in an online Appendix.

I. Model

We begin by defining the central domain of the paper, finite multistage games 
with  incomplete information and perfect recall where players have (weakly) 
 ambiguity averse smooth ambiguity preferences. It is on this domain that we 
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develop and apply our equilibrium concepts. Such games allow for both imper-
fectly observed actions and private observations as the game proceeds. Other than 
perfect recall and finiteness, the multistage structure (i.e., the assumption that all 
players move simultaneously at each point) is the additional potential limitation on 
the game forms we consider. While not entirely without loss of generality, if one 
doesn’t object to giving a player singleton action sets at stages where this player 
has no “real” move, the multistage assumption is not restrictive. Note that (finite) 
normal form games with incomplete information and (weakly) ambiguity averse 
smooth ambiguity preferences are the special case where there is a single stage.

Formally, a finite  extensive-form multistage game with incomplete information 
and perfect recall and (weakly) ambiguity averse smooth ambiguity preferences,  Γ , 
is a tuple  (N,   H,     (  i  )  i∈N  ,     ( μ i  )  i∈N  ,     ( u  i  ,  ϕ i  )  i∈N  )  where:

 •   N  is the finite set of players.
 •   H  is the finite set of (terminal) histories, each of which is a finite sequence of 

length  T + 2  of the form  h =    ( h  −1  ,   ( h    0, i  )  i∈N   , … ,   ( h   T, i  )  i∈N  )  .

For  0 ≤ t ≤ T + 1 , let   H   t  ≡  { h   t  ≡  ( h  −1  ,   ( h    0,i  )  i∈N   , …,   ( h   t−1,i  )  i∈N  ) ∣ h ∈ H}   
be the set of partial histories up to (but not including) stage  t . The set of all 
partial histories is   ≡ {∅} ∪  ⋃ 0≤t≤T+1    H   t   . For each  i ∈ N ,  0 ≤ t ≤ T  

and   h   t  ∈  H   t  ,   A   i   ( h   t )  ≡  {  h ˆ   t,i   ∣  h ˆ   ∈ H,   h ˆ     t  =  h   t }   is the set of actions available 

to player  i  at   h   t  . The set of initial partial histories,  Θ ≡  H   0  , is called the set of 
“parameters” or “types.”

 •     i   ≡  ⋃ 0≤t≤T        i  
t    are the information sets for player  i , where each      i  

t   is a par-

tition of   H   t   such that, for all   h   t ,   h ˆ     t  ∈  H   t  ,    h ˆ     t  ∈  I  i   ( h   t )   implies   A  i   ( h   t )  =  A  i   (  h ˆ     t )   

(where   I  i   ( h   t )   is the unique element of      i  
t   containing   h   t   ).

Perfect recall means: for each player  i , stage  0 ≤ t ≤ T  and partial 

 histories   h   t ,   h ˆ     t  ∈  H   t  ,   I  i   ( h   t )  =  I  i   (  h ˆ     t )   implies   R   i   ( h   t )  =  R   i   (  h ˆ     t )  , where, for each 

partial history    h 
–
    t  ∈  H   t  ,   R   i   (  h 

–
    t )   is the ordered list of information sets  i  encoun-

ters and the actions  i  takes under    h 
–
    t  .3

 •    u  i   : H → ℝ  is the (utility) payoff of player  i  given the history.4

 •    μ i    is a probability over  Δ (Θ)   having finite support such that  

  ∑ π∈Δ (Θ)   
 
    μ i   (π) π (θ)  > 0  for all  i ∈ N  and  θ ∈ Θ , where  Δ (Θ)   is the set of 

all probability measures over  Θ .5

 •    ϕ i   : co ( u  i  (H ))  → ℝ  is a continuously differentiable, (weakly) concave and 
strictly increasing function.

3 Formally,   R  i   (  h 
–
    t )  ≡  (  ( I  i   (  h 

–
    s ) ,   h 

–
  s, i  )  0≤s<t  ,  I  i   (  h 

–
    t ) )  . For future reference, note that we extend both   A  i    and   R  i    to 

information sets in the natural way.
4 As is usual for preferences in games, we assume that   u  i    may be extended to a larger domain such that   u  i   (H )  

is interior to the convex hull of the image of   u  i    on the larger domain, and that   ϕ i    may be similarly extended. This 
ensures the validity of the interior optimality characterizations we use throughout.

5 All of our results (except for Theorem 7) also hold if the class of games is restricted to those with a common  μ  
such that   μ i   = μ  for all players  i . None of our examples rely on differences in the   μ i   .
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The first three bullet points describe the game form, while the rest describe prefer-
ences. Observe that at each partial history, each player (not just those with  nontrivial 
moves at this point) has an information set. The  nonstandard preference parts of 
this definition are   ϕ i    and   μ i   , which are part of the specification of smooth ambiguity 
preferences, with the degree of concavity of   ϕ i    reflecting ambiguity  aversion and   μ i    
indicating the presence of ambiguity when  supp ( μ i  )   contains multiple probability 
measures.6

We remark that the parameter space  Θ  may possibly include payoff-relevant 
and/ or payoff-irrelevant components. The role of payoff-irrelevant components is 
to facilitate our modeling of the strategic use of ambiguity via conditioning actions 
on these components.

Though largely standard, as formal objects such games might seem complex. To 
aid understanding, we next introduce a concrete example to which we will return at 
several points.

Running Example: The game in Figure  1 is a variation on the main example 
in Greenberg (2000). There are three players. Players 1 and 2 are small countries 
involved in peace negotiations. Player 3 is a large country that has the power to 
affect the small countries. The parameter space is  Θ =  {I, II}   and represents 
 payoff- irrelevant private information of player 3. Specifically, one should think of 
this parameter as the outcome of an ambiguous device that player 3 has access to 
and may choose to condition its action on. At  t = 0 , only player 1 has a  nontrivial 
move, which is either to  c  (cooperate) or to  d  (defect) in the negotiations. If player 1 
plays  c , then player  2 observes this and may choose either to  c  (cooperate) or  
to  d  (defect) in the negotiations. If both 1 and 2 cooperate, the negotiation leads 
to peace, and then player 3 chooses between favoring 1 under the peace (  f 1 ) and 
favoring 2 under the peace (  f 2) . The favored country receives a payoff (  u  i   ) of 5, 
while the other  players receive 4. If either player defects, then negotiations break 
down. At that point, player 3, knowing that negotiations have failed, but not able 
to observe which country defected, must choose between an action that punishes 
player  1  (  p1 ), an action that punishes player 2 (   p2 ), and a neutral action ( n ). A 
player who is punished gets payoff 0, while the unpunished country is favored and 
gets a payoff of 10. If player 3 punishes, it prefers to punish the defector: player 3’s 
payoff is 1 when punishing the defector, and 0 when punishing the other player. 
Player 3 staying neutral leads to a payoff of 6 for players 1 and 2, and a payoff 
of  x  for player 3. The payoff of 6 means that both small countries would prefer 
negotiations to fail if they knew there would be no punishment. We leave  x  as a 
variable in order to capture different relative merits for player 3 of staying neutral 
compared to  punishing. A ( terminal) history  h  consists of complete path through 

6  supp( ∙ )  denotes the support of a measure.
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the game tree. For  example, one history is   (I, c, c, f 2)   and   (I)  ,   (I, c)  , and   (I, c, c)   
are partial histories.7

The beliefs  μ  for all players are half-half over distributions   π 1    and   π 2    with  
  π 1   (I )  = 1  and   π 2   (I )  = 0 , reflecting the common perception of the ambiguity con-
cerning  Θ . The starkness of the  π  s is purely for convenience—any beliefs reflecting 
ambiguity about whether  I  or  II  is more likely would suffice for our analysis.

A strategy for player  i  specifies the distribution over  i ’s actions conditional on 
each information set of player  i . Formally, we have the following definition.

DEFINITION 1 (Behavior Strategy): A (behavior) strategy for player  i  in a game  Γ  
is a function   σ i    such that   σ i   ( I  i  )  ∈ Δ ( A  i   ( I  i  ) )   for each   I  i   ∈   i   .

Let   Σ i    denote the set of all strategies for player  i . A strategy profile,  σ ≡   ( σ i  )  i∈N   , 
is a strategy for each player.

Given a strategy profile  σ , history  h , and  0 ≤ r ≤ t ≤ T + 1 , the  probability 
of reaching   h   t   starting from   h   r   is   p  σ   ( h   t  |  h   r )  ≡  ∏ j∈N        ∏ r≤s<t  

      σ j   ( I  j   ( h   s ) )  ( h  s, j  )  .8  
It is  useful to separate this probability into a part affected only by   σ i    and a 
part affected only by   σ −i   . These are   p  i, σ i     ( h   t  |  h   r )  ≡  ∏ r≤s<t  

      σ i   ( I  i   ( h   s ) )  ( h  s, i  )    
and   p  −i, σ −i     ( h   t  |  h   r )  =  ∏ j≠i  

      ∏ r≤s<t  
      σ j   ( I  j   ( h   s ) )  ( h  s, j  )   respectively, with  

  p  i, σ i     ( h   t  |  h   r )   p  −i,  σ −i     ( h   t  |  h   r )  =  p  σ   ( h   t  |  h   r )  . With this notation, we can now state 

7 To formally write some histories, one may need to include some of the “dummy” actions chosen from single-
ton action sets needed to create the  multistage structure of the game. These actions are not depicted in the game tree. 
For example, if player  1  plays  d , to keep the  multistage structure, this must be followed by a node where all three 
players have singleton action sets, before arriving at the stage where player 3 has a  nontrivial move. So an example 
of such a history could be written as   (I,  (d, ∅ , ∅) ,  (∅ , ∅ , ∅) ,  (∅ , ∅ , n) )  , where  ∅  is used to denote such “dummy” 
actions and the triples represent the actions of players 1, 2, and 3 respectively.

8 If  r = t , so that the product is taken over an empty set, invoke the convention that a product over an empty 
set is 1.

Figure 1. A Peace Negotiation Game

Note: The vectors give utility payoffs for players 1, 2, and 3, in that order, for each path.
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 formally  the assumption that  players’  ex  ante preferences over strategies are 
smooth ambiguity preferences (Klibanoff, Marinacci, and Mukerji 2005) with 
the   u  i  ,  ϕ i   , and   μ i    as specified by the game.

ASSUMPTION 1 ( Ex Ante Preferences): Fix a game  Γ . Ex ante (i.e., given the 
empty partial history), given   σ −i   , each player  i  ranks strategies   σ  i  ′    according to

(1)   V  i   ( σ  i  ′  ,  σ −i  )  ≡   ∑ 
π∈Δ (Θ) 

    ϕ i   (  ∑ 
h∈H

    u  i   (h)   p   ( σ  i  ′   , σ −i  )    (h |  h   0 ) π ( h   0 ) )  μ i   (π) . 

If there were only a single distribution  π  over parameters, and so no ambiguity,  
  μ i    would be degenerate and   ϕ i    irrelevant and (1) specializes to the usual ex ante 
expected payoffs (i.e., the expression in the argument of   ϕ i   ) in the context of a 
game. In the presence of ambiguity about the parameters, player  i  aggregates such 
expected  payoffs for each  π ∈ supp ( μ i  )   using   ϕ i    and beliefs   μ i    . Despite this 
 nonlinear aggregation, it proves helpful, in understanding both optimality and the 
effect of ambiguity aversion on this aggregation, to examine modified expected 
 payoffs using local linear approximations.

As is true for any preference represented by a smooth, increasing, and concave 
objective function,   σ i    is optimal if and only if it is optimal according to the local 
linear approximation of the objective function around   σ i   . In the context of (1),  
  σ i   , being an ex ante best response to   σ −i    for player  i  given   ϕ i    and   μ i    is equivalent to   σ i    
 maximizing, among all   σ  i  ′   , the following modified expected payoff:

(2)    ∑ 
h∈H

    u  i   (h)   p  i,  σ  i  ′     (h |  h   0 )   q    (σ,  μ i  ) , i  (h)   ,

where   q    (σ,  μ i  ) , i   is  i ’s ex  ante   (σ,  μ i  )  -local measure over histories, defined for 
each  h ∈ H  by,

(3)   p  −i,  σ −i     (h |  h   0 )   ∑ 
π∈Δ (Θ) 

   π ( h   0 )   ϕ  i  ′   (   ∑ 
 h ˆ  ∈H

    u  i   ( h ˆ  )   p  σ   ( h ˆ   |   h ˆ     0 ) π (  h ˆ     0 ) )  μ i   (π) . 

Notice that  i ’s ambiguity aversion leads the marginal of this local measure on param-
eters,   h   0  ∈ Θ , to tilt, via the   ϕ  i  ′    term, toward parameters given more weight by  π s 
for which  i  expects to fare less well under  σ . This tilting is not present under ambi-
guity neutrality (since   ϕ  i  ′    is constant). As ambiguity aversion increases, this tilting 
becomes more severe.

Now turn to defining preferences beyond the ex ante stage. To do so, we need 
to define the notion of a belief at an information set. The only property we require 
of such a belief is that it puts weight only on distributions over the partial histories 
belonging to that information set. This is defined formally as follows.

DEFINITION 2 (Belief at an Information Set): A belief for player  i  in a game  Γ  
given information set   I  i    is a finite support probability measure   ν i,  I i      over  Δ ( I  i  )  . An 
interim belief system  ν ≡   ( ν i,  I i    )  i∈N,  I i  ∈  i  

    is a belief for each player at each of that 
player’s information sets.
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Since at any partial history each player has an information set, an interim belief 
system specifies a belief for each player at each partial history. Given these beliefs, 
the following defines a player’s preferences at an information set.

ASSUMPTION 2 (Preferences at an Information Set): Fix a game  Γ  and a strategy 
profile  σ . Any player  i  at information set   I  i    ranks strategies   σ  i  ′    according to

(4)   V  i,  I  i     ( σ  i  ′  ,  σ −i  )  ≡   ∑ 
π∈Δ ( I  i  ) 

    ϕ i   (  ∑ 
h∣ h   t ∈ I  i  

    u  i   (h)   p   ( σ  i   ′  ,  σ −i  )    (h |  h   t ) π ( h   t ) )   ν i,  I  i     (π) , 

where  t  is the stage at which the information set   I  i    occurs.

Compared to the ex  ante preferences given in (1), the preferences (4) at   I  i    
 differ only in that the beliefs may have changed in light of   I  i    and  σ  (i.e.,   μ i    is replaced 
by some belief   ν i,  I i      concentrated on   I  i    ), and the probabilities of  reaching various his-
tories according to the strategy profile are now calculated starting from   I  i    rather than 
from the beginning of the game. Given a strategy   σ i    for player  i , the  continuation 
 strategy at information set   I  i   ,   σ  i  

 I i    , is the restriction of   σ i    to the  information sets    I ˆ   i    
such that   I  i   ∈  R   i   (  I ˆ   i  )  . Preferences at   I  i    may be equivalently thought of as ranking 
continuation strategies (i.e., any two strategies with identical continuations from   I  i    
are treated identically by preferences at   I  i   ).

Just as for the ex ante preferences, it is useful to observe that   σ i   , being a best 
response to   σ −i    for player  i  at information set   I  i    given   ϕ i    and   ν i,  I i      is equivalent to   σ i    
maximizing, among all   σ  i  ′   , the following modified expected payoff:

(5)    ∑ 
h∣ h   t ∈ I  i  

    u  i   (h)   p  i,  σ  i  ′     (h |  h   t )  q    (σ, ν) , i,  I i    (h)   ,

where   q    (σ, ν) , i,  I i     is  i ’s   (σ, ν)  -local measure over histories given   I  i   , defined for 
each  h ∈ H  such that   h   t  ∈  I  i   , by

(6)   p  −i,  σ −i     (h |  h   t )   ∑ 
π∈Δ ( I  i  ) 

    ϕ  i  ′   
(

  ∑ 
 h ˆ  ∣  h ˆ     t ∈ I  i  

    u  i   ( h ˆ  )   p  σ   ( h ˆ   |   h ˆ     t ) π (  h ˆ     t ) 
)

 π ( h   t )   ν i,  I i     (π) . 

Now,  i ’s ambiguity aversion leads the marginal of this local measure on   I  i    to tilt 
toward partial histories given more weight by  π s for which  i  expects to fare less well 
under the continuation   σ  i  

 I i    .
Using the above preferences, Section  II turns to equilibrium analysis. The 

main focus is describing and analyzing sequential optimality—the assumption 
that each player is best responding to   σ −i    according to their preferences at each 
 information  set—including its relation with updating of beliefs. Observe that 
Definition 2 assumes no particular connection between beliefs at different infor-
mation sets, the ex ante beliefs, and the strategy profile. Our Theorem 1 will show 
that strategic behavior under sequential optimality is as if beliefs are related by 
a  particular update rule. In the case of expected utility preferences, this update 
rule is exactly Bayes’ rule given the strategy profile. More generally, this update 
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rule ensures that, given the strategy profile,  i ’s local measure at   I  i   ,   q    (σ, ν) , i,  I i     is the 
Bayesian update of  i ’s local measure at the previous information set (or of  i ’s ex ante 
local measure if   I  i    is an initial information set).

II. Equilibrium

A.  Ex Ante Equilibrium

As a step toward defining sequential optimality, we use the ex ante preferences to 
define ex ante (Nash) equilibrium.

DEFINITION 3 ( Ex Ante Equilibrium): Fix a game  Γ . A strategy profile  σ  is an 
ex ante (Nash) equilibrium if, for all players  i ,

   V  i   (σ)  ≥  V  i   ( σ  i  ′  ,  σ −i  )  

for all   σ  i  ′   ∈  Σ i   .

An equilibrium requires each player  i , given ex ante beliefs   μ i   , to best respond 
to the ( parameter-contingent) strategies of the other players. To the extent that the 
play that strategies specify varies with the parameter, ambiguity about parameters 
(as reflected in beliefs) translates into ambiguity about play in equilibrium. In the 
case of ambiguity neutrality, where the   ϕ i    are linear (i.e., subjective expected utility), 
and homogeneous ex ante beliefs,   μ i   = μ  for all players  i , the definition reduces to 
the usual (ex ante) Bayesian Nash Equilibrium definition. More generally, ex ante 
equilibrium is the same as the ex ante equilibrium defined in the context of strategic 
form games with ambiguity averse players by Azrieli and Teper (2011) applied to 
our setting of extensive form games and smooth ambiguity preferences. Similar 
ex ante concepts also appear in Kajii and Ui (2005); Bade (2011); Riedel and Sass 
(2014); Kellner (2015); and Grant, Meneghel, and Tourky (2016).

When there is ambiguity about parameters, the motive for conditioning play 
on them can come from a mix of direct payoff concerns and/or indirect strategic 
 advantage from having others be ambiguous about one’s play. When, however, some 
or all of the parameter space is payoff irrelevant, the only motive for  conditioning 
play on these payoff-irrelevant aspects is indirect strategic advantage. This approach 
to modeling “pure”  strategic ambiguity in equilibrium via strategies condition-
ing play on payoff-irrelevant parameters follows Bade (2011), who extends to 
 ambiguity Aumann’s (1974) modeling of equilibrium strategic uncertainty through 
 conditioning on such parameters.

An alternative approach is to model ambiguity directly over opponents’ strategies 
without requiring a parameter space. In any such approach, unlike in ours, the Nash 
assumption that each player is best responding to the strategies of the others is prob-
lematic, as it leaves no possibility of strategic ambiguity. Thus, such approaches, 
while maintaining that each player’s strategy is a best response to their beliefs about 
strategies, necessarily relax the assumption that these beliefs are correct. Examples 
of such approaches in the literature include Dow and Werlang (1992), Klibanoff 
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(1996), Lo (1996, 1999), Eichberger and Kelsey (2000), Marinacci (2000), Lehrer 
(2012), Battigalli et al. (2015), and Battigalli et al. (2019).

When there is some ambiguity aversion (one or more   ϕ i    concave) and ambiguity 
( μ   non-degenerate), ex ante equilibrium behavior can differ from that in Bayesian 
Nash Equilibrium. Intuition for this is that at an ex ante equilibrium, each player is 
behaving as if they maximize expected payoff with respect to their local measure 
(3) at that strategy profile. Even with common beliefs  μ , ambiguity averse players 
will generally have different local measures, in particular, different local  marginals 
on parameters. Thus, ambiguity aversion leads players with common beliefs to act, 
locally, as if they were standard ambiguity neutral players with heterogeneous 
beliefs.

Running Example continued: Returning to the peace negotiation example, 
we analyze the ex ante equilibria of the game which helps illustrate some of the 
above. First, suppose that both small countries are ambiguity neutral (i.e.,   ϕ 1    and   ϕ 2    
are affine). In this case, no ex ante equilibrium results in a positive probability of 
peace. In contrast, whenever players 1 and/or 2 are sufficiently ambiguity averse 
(e.g.,   ϕ 1   =  ϕ 2   = −  e   −ax   with  a ≥ ln (5 / 4)  ), peace with probability 1 is an 
ex ante equilibrium outcome. Formally, we have the following result.

PROPOSITION 1: 

 (i ) If players 1 and 2 are ambiguity neutral (i.e.,   ϕ  1    and   ϕ   2    are affine), no ex ante 
equilibrium results in a positive probability of peace. This also holds for any 
other specification of common belief  μ .

 (ii ) If players 1 and/or 2 are sufficiently ambiguity averse, there is an 
ex  ante equilibrium yielding peace with probability 1 (i.e., with   σ 1   (c)   
=  σ 2   (c)  = 1 ).

The proof of this and all subsequent results in the paper may be found in the 
Appendices. Intuitively, players 1 and 2 are willing to cooperate only if each is suf-
ficiently worried that they will be punished if negotiations break down. Given the 
specified payoffs and beliefs in combination with ambiguity neutrality, this is impos-
sible because any strategy of player 3 that incentivizes one of them to cooperate will 
lead the other to defect. Peace does not occur in a Bayesian Nash equilibrium.

How do ambiguity and ambiguity aversion change the story? Consider the  strategy 
profile where 1 and 2 cooperate and player 3, when the payoff-irrelevant parameter 
is  I , punishes 1 if there is defection and favors 2 if there is peace, and does the oppo-
site when the parameter is  II . Since the beliefs  μ  reflect ambiguity about the parame-
ters, 3’s strategy creates ambiguity in the minds of players 1 and 2 about who will be 
punished or favored. Observe that player 1 does worse under parameter  I  than under 
parameter  II  and the reverse is true for player 2. Recall from the  discussion follow-
ing equation (3) that ambiguity aversion would then, at this strategy profile, tilt the 
marginals of their local measures on parameters in different directions —1’s toward  I  
and 2’s toward  II . Given sufficient ambiguity aversion (to generate enough tilting), 
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cooperation will be a best response for both because deviating is unattractive under 
parameter  I  for player 1 and unattractive under parameter  II  for player  2 . Finally, 
given cooperation by 1 and 2, any strategy of player 3 is an ex ante best response 
because 3 is indifferent among all actions that follow cooperation, and actions fol-
lowing defection are off the equilibrium path. 

Observe that, as in the example, equilibrium disciplines the strategic ambiguity 
that appears. Given a player knows that by conditioning his play on ambiguous 
parameters he can induce strategic ambiguity in the minds of others, the decision 
to condition in this manner is a decision about whether it is advantageous to play 
ambiguously. Equilibrium requires that such ambiguity inducing play is permitted 
only when it is a best response.

B. Sequential Optimality

Fundamental to our theory will be sequential optimality. It requires that, given 
the strategies of the others, each player’s strategy is optimal at each of that player’s 
information sets. Since at each partial history each player has an information set 
containing that partial history, sequential optimality imposes an analogue of ex ante 
equilibrium at each partial history in the game. Under ambiguity neutrality, the defi-
nition of sequential optimality specializes to ex  ante equilibrium plus Kreps and 
Wilson’s (1982) sequential rationality. Sequential optimality is defined formally as 
follows.

DEFINITION 4: Fix a game  Γ . A pair   (σ, ν)   consisting of a strategy profile and 
interim belief system is sequentially optimal if, for all players  i  and all information 
sets   I  i   ,

(7)   V  i   (σ)  ≥  V  i   ( σ  i  ′  ,  σ −i  )  

and

(8)   V  i,  I i     (σ)  ≥  V  i,  I  i     ( σ  i  ′   ,  σ −i  )  

for all   σ  i  ′   ∈  Σ i    , where the   V  i    and   V  i,  I i      are as specified in (1) and (4).9
A strategy profile  σ  is said to be sequentially optimal whenever there exists an 

interim belief system  ν  such that   (σ, ν)   is sequentially optimal.

As is standard for  perfection-like equilibrium concepts, a major motivation for 
sequential optimality is to rule out  noncredible  off-path behavior, and  off-path 
restrictions are the only means through which it refines ex ante equilibrium. Any 
ex ante equilibrium for which all information sets are  on-path is also sequentially 
optimal (see Theorem 10 in Appendix AB). How does sequential optimality relate to 
familiar concepts? Sequential optimality with a common  μ  implies (and is stronger 

9 Note that since   V  i,  I i     (  σ ̃   i  ,  σ −i  )  =  V  i,  I i     (  σ ˆ   i   ,  σ −i  )  , if    σ ̃    i  
 I i    =   σ ˆ    i  

 I i    , requiring the inequalities for the   V  i,  I i      to hold as  i  
changes only her continuation strategy given   I  i    would result in an equivalent definition.
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than) subgame perfection adapted to allow for smooth ambiguity preferences. To 
see this, recall that a proper subgame follows a partial history at which all infor-
mation sets are singletons. Since in our games all players have an information set 
at each partial history, for any proper subgame (8) ensures that the continuation 
strategy profile derived from  σ  forms an ex ante equilibrium of the subgame with 
respect to degenerate beliefs. For the overall game, (7) ensures  σ  is an ex ante equi-
librium. When preferences are expected utility and there is a common  μ , we show 
(see Corollary 1) that sequential optimality identifies the same strategy profiles 
as the version of Perfect Bayesian Equilibrium (PBE) defined in Gibbons (1992, 
pp. 177–180) (sometimes called weak PBE).10

Both PBE and sequential optimality go well beyond subgame perfection in sev-
eral respects. First, they rule out  off-path play that is not optimal against any belief 
given the strategy profile at partial histories that generate  nonsingleton information 
sets (where subgame perfection has no bite). Second, if, for example, a simultane-
ous move game is triggered immediately following a deviation, they require play 
of an equilibrium of that incomplete information simultaneous move game given 
beliefs and the strategy profile. Note that this second implication is generally more 
restrictive than simply ruling out strategies that are (iteratively) strictly dominated 
given the information set.

Running Example continued: Earlier we showed that only when players 1 
and/ or 2 are sufficiently ambiguity averse is there an ex ante equilibrium resulting 
in peace with probability 1. This equilibrium is also subgame perfect, since there 
are no  off-path proper subgames. Is such behavior sequentially optimal? The answer 
depends on  x , the payoff player 3 receives when staying neutral after negotiations 
break down. Only when  x  is sufficiently low (specifically  x ≤ 1 ) will there be a 
sequentially optimal strategy profile leading to peace for sure (or even to a positive 
probability of peace). Why? When  x > 1 , staying neutral is more attractive for 
player 3 than punishing, and thus punishment, at least some of which is necessary to 
incentivize successful peace negotiations, becomes a  noncredible threat and cannot 
be sustained as an optimal response to any beliefs after negotiations break down. 
When  x ≤ 1 , some ambiguous punishment strategies by 3 (e.g., playing  p1  if the 
parameter is  I  and  p2  if the parameter is  II ) are best responses to some beliefs of 3 
about who deviated from playing  c . Given sufficient ambiguity aversion of players 1 
and 2, such punishment strategies are enough to ensure cooperation. 

PROPOSITION 2: If  x > 1 , then in all sequential optima players 1 and 2 play  d  
with probability 1. If  x ≤ 1  and players 1 and 2 are sufficiently ambiguity averse, 
then there is a sequential optimum yielding peace with probability 1.

10 In games where at some partial histories information sets are specified for only a subset of players (for 
 example, as is frequently done only for the player(s) having a  nontrivial move at that point), ex ante  equilibrium 
plus  sequential rationality need not imply subgame perfection (see, e.g.,  Mas-Colell et al. 1995, 290,  example 9.C.5) 
and thus the same is true of sequential optimality. However, once the “missing”  information sets are added (in 
the case of example 9.C.5, specify an information set for the incumbent containing the partial history “In”), the 
 implication of subgame perfection is restored.
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REMARK 1: When  0.5 < x ≤ 1 , to have a sequential optimum yielding 
peace with probability 1 may require strictly more ambiguity aversion than 
would be necessary to have an ex  ante equilibrium doing so. For example, 
if   ϕ 1   (x)  ≡ −  e   −xln (5 / 3)   = −   (5 / 3)    

−x
   (so that   ϕ  1  ′   (x) / ϕ  1  ′   (y)  =   (5 / 3)    y−x  ) and 

player 2 is ambiguity neutral, then, as is shown in the proof of Proposition 1, there 
is an ex ante equilibrium yielding peace with probability 1. However, there is no 
sequential  optimum yielding peace with probability 1. The intuition is that when  
 0.5 < x ≤ 1  , optimality for player 3 when given the move limits the ability to 
punish the less ambiguity averse player 2 by ruling out mixtures that include both  
p1  and  p2 . In contrast, when  x ≤ 0.5  enough punishment strategies are credible 
that there is a sequential optimum yielding peace whenever there is an ex  ante 
 equilibrium doing so.

Do sequential optima always exist? In Section IIC we explore a refinement of 
sequential optimality. We show existence for this refinement, thus implying exis-
tence of sequential optima.

The definition of sequential optimality does not assume particular updating. 
Nevertheless, we show that analysis of sequential optima of a game may be under-
taken under the as if assumption that all players use an update rule, proposed by 
Hanany and Klibanoff (2009), called the smooth rule. Under ambiguity neutrality, 
the smooth rule reduces to Bayes’ rule. More generally, the smooth rule applied 
to beliefs implies the local measures,   q    (σ, ν) , i,  I i    (h)  , as defined in (6), are related by 
Bayes’ rule.

We now define the smooth rule in the  game-theoretic context. Though it is 
 notationally complex, at this point all that is important to take from this definition 
is that  i ’s updated beliefs are proportional to  i ’s beliefs at the previous information 
set times  i ’s subjective likelihood of reaching from the previous information set to 
the current one given   σ −i   , weighted by a term (involving a ratio of   ϕ  i  ′    expressions) 
that can be  nonconstant only when the player is ambiguity averse. Thus, smooth 
rule updating is a  re-weighted version of Bayesian updating. When this weighting 
term is constant, as is the case under ambiguity neutrality, the smooth rule reduces 
to Bayes’ rule.11 For clarity, the smooth rule formula is stated in two pieces: one 
for updating to an initial information set from the ex ante stage, and the other for 
updating to a current information set from the previous one. The smooth rule pins 
down  i ’s updating at all information sets (both on and off path) except those that  i  
does not view as reachable from the immediately preceding information set given  σ . 
We also define a strong version of the smooth rule which additionally pins down 
updating at information sets that  i  does not view as reachable given  σ  only because 
of  i ’s own strategy  σ    i    (under ambiguity neutrality, this will be referred to as strong 
Bayes’ rule12). Notice, as with Bayes’ rule in PBE, that the updating formula applies 
“wherever possible”  including at all  on-path and some  off-path information sets. 

11 More generally, these weighting terms reflect differences in the motive to hedge against ambiguity at different 
information sets (see Hanany and Klibanoff 2009 and Baliga, Hanany, and Klibanoff 2013).

12 Such a version of Bayes’ rule is discussed, e.g., in Hendon, Jacobsen, and Sloth (1996) and Perea (2002).
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We defer further discussion of the rule and suggest that the reader may also wish to 
defer parsing its formal definition.

NOTATION 1: For information set   I  i   , define  s ( I  i  )   to be such that   I  i   ∈     i  
 s ( I i  ) 

  , i.e., at 
what stage of the game is   I  i    . Given a partial history   h   t  ∈   and  − 1 ≤ s ≤ t − 1 ,  
  h   s   is the partial history formed by truncating   h   t   just before stage  s .

NOTATION 2: For information set   I  i   ⊈ Θ , define   I  i  
−1   to be the information set 

immediately preceding   I  i    in   R   i   ( I  i  )  .

DEFINITION 5: An interim belief system  ν  satisfies the smooth rule using strategy 
profile  σ  if the following holds for each player  i  and information set   I  i   , letting  t  
denote the stage at which the information set   I  i    occurs (i.e.,  t = s ( I  i  )  ):
If   I  i   ⊆ Θ , then for all  π ∈ Δ ( I  i  )  ,

(9)   ν i,  I i     (π)  ∝   ∑ 
 π ˆ  ∈Δ (Θ) ∣  π ˆ    I  i    =π

      
 ϕ  i  ′   ( ∑ h∈H        u  i   (h)   p  σ   (h |  h   0 )  π ˆ   ( h   0 ) ) 

   __________________________   
 ϕ  i  ′   ( ∑ h∣ h   t ∈ I  i    

      u  i   (h)   p  σ   (h |  h   t ) π ( h   t ) ) 
    π ˆ   ( I  i  )   μ i   ( π ˆ  ) , 

where    π ˆ    I  i     ∈ Δ ( I  i  )   is given by    π ˆ    I  i     (θ)  =  π ˆ   (θ) / ∑  θ ˆ  ∈ I i    
 
    π ˆ   ( θ ˆ  )   ; and if   I  i   ⊈ Θ  and  

  ∑  h   t ∈ I i    
 
     ∑  π ˆ  ∈Δ ( I  i  

−1 )   
 
    p  σ   ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 )   ν i,  I  i  −1    ( π ˆ  )  > 0 , then for all  π ∈ Δ ( I  i  )  ,

(10)   ν i,  I i     (π)  ∝   ∑ 
 π ˆ  ∈Δ ( I  i  −1 ) ∣  π ˆ    I i    =π

     
 ϕ  i  ′   ( ∑ h∣ h   t−1 ∈ I  i  

−1   
      u  i   (h)   p  σ   (h |  h   t−1 )  π ˆ   ( h   t−1 ) ) 

    ________________________________   
 ϕ  i  ′   ( ∑ h∣ h   t ∈ I i    

      u  i   (h)   p  σ   (h |  h   t ) π ( h   t ) ) 
   

   ×  (  ∑ 
 h   t ∈ I  i  

     p  −i,  σ −i     ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 ) )  ν i,  I  i  −1    ( π ˆ  ) , 

where    π ˆ    I  i     ∈ Δ ( I  i  )   is given by    π ˆ    I i     ( h   t )  =   
 p  −i,  σ −i     ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 ) 

  ____________________  
 ∑   h ˆ     t ∈ I i    

 
     p  −i,  σ −i     (  h ˆ     t  |   h ˆ     t−1 )  π ˆ   (  h ˆ     t−1 ) 

    for all   h   t  ∈  I  i   .  

If (10) additionally holds for all   I  i   ⊈ Θ  for which  

  ∑  h   t ∈ I i    
 
     ∑  π ˆ  ∈Δ ( I  i  −1 )   

 
     p  −i,  σ −i     ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 )   ν i,  I  i  −1    ( π ˆ  )  > 0 , then we say  ν  satisfies the 

strong smooth rule using strategy profile  σ .

We are now ready to state our result that analysis of sequential optima of a game 
may be undertaken under the “as if” assumption that all players use smooth rule 
updating.

THEOREM 1. Fix a game  Γ  and a strategy profile  σ . Then  σ  is sequentially 
 optimal if and only if there exists an interim belief system   ν ˆ    satisfying the smooth 
rule using  σ , such that   (σ,  ν ˆ  )   is sequentially optimal.
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OUTLINE OF THE PROOF: 
The if direction follows by definition. The only if direction proceeds by con-

sidering each player  i  and information set   I  i    separately (and has analogues for the 
ex ante stage). Pair each   I  i    with its collection of immediate successors   J  i   . The argu-
ment makes use of the following construction of the interim belief system   ν ˆ   : let  ν  
be an interim belief system such that   (σ, ν)   is sequentially optimal; at information 
sets where the smooth rule is unrestrictive, let    ν ˆ   i,  I i     =  ν i,  I i      ; given this and the ex ante 
beliefs, the smooth rule formula then pins down   ν ˆ    at all other information sets.

Three steps are key to showing that   (σ,  ν ˆ  )   is sequentially optimal. First, as is 
true for any preference represented by a smooth, increasing and concave  objective 
function,   σ i    is optimal at   I  i    if and only if it is optimal according to the local  linear 
approximation around   σ i    given in (5). Second, perfect recall and the linearity of 
this objective allows us to conclude that   σ i    maximizes (5) implies that, for each   J  i   ,  
  σ i    maximizes the part of the summation in (5) taken only over   J  i   . Finally, the 
smooth rule formula in (10) implies that the   (σ,  ν ˆ  )  -local measure given each   J  i    is the 
Bayesian update, given   J  i    and  σ , of (and therefore proportional to) the   (σ,  ν ˆ  )  -local 
measure given   I  i   . Thus, applying this and again the first step, for each   J  i   ,   σ i    is optimal 
at   J  i    given   ν ˆ   . Therefore   (σ,  ν ˆ  )   is sequentially optimal. ∎

Note that Theorem 1 would be false if we were to replace the smooth rule with 
Bayes’ rule—restricting attention to interim belief systems satisfying Bayesian 
updating generally rules out some (or all) sequentially optimal strategies. This is so 
because applying Bayes’ rule to beliefs does not generate Bayesian updating of the 
local measures,  q . The latter was the implication of smooth rule updating of beliefs 
essential to proving the theorem.

One characteristic of smooth rule updating that will be unfamiliar to many read-
ers is that it is “ non-consequentialist” in the sense that its formula includes expected 
payoffs under  σ  at all (terminal) histories reachable from the immediately preceding 
information set, as well as ambiguity aversion via   ϕ i   . Importantly however, it is 
consequentialist in the weaker sense that preferences at any information set   I  i    rank 
strategies only through their continuation from   I  i   , since beliefs, however determined, 
are concentrated on measures over   I  i    . The reader might nevertheless be worried by 
the fact that the evaluation of a continuation strategy at an information set depends 
on updated beliefs, but updated beliefs under the smooth rule depend on the contin-
uation strategy at the information set. This should not be a concern because the only 
comparisons that are meaningful when checking if   σ i    is a best response to   σ −i    at an 
information set   I  i    are those evaluating   σ i    and each alternative   σ  i  ′    according to the 
same belief,   ν i,  I i     , whatever it is. Theorem 1 says that this belief may be determined 
by updating according to the smooth rule using  σ =  ( σ i   ,  σ −i  )  .

 Non-consequentialist updating more generally has been criticized in the con-
text of dynamic  decision-making under ambiguity by, e.g., Siniscalchi (2009) as 
violating the spirit of ambiguity being purely an “informational” phenomenon, in 
the sense that it may generate updated perceptions of ambiguity that depend on 
contextual factors such as payoffs and attitudes. While there are types of analy-
sis that become problematic given  non-consequentialism, such as studies of 
learning or inference carried out in isolation, separate from any decision or game 
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 context, an  important takeaway from our analysis (including Theorem 2 below on 
the sufficiency of checking  one-stage deviations) is that the  non-consequentialism 
of smooth rule updating doesn’t introduce any new conceptual difficulties into the 
analysis of dynamic games. For example, just as with Bayesian updating, once one 
fixes some beliefs at an information set, to proceed with analysis of play at that and 
successor information sets does not require any knowledge of parts of the game 
outside of this continuation  sub-tree.

Recall that, restricting attention to expected utility preferences, the smooth rule 
specializes to Bayes’ rule. In this case, we have the following corollary.

COROLLARY 1: Fix a game  Γ  with all players ambiguity neutral and a  strategy 
 profile  σ . Then  σ  is sequentially optimal if and only if there exists an interim 
belief system   ν ˆ    satisfying Bayes’ rule such that   (σ,  ν ˆ  )   is sequentially rational.

Thus, under ambiguity neutrality, sequential optimality identifies the same set 
of strategy profiles as Kreps and Wilson’s (1982) sequential rationality plus the 
assumption of Bayesian updating given  σ , which are, in turn, the same as perfect 
Bayesian equilibrium (PBE) as defined in, for example, Gibbons (1992).13

When applying concepts like subgame perfection, PBE and sequential 
 equilibrium, it is extremely useful, when verifying optimality, to only need to 
check “ one-stage”  deviations (as opposed to general deviations), i.e., check that 
for each player  i  and information set   I  i   , there are no profitable deviations by  i  at   I  i    
alone. These  one-stage deviations are typically a small fraction of the deviations 
 available to players. Formally, the absence of these profitable  one-stage deviations 
is the following.

DEFINITION 6: The pair   (σ, ν)   has no profitable  one-stage deviations if for each 
player  i  and each information set   I  i   ,   V  i,  I i     (σ)  ≥  V  i,  I i     ( σ  i  ′  ,  σ −i  )   for all   σ  i  ′    agreeing 
with   σ i    everywhere except possibly at   I  i    .

For finite horizon games, in the standard ambiguity neutral case and under the 
assumption that beliefs are related by strong Bayes’ rule given the strategy profile  σ , 
having no profitable  one-stage deviations is sufficient for sequential optimality of  σ  
(see Hendon, Jacobsen, and Sloth 1996). Is there an analogous statement that applies 
under ambiguity aversion? As we show next, the answer is yes. In this analogue, the 
role of strong Bayesian updating given  σ  is played by the strong smooth rule.

THEOREM 2: Fix a game  Γ  and a pair   (σ, ν)   such that  ν  satisfies the strong 
smooth rule using  σ . Then   (σ, ν)   is sequentially optimal if and only if   (σ, ν)   has no  
profitable  one-stage deviations.

13 Shimoji and Watson (1998) prove a related result in the context of defining extensive form 
 rationalizability— the set of such rationalizable strategies when defined using best responses given any conjec-
tures about others’ play remains the same when limiting attention to conjectures consistent with Bayes’ rule.
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Comparison with an Alternative Approach.—Sequential optimality refines 
ex  ante equilibrium to deal with  noncredible threats by requiring players to be 
 optimizing over continuation strategies at each information set given the strategies 
of the other players. It follows that for any strategy profile that is not sequentially 
optimal, there must be at least some information set at which some player could 
strictly improve by shifting to a different continuation strategy. However, this has 
not been the approach to  noncredible threats generally taken in the small body 
of  existing literature on dynamic games with ambiguity aversion that addresses 
the issue. These  alternative approaches instead require no profitable  one-stage 
deviations (or the slightly  stronger Strotzian consistent planning, see online 
Appendix B4) with respect to exogenously imposed particular update rules.14 , 15 
They start from the principle that, at any  information set, players choose only 
 current actions (or  mixtures over actions) rather than continuation strategies. Thus, 
when best  responding, players take as given not only other players’ strategies, 
as in our approach, but also their own future  continuation strategy. While such 
approaches emphasize the  conflicting views of optimality at different information 
sets that may arise for a player under ambiguity aversion when using particular 
update rules, sequential optimality emphasizes the unity of a player in requiring 
that strategies are optimal from the point of view of all of the player’s information 
sets simultaneously, while taking a more agnostic or endogenous view of updating.

How do such approaches compare with sequential optimality? Without 
 exogenous assumptions on updating, sequential optimality is a stronger requirement 
than consistent planning, which is, in turn, stronger than requiring no  profitable 
 one-stage deviations. It then follows from Theorem 2 that all three concepts are 
equivalent under strong smooth rule updating. This finding generalizes the fact that 
under expected utility, the three are equivalent under strong Bayes’ rule  updating. 
However, the no profitable  one-stage deviations and similar approaches under 
 ambiguity aversion have been most commonly applied together with different 
updating. In the context of smooth ambiguity preferences, Bayesian updating is 
often assumed. As noted earlier, because of the conflicts this generates between 
preferences at a player’s different information sets, this may rule out some (or all) 
sequential optima. This may occur even when all information sets are  on-path. 
Thus, differently from sequential optimality, this approach may eliminate an ex ante 
 equilibrium by restricting  on-path as well as  off-path behavior.

Such approaches also differ from sequential optimality in the other 
 direction— under Bayesian updating, some strategy profiles that are not even ex ante 
equilibria may satisfy no profitable  one-stage deviations. One type of such behav-
ior that has been a source of criticism often discussed in the literature (see, e.g., 
Machina 1989, Siniscalchi 2011) is a player in a dynamic decision problem strictly 
preferring not to obtain freely available information. As Siniscalchi (2011) explains, 
information is typically bundled together with the future ability to condition one’s 

14 Examples of such literature include Bose and Renou (2014); Kellner and Le Quement (2018); Battigalli et al. 
(2019); and Beauchêne, Li, and Li (2019).

15 A second approach appearing in the literature is based on recursive preferences. We relate sequential 
 optimality to this approach in the latter part of Section VI.
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action on that information, and therefore increases the flexibility given to the player 
at future information sets. When there are conflicts between the current and future 
objectives of the player, such flexibility can be strictly costly for the player at the 
current information set. Thus what might appear to be negative value of information 
is reinterpreted as valuable information outweighed by a costly increase in future 
flexibility (or, as more commonly referred to, loss of commitment power). Such 
behavior cannot occur under sequential optimality, as future flexibility is never 
costly given the unified agreement on optimality it entails. The following example 
illustrates another consequence of this difference between the approaches.

Example: Consider the game in Figure  2. Player 2 is privately informed of  
 θ ∈  {I, II, III}   at the beginning of the game. Observe that for each  θ , player  2  has a 
strictly dominant strategy if given the move: types  I  and  II  play  U , and type  III  plays  
D . Let   ϕ 1   (x)  = −  e   −10x   and the common  μ  be half-half on   (1 / 3, 1 / 9, 5 / 9)   and   

(1 / 3, 5 / 9, 1 / 9)  . Then the unique strategy profile satisfying no profitable  one-stage 
deviations combined with updating according to strong Bayes’ rule has 1  playing  o  
with positive probability and then the mixture   (1 / 2) u +  (1 / 2) d  if given the move, 
and 2   playing her dominant strategy. However, the unique sequential  optimum is  
player 1 playing  i  and then  d  if given the move, together with 2 playing her dominant 
strategy.

What drives this difference in 1’s behavior? Playing  i  rather than  o  gives 
player 1 flexibility at the final information set. With Bayesian updating, 1 uses 
this flexibility to play   (1/2) u +  (1/2) d  rather than  d , and this is costly from the 
perspective of player 1 at the initial information set. Since, for some  θ , 1’s payoffs 
from  o  are higher than those from  i  followed by   (1/2) u +  (1/2) d , and the reverse 
is true for other  θ , 1 is motivated to hedge against ambiguity by mixing between  o  
and  i  at the initial information set. The details may be found in online Appendix 
B4.16 In contrast, observe that for player 1, given 2’s dominant strategy, the payoff 
to playing  i  followed by  d  is,  θ -by- θ , strictly higher than the payoff to playing  o . 
Thus, no strategy  involving playing  o  with positive probability can be an ex ante 
best reply to 2’s optimal  strategy no  matter how player 1 perceives and treats the 
uncertainty about  θ . This is why  o  is not part of any ex ante equilibrium, let alone 
a sequential optimum.

More generally, sequential optimality always rules out the play of  type-by-type 
(iteratively) strictly dominated strategies in dynamic settings while no profitable 
 one-stage deviations combined with Bayesian updating does not. 

As observed in this section, an ambiguity averse player who exogenously adopts, 
for example, Bayesian updating will generally have disagreement (across informa-
tion sets) on the optimal strategy, and therefore may suffer from future flexibility. In 
contrast, a player who, either ex ante or at an early information set, both recognizes 
updating as the generator of these costly disagreements and is able to influence 
their own future information processing would generally be better off departing 

16 There we also show that strengthening the no profitable  one-stage deviation criterion to a Strotzian consistent 
planning requirement does not eliminate the play of  o  with positive probability in the example.
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from Bayesian updating in order to remove these difficulties. One possible view of 
sequential optimality is as modeling the outcomes of strategic interaction of such 
players.

C. Sequential Equilibrium with Ambiguity

To define sequential equilibrium with ambiguity (SEA), we consider a 
 condition, smooth rule consistency, that imposes requirements on beliefs that may 
have bite even at information sets that  i  does not view as reachable from their imme-
diate  predecessor given  σ .17 Our condition extends Kreps and Wilson’s (1982) 
 consistency condition used for the same purpose in defining sequential equilibrium. 
We extend consistency in order to accommodate ambiguity aversion by replacing 
Bayes’ rule in their definition with the smooth rule. This replacement is justified by 
Theorem 1, since, by that result, sequential optima are as if players are  responding 

17 If there are no such information sets, any sequentially optimal strategy profile is also part of an SEA (see 
Theorem 12).

Figure 2. Game Contrasting the Approaches

Note: The vectors give utility payoffs for players 1 and 2, in that order, for each path.
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to beliefs generated using smooth rule updating. Just as consistency uses limits of 
Bayesian updates to deliver beliefs consistent with small trembles converging to 
sequentially optimal strategies under ambiguity neutrality, limits of smooth rule 
updates deliver this under ambiguity aversion. Recall that if we simply limited atten-
tion to Bayes’ rule, then sequentially optimal strategies might fail to exist under 
ambiguity aversion. Smooth rule consistency is defined as follows.

DEFINITION 7 (Smooth Rule Consistency): Fix a game  Γ . A pair   (σ, ν)   
 consisting of a strategy profile and interim belief system satisfies smooth rule 
 consistency if there exists a sequence of completely mixed strategy profiles    { σ   k }   k=1  

∞   , 
with   lim k→∞    σ   k  = σ , such that  ν =  lim k→∞    ν   k  , where each   ν   k   is the interim belief 
system satisfying the smooth rule using   σ   k  .

Observe that smooth rule consistency is a true extension of Kreps and Wilson’s 
consistency because Bayes’ rule and the smooth rule coincide under ambiguity 
 neutrality. SEA strengthens sequential optimality exactly by adding the requirement 
of smooth rule consistency.

DEFINITION 8 (SEA): A sequential equilibrium with ambiguity (SEA) of a game  Γ  
is a pair   (σ, ν)   consisting of a strategy profile and interim belief system such that   

(σ, ν)   is sequentially optimal and satisfies smooth rule consistency.

We may use Theorem 2 and that smooth rule consistency delivers a  ν   satisfying 
the strong smooth rule using  σ  to conclude that replacing sequential optimality 
in the definition of SEA by having no profitable  one-stage deviations would not 
change the set of equilibrium strategies.

THEOREM 3: A pair   (σ, ν)   is an SEA if and only if   (σ, ν)   has no profitable 
 one-stage deviations and satisfies smooth rule consistency.

An implication of this last result together with Corollary 1 is that SEA and 
sequential equilibrium are equivalent under the assumption of ambiguity neutrality.

Running Example continued: Let’s apply SEA to our running example. We show 
that if peace is an ex ante equilibrium outcome, then it is also an SEA outcome if 
and only if the large country’s payoff  x  to staying neutral after a breakdown is at 
most 0.5. Notice that this is strictly lower than the bound of 1 we saw when applying 
sequential optimality.

PROPOSITION 3: Suppose there is an ex  ante equilibrium yielding peace with 
probability 1. Then there exists an SEA yielding peace with probability 1 if and only 
if  x ≤ 0.5  .

The key is that smooth rule consistency forces beliefs of player 3 about which 
player defected to be the same at both information sets that follow defection. This 
is not implied by sequential optimality alone, and when  0.5 < x ≤ 1 , attaining 
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peace requires player 3 to hold different beliefs across these information sets. Once 
these beliefs are forced to be the same, it is not in 3’s interest to play in a way such 
that both players 1 and 2 think there is a chance they will be punished following 
defection. Therefore, at least one of the small countries will find it in their interest 
to defect.

In contrast, when  x ≤ 0.5 , at each of 3’s information sets following  defection, 
any mixture over punishing 1 and punishing 2 is a best response to beliefs such 
that the two nodes in the information set are unambiguously equally likely. Thus, 
given such beliefs, 3 is willing to punish in a way sufficient to ensure peace. Such 
beliefs satisfying smooth rule consistency can be generated, for example, by a com-
pletely mixed sequence of strategies converging to always cooperating that give, 
along the sequence, the same probability to 1 defecting as to 2 defecting after  
1 cooperates. 

We next show that every game  Γ  has at least one SEA (and thus also at least 
one sequential optimum and ex ante equilibrium). Since the functions   ϕ i     describing 
 players’ ambiguity attitudes are part of the description of  Γ , this result goes beyond 
the  observation that an SEA would exist if players were ambiguity neutral, and  
ensures existence given any specified ambiguity aversion and ex ante beliefs. The 
manner in which the smooth rule generalizes Bayes’ rule allows us to prove this 
result by adapting known techniques from existence proofs for sequential equilibrium.

THEOREM 4: An SEA exists for any game  Γ .

In Theorem 11 in the Appendix, we show that SEA implies that beliefs are 
uniquely defined at all information sets according to a version of the smooth rule 
formula using limits of likelihoods. This provides a method for constructing beliefs 
satisfying smooth rule consistency.

III. Effects of Ambiguity Aversion on Equilibria

A. Comparative Statics in Ambiguity Aversion

In this section, we explore the extent to which changes in ambiguity aversion 
affect equilibrium play. When we say equilibrium in this section, it will not matter 
whether we refer to ex ante equilibria, sequential optima, or SEAs, as the compara-
tive statics in ambiguity aversion will be the same for all of these. We start with the 
simplest and most direct comparative statics question: Holding all else fixed about a 
game (which, recall, includes specifying ex ante beliefs), do changes in ambiguity 
aversion affect the set of equilibrium strategy profiles (and play paths)? The answer 
is yes they can, as was true in our running example. In fact, the set of equilibria can 
change entirely, as the following result shows.

THEOREM 5: For some game form, payoffs, and beliefs, the set of equilibrium 
 strategy profiles under ambiguity neutrality is disjoint from that under some 
 ambiguity aversions.
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What if, as an outside observer, one is not willing to fix particular beliefs when 
describing the equilibrium predictions of the theory, but is willing to assume that 
all players share the same belief? How do such predictions change when ambiguity 
aversion is introduced?

THEOREM 6: Fix any game form and payoffs. Taking the union, over 
beliefs  μ , of the set of equilibria generated if the common belief were  μ , ambigu-
ity aversion makes this union weakly larger (in the superset sense) compared to 
ambiguity  neutrality, and, for some games and ambiguity aversions, this expansion  
is strict.

Thus, under an assumption of common beliefs, ambiguity aversion may not 
only generate new equilibrium behavior (and new paths of play), but also does not 
 eliminate equilibria possible under ambiguity neutrality. For instance, strict expan-
sion occurs in the running example with sufficient ambiguity aversion and  x ≤ 0.5 .

Does dropping the restriction to common beliefs change the answer to the 
 question in the previous paragraph? It does, and quite dramatically so—in this 
case, we show that the predictions of the theory do not change with ambiguity  
aversion.

THEOREM 7: Fix any game form and payoffs. Ambiguity aversion never affects the 
union, over beliefs    ( μ i  )  i∈N    , of the set of equilibria generated if beliefs were    ( μ i  )  i∈N   .

To gain intuition for the previous two results, it is useful to rewrite the linear 
approximation in (2) as follows:

(11)    ∑ 
π∈Δ (Θ) 

    (  ∑ 
h∈H

    u  i   (h)   p   ( σ  i  ′  ,  σ −i  )    (h |  h   0 ) π ( h   0 ) )   ϕ  i  ′   (  ∑ 
h∈H

    u  i   (h)   p  σ   (h |  h   0 ) π ( h   0 ) )   μ i   (π)  .

Equation (11) is a linear aggregation of the expected payoffs for each  π  with weights 
on the  π  given by the   ϕ  i  ′    term times   μ i   . We will refer to the  normalized-to-one 
 version of these weights on the  π  as  i ’s effective beliefs (at  σ ), since they are the 
local analogue of beliefs   μ i    in the ex ante preferences. We see from (11) that the 
impact of changing ambiguity aversion on equilibria comes from the effect that 
ambiguity aversion has in generating different effective beliefs for different players. 
In Theorem 6, this is what may generate new equilibria. In Theorem 7, observe 
that any change in effective beliefs coming from changes in   ϕ  i  ′    can be offset by 
corresponding changes in   μ i   . This offsetting is not possible under the restriction to a 
common  μ  because the offsetting required for each player may differ.

Theorem 7 has analogues in the literature. For a result that in individual  decision 
problems, under standard assumptions (including reduction, broad  framing, 
statewise dominance and expected utility evaluation of objective lotteries), all 
observed behavior optimal according to ambiguity averse preferences is also 
 optimal for some subjective expected utility preferences, see, e.g., Kuzmics (2017). 
Bade (2016)  independently shows that without restrictions on beliefs, predictions 
using ex ante equilibria do not change with ambiguity aversion. Considering a type 
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of  self-confirming equilibria, Battigalli et al. (2015, 667) show that the set of these 
equilibria does not change as ambiguity aversion changes.

Battigalli et al. (2015) have as their main finding a result (their Theorem  1 
together with an example of strict inclusion), which Battigalli et al. (2019) focuses 
on partially extending to dynamic games, in which they show that the set of their 
 self-confirming equilibria increases as ambiguity aversion increases and that this 
increase can be strict. This result relies crucially on limiting attention to pure strat-
egies (both in terms of the equilibrium profile and in terms of the deviations against 
which optimality is checked). If we were also to limit attention to pure strategies in 
both these respects, an analogous result would apply to our equilibria.

THEOREM 8: Fix any game form and payoffs. Taking the union, over beliefs  
   ( μ i  )  i∈N   , of the set of pure equilibria with respect to pure strategy deviations gen-
erated if the beliefs were    ( μ i  )  i∈N   , increasing ambiguity aversion of one or more 
players weakly expands (in the superset sense) this union. For some games and 
increases in ambiguity aversion, this expansion is strict. 

B. Robustness

To introduce our discussion of robustness, we begin with an example. 
Consider a two player  one-stage game, where each player has a choice between 
two actions A and B. The parameter space about which there is ambiguity is  
 Θ =  { θ 1  ,  θ 2  }  . Both players have beliefs  μ  such that  μ ( π 1  )  = μ ( π 2  )  = 1 / 2 , 
where   π 1   ( θ 1  )  = 2 / 3  and   π 2   ( θ 1  )  = 1 / 2 , and do not learn anything about  θ  
before choosing their action. They both share the same  ϕ . Payoffs as a function of 
the actions and  θ  are as in Figure 3.

Observe that given   θ 1   ,  A  is strictly dominant for each player, while given   θ 2   ,  B  is 
strictly dominant. Under ambiguity neutrality, i.e.,  ϕ  affine, both   (A, A)   and   (B, B)   
are equilibrium strategy profiles. We claim that   (A, A)   is robust to increased 
 ambiguity aversion (i.e., remains an equilibrium when  ϕ  becomes more  concave), 
but   (B, B)   is not. To see that   (A, A)   is robust, note that, assuming her opponent 
plays  A , a player evaluates the mixed strategy  λA +  (1 − λ) B  according to  
  (1/2) ϕ (2λ)  +  (1/2) ϕ (4 − λ)  , which is maximized at  λ = 1  for any con-
cave  ϕ . To see that   (B, B)   is not robust, note that for example, if  ϕ (x)  = −  e   −αx   with  
 α > ln ((1 +  √ 

_
 5  )/2)  ≈ 0.48 , it is profitable to deviate to  A .

Another sense of robustness is that an equilibrium supported for a 
wider range of beliefs is more robust. Consider the set of weights  μ  
on   π 1    and   π 2    that support   (A, A)   as an equilibrium. Such weights are those satis-
fying  μ ( π 1  )  ≥ ϕ′ (3) / (2ϕ′ (2)  + ϕ′ (3) )  . Notice that as  ϕ  becomes more concave,  
 ϕ′ (3) / (2ϕ′ (2)  + ϕ′ (3) )   decreases, approaching  0  in the limit as  ϕ′ (3) /ϕ′ (2)   
approaches  0 , and thus sufficient ambiguity aversion results in a large set of weights  μ  
supporting   (A, A)  . The fact that ambiguity aversion leads to such a large set of beliefs 
supporting   (A, A)   is not special to this example. We show, under some conditions, 
that equilibria that are robust to increased ambiguity  aversion must be supported 
by a large set of beliefs for sufficient ambiguity  aversion,  and  furthermore, this 
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 supporting set of beliefs may be made as large as desired (see Theorem 9 and 
Remark 2). We refer to this as ambiguity aversion  making an equilibrium belief 
robust.

One use of our robustness result is as follows: Consider a population having 
 heterogeneous beliefs. Equilibria that, under ambiguity neutrality, are not supported 
by many beliefs might not be expected to occur often. Our result offers ambiguity 
aversion as a possible explanation for unexpected prevalence of such equilibria. 
Specifically, if such an equilibrium is, like   (A, A)  , robust to increased ambiguity 
aversion, ambiguity aversion can make it an equilibrium for more of the population 
(i.e., for more beliefs).

We turn to formal definitions of these two robustness notions and our result relat-
ing them. An equilibrium strategy profile is robust to increased ambiguity  aversion 
if it remains an equilibrium whenever one or more of the   ϕ i    becomes more concave.

DEFINITION 9: For a game  Γ , an equilibrium  σ  is robust to increased ambiguity 
aversion if it remains an equilibrium whenever, for each  i ,   ϕ i    is replaced by an at 
least as concave    ϕ ˆ   i    .

Ambiguity aversion makes an equilibrium strategy profile  σ  belief robust if 
 sufficient increases in players’ ambiguity aversion, holding the  π s in the supports 
of players’ beliefs    ( μ i  )  i∈N    fixed, make all beliefs placing sufficient weight on each 
such  π  support  σ  as an equilibrium.

DEFINITION 10: For a game  Γ , consider an equilibrium  σ . Ambiguity aver-
sion makes  σ   belief robust if, for each  i  and   ε i   ∈  (0, 1/ |supp( μ i  )| )  , there 
exists    ϕ –    i  

 ε i     at least as concave as   ϕ i    so that  σ  is an equilibrium of this game 
with    (  μ ˆ   i  )  i∈N    and    (  ϕ ˆ   i  )  i∈N     whenever the    (  μ ˆ   i  )  i∈N    have the same supports as the    ( μ i  )  i∈N    
and, for each  i ,   min π∈supp( μ i  )     μ ˆ   i   (π)  >  ε i    and    ϕ ˆ   i    at least as concave as    ϕ –    i  

 ε i    .

The next result shows, under some conditions on how expected payoffs vary 
with  π , the tight connection between robustness to increased ambiguity aversion 
and belief robustness.

THEOREM 9: Fix a game  Γ . The following is true when either ex ante equilibrium 
or sequential optimality are used as the notion of equilibrium:

If an equilibrium  σ  is robust to increased ambiguity aversion and, for each 
player  i ,  the expected payoff   ∑ h∈H  

 
     u  i   (h)   p  σ   (h |  h   0 ) π ( h   0 )   can be strictly ordered 

across the  π  in the support of   μ i   , then ambiguity aversion makes  σ  belief robust.

Figure 3. Robustness Example

  θ 1   A B   θ 2   A B

A 0, 0 1, −8 A 6, 6 1, 16

B −8, 1 −6, −6 B 16, 1 12, 12
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Theorem 9 also holds when SEA is used as the equilibrium concept under the 
following modification. In addition to SEA, require that there is a sequence of 
 completely mixed strategy profiles    { σ   k }   k=1  

∞   , such that   lim k→∞    σ   k  = σ , with respect 
to which smooth rule consistency simultaneously holds for any interim belief 
 systems used to support  σ  as an SEA in the theorem or associated definitions.

REMARK 2: Suppose   ϕ i    is twice continuously differentiable with   ϕ  i  ′   > 0  every-
where. Then Theorem 9 remains true when, in the definition of belief robust,    ϕ –    i  

 ε i     is 
restricted to be of the constant absolute ambiguity aversion form,    ϕ –    i  

 ε i    (x)  ≡ −  e   −α ( ε i  ) x   
where  α ( ε i  )  > 0 .

Intuition for the theorem in the case of ex  ante equilibrium is as follows: 
Robustness to increased ambiguity aversion implies that   σ i    must be a best response 
given the  minimizing  π , since, as long as there is a unique expected payoff 
 minimizing  π , one can always find increases in ambiguity aversion that generate 
effective beliefs that are any interior convex combination of the effective beliefs 
under the original   ϕ i    and degenerate beliefs on the minimizing  π . Given this, if one 
were to go to the limit (i.e., all effective weight placed on the minimizing  π ), then 
the beliefs over the  π  cease to matter and all beliefs with the same support make   σ i    
a best response. The proof of the theorem reveals that the arguments required along 
the way toward the limit are more subtle, making use of concave transforma-
tions  tailored to  generate specific shifts in effective beliefs when defining thresh-
old    ϕ –    i  

 ε i     that do the job and relaxing all beliefs to all beliefs up to the   ε i    constraints. 
As Remark 2  indicates, if one doesn’t mind bounds that may be much less tight, 
comparison to the  threshold    ϕ –    i  

 ε i     may be simplified by taking the threshold to have 
a constant  coefficient of ambiguity  aversion  α ( ε i  )   (see Klibanoff, Marinacci, and  
Mukerji 2005, 1865–66).

Without the assumption on expected payoffs, the theorem would be false. The 
role of this assumption is to ensure enough flexibility in the manner in which more 
ambiguity aversion can shift the effective weight placed on expected payoffs for the 
various  π .

In Section  IVB, we apply Theorem 9 in analyzing the effect of the entrant’s 
 ambiguity aversion on the robustness of  limit-pricing equilibria.

IV. Examples

A. Example: Ambiguous Cheap Talk

The example is a game in which deliberately introducing ambiguity about actions 
without payoff consequences (“ambiguous cheap talk”) proves valuable in  equilibrium 
(ex ante, sequentially optimal or SEA) for a principal communicating to two agents. 
The equilibrium we identify would not be a solution under no profitable  one-stage 
deviations (or Strotzian consistent planning) together with Bayesian updating. It 
is only under the latter approach that existing literature (see, e.g., Bose and Renou 
2014; Beauchêne, Li, and Li 2019; Kellner and Le Quement 2018) has been able to 
establish, through arguments relying in an essential way on violations of sequential 
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optimality, a value for ambiguous cheap talk. As was discussed following Theorem 2 
in Section IIB, such approaches may lead ambiguity averse players to reject freely 
available, relevant information, and thus it is not clear whether the value of ambigu-
ous communication could survive in the absence of such an effect. Thus, our analysis 
of this example establishes a new reason why ambiguous cheap talk can be valuable: 
like the ambiguity about  payoff-relevant actions in our running example, increasing 
the ambiguity of the communication can enhance the ability to provide incentives 
to both agents simultaneously by moving their effective beliefs further apart in the  
desired directions.

There are three players, a principal,  P , and two agents,  r  (row) and  c  (column).  
Principal  P  wishes to induce the agents to  w  (work) for him rather than start their own  
 b  (b usinesses). There is uncertainty about the value to an agent of  b  relative 
to  w ;  P  has private information about these values. By making an informative public 
announcement,  P  hopes to improve the chances that the agents find  w  attractive. We 
show an ambiguous communication strategy is optimal for  P  and is part of an SEA.

The parameter space has two components: a payoff-relevant component, 
which can take the value  I  or  II , related to  market-relevant characteristics of 
a technology; and a payoff-irrelevant component, which can take the value  U  
or  D , related to the findings of a laboratory experiment. Thus the parameter space is  
 Θ =  {IU, ID, IIU, IID}  =  {I, II}  ×  {U, D}  . At stage  t = 0 , only  P  has a 
 non-trivial  move, which is to send a message  α  or  β . At  t = 1 , only the agents 
have  non-trivial moves, and each chooses  b  or  w . Principal  P  is privately informed 
of  θ ∈ Θ  before sending his message. The message is publicly observed by both 
agents before they choose their actions. Payoffs are given in Figure 4, where each cell 
lists the  payoff to  P ,  r , and  c  in that order. 

Notice that  P ’s message is cheap talk. To understand  the above payoffs, begin 
with  P . He has an idea concerning the use of the  technology and the skills and labor of 
the agents to make a product. Full success of the product occurs under technology  I  if  r  
works for  P  (no matter what  c  does), but under technology  II  requires both agents to 
work for  P  as both of their skills are crucial in this case. Partial success occurs under  I  
if only  c  works for  P , and under technology  II  if either of the agents works alone for  P . 
If neither agent works for  P , nothing is accomplished with regard to the product and no 
payment is made by  P . Now turn to the agents. If an agent works for  P , she gets some 
benefit, but she also incurs an effort cost that is higher than when both agents work 
for  P  (thus her payoff of 1 from working alone increases to 2 when working together). 
If an agent does not work for  P , she starts an independent business based on her own 
idea for using the technology. Agent  r ’s business idea will be a huge success under 
technology  II  but amount to nothing under technology  I , while the reverse is true of  c ’s 
business idea. Agent  r  is  ambiguity averse with   ϕ r   (x)  = −  e   −11x  . The exact specifi-
cation of   ϕ P    and   ϕ c    will not be important for our analysis of the game.

The beliefs  μ  for all players are half-half over distributions   π 1    and   π 2    given in 
Figure 5 (where the numbers on the top and left edges are the corresponding mar-
ginals). Notice that there is ambiguity about the payoff-relevant component of  θ  
and,  fixing that component, ambiguity about the payoff-irrelevant component of  θ . 
This belief structure is, for example, consistent with there being an underlying fac-
tor which affects (the likelihood of) both components. The factor might be some 
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 scientific principle that is not well understood, which influences both the functioning 
of the technology ( I  versus  II ) as well as the findings of the laboratory experiment  
( U  versus  D ) not affecting any of the players’ business ventures.

First consider the case where all players are ambiguity neutral. If  P  plays an 
uninformative strategy (e.g., sends the same message for all values of the param-
eter), then calculation shows that both agents will respond by playing  b  for sure, 
and  P  would get a payoff of  0 . However,  P  can do better. The following strategy 
profile is an ex  ante equilibrium under ambiguity neutrality:  P  fully reveals the 
payoff-relevant component of the parameter, and the agents play their dominant 
strategies in response. That is: If the payoff-relevant component of the parameter 
is  I ,  P  sends message  α , otherwise  P  sends message  β ; after message  α ,  r  plays  w  
and  c  plays  b , while after message  β ,  r  plays  b  and  c  plays  w . Under this strategy,  P  
gets his maximal payoff of  2  when  I  occurs, but gets  0  when  II  occurs. Why isn’t 
there an equilibrium where  P  does better than this? Any possible improvement must 
involve incentivizing both agents to play  w  with positive probability when  II  occurs. 
However, since the only way to convince  r  to play  w  is to have her put sufficient 
weight on  I  occurring while  c  is convinced to play  w  only if she puts sufficient 
weight on  II  occurring, it is impossible under ambiguity neutrality for  P  to have it 
both ways.

Next reintroduce  r ’s ambiguity aversion (  ϕ r   (x)  = −  e   −11x  ), and 
 consider the  following strategy profile,   σ   ∗  : If the parameter is  IU ,  P  sends 
 message  α ,  otherwise  P  sends message  β ; after either message,  r  plays  w ; after 
 message  α ,  c  plays  b , and after  β ,  c  plays  w . Observe that  P  is making use of the  
payoff-irrelevant component of the parameter. We show that this strategy profile is 
an equilibrium (Proposition 4), and, that the principal does strictly better than if he 
were not allowed to use the  payoff-irrelevant component (Proposition 5). Formally, 
we have the following results.

PROPOSITION 4: The strategy profile   σ   ⁎   is an SEA. In this equilibrium,  P  attains 
his maximum possible payoff for each parameter.

REMARK 3: The strategy profile   σ   ⁎    remains an equilibrium for any   ϕ r     more 
 concave than the one in the example.

Figure 4. Payoffs for Ambiguous Cheap Talk Example

I b w II b w
b 0, 0, 5 0, 0, 1 b 0, 5, 0 0, 5, 1
w 2, 1, 5 2, 2, 2 w 0, 1, 0 2, 2, 2

Figure 5. Beliefs for Ambiguous Cheap Talk Example

3/4 1/4 1/5 4/5

  π  1    I II   π 2    I II

1/3 U 3/12 1/20

3/20

4/20

12/20

1/12

6/12 2/12

1/4 U

2/3 D 3/4 D
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PROPOSITION 5: If  P  were not allowed to make his strategy depend on the pay-
off-irrelevant component of the parameter (i.e.,  U  or  D ), there would be no ex ante 
equilibrium yielding  P  the maximum possible payoff for each parameter.

How does playing the ambiguous communication strategy   σ  P  ⁎    help  P  do better in 
the example? It allows  P  to expose  r  to more ambiguity in equilibrium than  r  would 
be exposed to under the optimal communication strategy that does not make use 
of  U  versus  D . To understand this, first note that the best strategy,    σ ˆ    P  ⁎   , for  P  that does 
not depend on  U  versus  D  is: if  I  then send message  α  with probability  ρ ≈ 0.267 , 
and otherwise send message  β . One can then show that the only ambiguity that is 
relevant to  r ’s payoffs under each of these strategies is that concerning the event 
that the message  α  is sent. This event is assigned probabilities   π k   (I) ρ  under    σ ˆ    P  ⁎   ,  
and   π k   (I)   π k   (U)   under   σ  P  ⁎   . As   π 1   (U)  > ρ >  π 2   (U)  , there is more ambiguity 
under   σ  P  ⁎   . This additional ambiguity about the event where  α  is sent helps  P  provide 
incentives to both agents simultaneously, by moving their effective beliefs further 
apart in the desired directions.

Notice that the only interesting updated beliefs are those of the agents after 
 having observed the message  β  (as following  α  the agents know the payoff-relevant 
component of the parameter is  I ). By Theorem 1, it is sufficient to consider smooth 
rule updated beliefs. Recall that   π 1    puts more weight on  I  than does   π 2   . Since   σ   ⁎   
performs worse for  r  under  I  than under  II ,  r  does worse under   π 1    than under   π 2    
in equilibrium. Therefore, ambiguity aversion leads  r ’s smooth rule updated belief 
to place more weight on   π 1    than Bayesian updated beliefs would. This is crucial 
in ensuring sequential optimality of   σ   ∗   following  β , as  r  placing more weight on  I  
pushes  r  towards playing  w . For  c  it is the reverse, i.e., since   σ   ∗   performs better 
for  c  under  I  than  II ,  c  does better under   π 1    than under   π 2    in equilibrium, and 
 therefore  c ’s smooth rule updated belief places weight on   π 1    that is (weakly) less 
than the Bayesian updated belief. To ensure that both players coordinate on play-
ing  w  after  β , differing updated beliefs are crucial:18 if they shared a common 
updated belief, at least one agent would deviate.

REMARK 4: If agent  r  becomes sufficiently more ambiguity averse, Proposition 5 
no longer holds: in addition to the equilibrium in Proposition 4, there will be an 
equilibrium where  P  conditions his play only on  I  versus  II  and also obtains his 
maximum possible payoff for each parameter. Intuitively, with enough ambigu-
ity aversion on the part of  r , the additional ambiguity generated by conditioning 
on  U  versus  D  is no longer needed.

B. Example: Limit Pricing under Ambiguity

In this section, we use a parametric class of games based on Milgrom and 
Roberts’ (1982) limit pricing entry model with the twist that the entrant has ambi-
guity about the incumbent’s cost and is ambiguity averse. In this  application, SEA 

18 In the context of individual decisions, such belief polarization under ambiguity is explored in Baliga, 
Hanany, and Klibanoff (2013).



VOL. 12 NO. 2 165HANANY ET AL.: INCOMPLETE INFO GAMES AND AMBIGUITY 

refines ex  ante equilibrium and we find conditions under which the entrant’s 
ambiguity aversion makes limit pricing behavior more robust compared to  
ambiguity neutrality.

The game is as follows. An incumbent monopolist has private information con-
cerning its  per unit production costs   c  I    (which is one of   c  L   <  c  M   <  c  H   ). Thus the 
parameter space is  Θ =  {L, M, H}  .19 In the first stage, the incumbent chooses a 
quantity that, together with inverse market demand,  P (Q)  = a − bQ ,  a, b > 0 , 
and   c  I    determines its first period profit. A potential entrant with known  per unit pro-
duction costs   c  E    observes this quantity and decides whether or not to enter at the 
second stage. If no entry is chosen, in the final stage the incumbent remains a 
monopolist and again chooses a quantity while facing the same market demand and 
costs as in the first stage, and the entrant gets a payoff of zero. If entry is chosen, the 
entrant pays a fixed cost  K ≥ 0 , the incumbent’s cost is learned by the entrant, and 
in the final stage the two firms compete in a complete information Cournot duopoly 
with the same market demand. To make this a finite game, suppose a finite set of 
feasible quantities    (including at least the monopoly quantities for each possible 
production cost and the complete information Cournot quantities).20 Denote the 
entrant’s beliefs and ambiguity aversion by  μ  and  ϕ  respectively. The incumbent’s 
beliefs and ambiguity aversion play no role in our analysis.

We construct an SEA strategy profile   σ   LP   where in the first stage, incumbent 
types  M  and  L  pool at the monopoly quantity for  L , and type  H  plays the monopoly 
quantity for  H . Then the entrant enters after observing any quantity strictly below 
the monopoly quantity for  L  and does not enter otherwise, and in the final stage they 
play the monopoly or duopoly quantities accordingly. These strategies involve limit 
pricing by incumbent type  M —it raises its quantity (thus lowering price) in the first 
stage in order to successfully deter entry.

For later reference, we collect here conditions assumed explicitly or implicitly 
already plus restrictions equivalent to all monopoly and duopoly quantities being 
positive.

ASSUMPTION  3:   a, b > 0 ,  K ≥ 0 ,   c  H   >  c  M   >  c  L   ≥ 0 ,   c  E   ≥ 0 ,  a >  c  H   ,  
 a +  c  E   − 2  c  H   > 0  and  a +  c  L   − 2  c  E   > 0 .

The following proposition provides sufficient conditions for   σ   LP   to be not 
only part of an SEA, but also robust to increased ambiguity aversion and belief 
robust. One way in which SEA refines ex ante equilibrium in this example is by 
requiring that the Cournot quantities in the complete information duopoly game 
 following entry are played (there are ex  ante equilibria  violating sequential 
 optimality  that involve the incumbent deterring all entry by threatening to flood 
the market if entry occurs). The robustness results tell us that ambiguity  aversion 

19 The use of at least three costs is necessary to have  nontrivial updating on the equilibrium path under pure 
strategy limit pricing. With only two possible costs, pure limit pricing strategies involve full pooling.

20 The strategies we construct remain SEA strategies no matter what finite set of feasible quantities is assumed 
as long as the monopoly and Cournot quantities for each cost are included.
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can enlarge the  circumstances under which limit pricing can be equilibrium  
behavior.

What is the role of the conditions in the proposition? The first three conditions 
correspond to the following incentives in the game: ICH for I ensures that a type  H  
incumbent does not want to pool with the other types to deter entry, ICM for I 
ensures that a type  M  incumbent does not want to separate from type  L  and stop 
deterring entry, and ICH for E ensures that the entrant strictly wants to enter when 
it is sure the incumbent is type  H . The combination of the two subsequent con-
ditions on the beliefs and the assumption of sufficient ambiguity aversion of the 
entrant ensure that it does not want to enter after observing the limit price (i.e., the 
 monopoly quantity for type  L ).

PROPOSITION 6: Under Assumption 3, the limit pricing strategy profile   σ   LP   is part 
of an SEA if

(ICH for I)    (  
a +  c  E   − 2  c  H  
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some  π ∈ supp (μ)   makes entry conditional on   {L, M}   strictly unprofitable, 
all  π ∈ supp (μ)   can be ordered in the  likelihood-ratio ordering, and the entrant is 
sufficiently ambiguity averse.

Moreover, under the same conditions,   σ   LP   is SEA robust to increased ambiguity 
aversion, and ambiguity aversion makes it SEA belief robust.

The proof uses the formula for an interim belief system  ν  satisfying smooth rule 
consistency provided by Theorem 11 to establish that   ( σ   LP , ν)   is an SEA and uses 
Theorem 9 to establish belief robustness. It follows from the above result that for 
any beliefs such that some  π ∈ supp (μ)   makes entry conditional on   {L, M}   strictly 
unprofitable and all  π ∈ supp (μ)   can be ordered in the  likelihood-ratio ordering 
and that lead an ambiguity neutral entrant to want to enter even after observing the 
limit price, there exists a large enough increase in the entrant’s ambiguity aversion 
such that the entrant would be deterred by the limit price. In this way, increasing 
 ambiguity aversion leads to expansion in the set of beliefs  μ  that can support such a 
limit pricing SEA.

V. Extensions

A. Other Models of Ambiguity Averse Players

We have assumed players have smooth ambiguity preferences (Klibanoff, 
Marinacci, and Mukerji 2005), which proved very convenient in many respects. 
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Can our approach be applied to players with other kinds of ambiguity averse 
 preferences? We suggest how to do so for any preferences that can be represented 
by   W  i   ( U  i     (σ, θ)  θ∈Θ  )  , where   W  i    is a continuous, monotonic, and  quasi-concave 
 aggregator (across the parameters  θ ∈ Θ ) of the vector   U  i     (σ, θ)  θ∈Θ    of  i ’s expected 
utilities of  σ .  Quasi-concavity of   W  i    reflects ambiguity aversion. This is essentially 
what  Cerreia-Vioglio et al. (2011) call Uncertainty Averse preferences, and includes 
smooth ambiguity preferences along with many other models from the literature, 
some of which are recursive. Note that Maxmin Expected Utility (Gilboa and 
Schmeidler 1989) is a subclass of Uncertainty Averse preferences, and if the set of 
probability measures in the Maxmin EU representation is taken to be the (convex 
hull of) the support of   μ i   , then these preferences can be interpreted as a model of an 
infinitely ambiguity averse player with beliefs given by the support of   μ i   .

By modifying our framework to specify   W  i    rather than   μ i    and   ϕ i   , the definition 
of ex ante preferences and equilibrium are easily adapted. However, since such 
 preferences do not necessarily have separately specified beliefs and ambiguity 
 aversion, the notion of an interim belief system would need to be replaced by an 
interim preference system (i.e., an interim preference for each player and infor-
mation set). Given that change, sequential optimality could be defined. Based on 
our proof of Theorem 1, we conjecture the following would be true:  σ  is sequen-
tially optimal if and only if there exists an interim preference system derived by 
updating preferences so that the local measure in some local linear approximation 
of the updated preferences at  σ  is the Bayesian update of the local measure in 
some local linear approximation of the preferences from the previous information 
set at  σ  with respect to which  σ  is sequentially optimal. An analogously modified 
version of Theorem 2 is conjectured to hold as well. Observe that there are two 
key differences from our current results: first, the reference to some local linear 
approximation is needed to reflect the possibility of  non-smooth preferences, and, 
second and more importantly, only updating of local approximations is specified 
in the new result, and not updating of beliefs themselves or even of the preference 
representation as a whole. Specifying an update rule for the preferences them-
selves requires more structure. While smooth rule updating of beliefs generates 
such updating for smooth ambiguity preferences, updates generating the local 
approximations property for, among others, Maxmin EU and Variational prefer-
ences (Maccheroni, Marinacci, and Rustichini 2006) are described in Hanany and 
Klibanoff (2007, 2009). In defining SEA, replacement of smooth rule consistency 
with a consistency condition based on preference updates satisfying a similar local 
approximations updating property would be needed.

Providing results and examples involving comparative statics in ambigu-
ity  aversion and robustness to increased ambiguity aversion and belief robust-
ness would, even to pose the relevant questions properly, require some kind of 
 separate specification and manipulation of ambiguity aversion and of beliefs. 
Here, the smooth ambiguity model, with ambiguity aversion (via   ϕ i   ) and beliefs 
(via   μ i   ) separately and conveniently specified, was especially helpful. We con-
jecture that if one had some other class of Uncertainty Averse preferences where 
these components could be sensibly specified then one could investigate these  
issues.
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B. Implementation of Mixed Actions

Players choose behavior strategies, which, for each type of the player, specify 
a mixture over the available actions at each information set. Suppose at some 
point a player’s strategy specifies a  non-degenerate mixture, and, as can happen 
under  ambiguity aversion, this strategy is strictly better than any specifying a 
pure action. If such a mixture is to be implemented by means of playing pure 
actions  contingent on the outcome of a (possibly existing in the player’s mind 
only)  randomization device, then an additional sequential optimality concern 
beyond that formally reflected in Definition 4 may be relevant. Specifically, after 
the realization of the randomization device is observed, will it be optimal for 
the player to play the  corresponding pure action? A way to ensure this is true is 
to consider behavior strategies that, instead of specifying mixed actions, specify 
pure actions contingent on randomization devices, and extend the specification 
of beliefs and preferences of a player to include points after realization of her 
 randomization device but before she has taken action  contingent on the device, 
and add to Definition 4 the requirement of optimality also at these points. The 
properties of sequential optimality shown and used in this paper would remain 
true under these modifications.

C. Other Extensions

We briefly discuss a final pair of possible extensions. First, in the running 
 example, there is only one payoff-irrelevant component of the parameter. Suppose 
one wanted to allow the players to condition on any payoff-irrelevant  ambiguity 
they wish. This may be (approximately) achieved by enriching the parameter space 
to include many such components, and specify  μ  so that these reflect a rich (but 
finite) collection of ambiguous devices. Such enrichment would allow, for instance, 
 explicitly modeling the large country in the running example as choosing to 
 condition on a payoff-irrelevant component having the “optimal” ambiguity about 
it. Furthermore, our point that the large country will strictly want to condition its 
play on some such ambiguous component is robust to any enrichment of this form. 
The same applies to the ambiguous cheap talk example.

Second, as written, our theory does not allow a player to be uncertain about 
the ambiguity aversion, i.e.,   ϕ i   , of other players. This might be done as follows: 
Introduce a   ϕ i   -type component of the parameter space that   ϕ i    is allowed to depend 
on, and assume that the first thing that happens in the game is that each player learns 
their own   ϕ i   -type. The point immediately after this occurs would be treated as the 
ex ante stage of the game, and the analysis would then proceed exactly as in the 
paper.

VI. Closely Related Literature

To the best of our knowledge, we are the first to propose an equilibrium notion 
for dynamic games with incomplete information that requires sequential  optimality 
while allowing for ambiguity averse preferences. In this section  we relate our 



VOL. 12 NO. 2 169HANANY ET AL.: INCOMPLETE INFO GAMES AND AMBIGUITY 

approach to the few papers which investigate general dynamic games with 
 incomplete  information and ambiguity aversion.21

There have been very few papers investigating general dynamic games with incom-
plete information and ambiguity aversion. The two most closely related to ours are 
Battigalli et al. (2019) and Pahlke (2018). Battigalli et al. (2019) explores a notion of 
 self-confirming equilibrium in dynamic games where  players are  ambiguity averse 
with smooth ambiguity preferences (building on Battigalli et al. (2015), which did 
the same for games in strategic form, and so took a purely ex ante  perspective). 
There are a number of key differences from our approach. First, by building on 
 self-confirming equilibrium they are able to tightly link their solution concept to 
 steady-state learning. In contrast, the  Nash-like and  stronger equilibrium notions we 
build on are not as linked to learning foundations. While the Introduction offered 
some thoughts about how restrictions on learning  opportunities might relate to our 
equilibria, whether and how such ideas can be  formalized and their  lessons for the 
equilibrium concepts we explore is left for future research. Second,  self-confirming 
equilibrium places essentially no restriction on  off-path beliefs or behavior and 
so is not designed to address strategic concerns such as  perfection and credibil-
ity of  off-path threats that are central to our analysis. Third, they limit  attention to 
Bayesian updating of beliefs   μ i   , leading to violations of sequential  optimality even 
at  on-path information sets. Instead of sequential  optimality, they require “unim-
provability” which can be thought of as roughly no profitable  one-stage deviations at 
 on-path information sets.22 Fourth, they assume players choose only pure actions at 
each information set, with any randomization being modeled by explicitly included 
moves of an artificial separate player who is assumed to randomize over actions 
using commonly known probabilities. A  practical consequence of this is that their 
no profitable  one-stage deviations requirement is generally strictly more permissive 
under ambiguity aversion than ours at a given information set because they are only 
checking against a (at most) finite selection of mixed actions (which, recall, under 
ambiguity aversion may be strictly better than any pure action). Though mixed 
strategy profiles appear in their definition of equilibrium, those are mixtures only 
in the population sense of distributions over a population of players in the same 
role who may have some heterogeneity in the pure strategy they play. The main 
result of Battigalli et al. (2015) was a comparative static: the set of  self-confirming 
equilibria was shown to expand as players became more ambiguity averse. A main 
focus in Battigalli et al. (2019) is investigating the extent to which this result carries 
over to dynamic games. They find it does not carry over in general due to possible 
 on-path dynamic inconsistency, but does extend under conditions where this is not 
an issue (see their Section 6). This finding complements our Theorem 8 showing 

21 In addition to the papers we mention when discussing  ex  ante equilibrium in Section  IIA, a number of 
 previous  papers have analyzed incomplete information games with ambiguity sensitive preferences in settings 
 without dynamics, including Salo and Weber (1995); Levin and Ozdenoren (2004); Bose, Ozdenoren, and Pape 
(2006); Chen, Katuščák, and Ozdenoren (2007); Lopomo, Rigotti, and Shannon (2014);  Bodoh-Creed (2012); 
Wolitzky (2016); Ayouni and Koessler (2017); di Tillio, Kos, and Messner (2017); and Auster (2018). Additional 
papers on dynamic games with ambiguity not discussed here include Eichberger and Kelsey (1999, 2004); Dominiak 
and Lee (2017); Muraviev, Riedel, and Sass (2017); and Eichberger, Grant, and Kelsey (2018).

22 In an extension, they explore a rationalizable version of their  self-confirming equilibrium, where rationality 
is defined in terms of unimprovability at all information sets. This yields some restrictions on  off-path behavior.
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that when similarly limiting attention to pure strategies and  pure-strategy deviations, 
the sets of ex ante, sequentially optimal, and SEA profiles expand as players become 
more ambiguity averse (see Section  IIIA). As Battigalli et al. (2015) showed for 
 self-confirming equilibria, this expansion depends crucially on the restriction on 
mixed strategies and becomes equality once the full set of mixtures is considered 
(our Theorem 7).

Subsequent to our paper, Pahlke (2018) explored a notion of sequential equi-
librium in dynamic games where players are ambiguity averse with Recursive 
Maxmin Expected Utility preferences (preferences shown by Epstein and Schneider 
(2003a) to be equivalent to Maxmin Expected Utility (MEU) preferences (Gilboa 
and Schmeidler 1989) together with  prior-by-prior Bayesian updating, where the 
set of priors satisfies a condition known as rectangularity). In Pahlke’s definition of 
a game, a notable  nonstandard aspect is that the specific preferences, even ex ante, 
are not a primitive. Rather, these ex ante preferences for each player  i  are derived 
according to a procedure that generates a rectangular set   Π i   ⊆ Δ (Θ)   for each 
player depending on the (other players’ part of the) strategy profile  σ  under consid-
eration, a set   ⊆ Δ (Θ)   that is a primitive of the game, and the filtration defined 
by player  i ’s information sets. That the   Π i    may vary across players is important in 
ensuring existence of Pahlke’s equilibria when the   Π i    are  nonsingleton, i.e., when 
there is  nontrivial ambiguity. This heterogeneity explains how Pahlke’s approach 
overcomes the specialization of the results of Ellis (2018) to MEU preferences, 
which imply that when  Θ  consists of privately known types for each player and 
there is a common rectangular set of priors across players, ex  ante preferences 
must be ambiguity  neutral.23 We make four observations comparing Pahlke 
(2018)  to our framework and approach when adapted to MEU preferences (see 
Section VA). Fix a game form and payoffs. First, for each   (, σ)  , Pahlke’s analysis 
of whether  σ  is an equilibrium corresponds to checking whether it is so according 
to our approach in the game in which each player  i  has ex ante MEU preferences 
with set of  priors   Π i   . Second, as generally   Π i   ≠  , equilibria Pahlke identifies for 
a given    will  differ from the ones we would identify for that   . Third, since the   Π i    
vary with  σ , Pahlke’s  determination of the set of equilibria given a particular    
involves potentially  analyzing a  different game in our framework for each candi-
date  σ . Fourth, since each generated   Π i    must be rectangular, the strategy profiles 
that are an equilibrium for at least one    according to Pahlke form a subset of those 
that are an  equilibrium according to our approach for at least one assignment of sets 
of priors to each player  i .

The literature also includes papers presenting analysis restricted to specific appli-
cations of dynamic games of incomplete information with ambiguity. These include 
Bose and Daripa (2009); Bose and Renou (2014); Kellner and Le Quement (2017, 
2018); Beauchêne, Li, and Li (2019); Auster and Kellner (2018), and all focus on 
behavior that cannot occur under ambiguity neutrality. Their approach is to assume 

23 Grant, Meneghel, and Tourky (2016, section 5) also provide an example illustrating that in Bayesian games 
with recursive strictly ambiguity averse preferences, when the commonality condition in Ellis (2018) is relaxed, an 
ex ante equilibrium may exist. We observe that the combination of no  off-path information sets in Bayesian games 
and such recursion ensure that any ex ante equilibrium will also be a sequential optimum with respect to the interim 
preferences aggregated in the recursion.
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MEU preferences and  prior-by-prior Bayesian updating and use as an equilibrium 
concept optimality under consistent planning in the spirit of Strotz ( 1955) (see online 
Appendix B4 for a definition). Thus, as was discussed and illustrated in Section IIB, 
the set of equilibria identified by this approach include strategy  profiles that are not 
sequentially optimal, and exclude some or all of the sequentially  optimal strategy 
profiles. In fact, all of the behavior they emphasize violates sequential optimality.

Appendix A: Proofs for Section II and Further Analysis

A. Proofs Related to the Running Example

PROOF OF PROPOSITION 1:
To prove (i), suppose   ϕ 1    and   ϕ 2    are affine. Fix any  σ  such that peace (i.e., 1 and 

2 play  c ) occurs with positive probability. We will show that at least one player has 
a profitable deviation. Denoting the total probability (  ∑ π∈Δ (Θ)   

 
   μ (π) π (θ )   σ 3   (θ )  (a)  ) 

that player 3 assigns to each action  a  by  ρ (a)  , player 1 and 2’s ex ante preferences 
are, respectively, given by

   V  1  (σ) =  σ 1  (c)  σ 2  (c) (4ρ ( f 2)  + 5ρ ( f 1) )  +  (1 −  σ 1  (c)  σ 2  (c))  (6ρ(n) + 10ρ (p2) ) , 

and

    V  2   (σ)  =  σ 1   (c)   σ 2   (c)  (5ρ ( f 2)  + 4ρ ( f 1) )  

 +  (1 −  σ 1   (c)  σ 2   (c) )  (6ρ (n)  + 10 (1 − ρ  (n)  − ρ (p2) ) ) . 

If it is not profitable to deviate to   σ 1   (c)  = 0  for player  1 , then

  6ρ (n)  + 10ρ ( p2)  ≤ 4ρ ( f 2)  + 5 (1 − ρ ( f 2) )  = 5 − ρ ( f 2) ; 

while if it is not profitable to deviate to   σ 2   (c)  = 0  for player  2 , then

  4ρ (n)  + 10ρ ( p2)  ≥ − 5ρ ( f 2)  − 4 (1 − ρ ( f 2) )  + 10 = 6 − ρ ( f 2) , 

a contradiction. Thus, at least one player wants to deviate to playing  d . Observe that 
this argument holds for any common  μ  not just the one specified in the example.

Turning to (ii), fix a strategy profile  σ  defined by   σ 1   (c)  =  σ 2   (c)  = 1  and  
  σ 3   (I )  ( p1)  =  σ 3   (II )  (p2)  =  σ 3   (I )  ( f 2)  =  σ 3   (II )  ( f 1)  = 1 . First, observe 
that any strategy by player 3 is an ex  ante best response, since on the equilib-
rium path 3 receives a payoff of 4 no matter what strategy 3 plays. Second, player  
 i ∈  {1, 2}  , when choosing the probability   λ i    with which to play  c , is ex ante best 
responding if and only if

  1 ∈  arg max  
 λ i  ∈ [0, 1] 

      1 _ 
2
    ϕ i   (4  λ i  )  +   1 _ 

2
    ϕ i   (5  λ i   + 10 (1 −  λ i  ) ) . 
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This is equivalent to

  4  ϕ  i  ′   (4)  − 5  ϕ  i  ′   (5)  ≥ 0 ,

which is

(A1)    
 ϕ  i  ′   (4) 

 _____ 
 ϕ  i  ′   (5) 

   ≥   5 _ 
4
   . 

Observe that by increasing the concavity of   ϕ i    one can increase   ϕ  i  ′   (4)  /  ϕ  i  ′   (5)   as 
much as desired.

Suppose one player is sufficiently ambiguity averse that (A1) is satisfied, but the 
other is not. When is there an ex ante equilibrium yielding peace with probability 1? 
It is necessary to consider more general strategies of player 3 than specified above. 
Again, let  σ  denote the strategy profile and again require   σ 1   (c)  =  σ 2   (c)  = 1 . We 
leave player 3’s strategy flexible. Player 1 is ex ante best responding if and only if

  1 ∈  arg max  
 λ 1  ∈ [0,1] 

      1 _ 
2
    ϕ 1   ( (4  σ 3   (I )  ( f 2)  + 5 (1 −  σ 3   (I )  ( f 2) ) )   λ 1  

 +  (10  σ 3   (I )  ( p2)  + 6  σ 3   (I )  (n) )  (1 −  λ 1  ) )  

 +   1 _ 
2
    ϕ 1   ( (4  σ 3   (II )  ( f 2)  + 5 (1 −  σ 3   (II )  ( f 2) ) )   λ 1  

 +  (10  σ 3   (II )  (p2)  + 6  σ 3   (II )  (n) )  (1 −  λ 1  ) ) . 

This is equivalent to

(A2)   (4 σ 3   (I ) ( f 2)  + 5 (1 −  σ 3   (I )  ( f 2) )  − 10  σ 3   (I )  (p2)  −  6σ 3   (I )  (n) ) 

 ×  ϕ  1  ′   (4 σ 3   (I )  ( f 2)  + 5 (1 −  σ 3   (I )  ( f 2) ) ) 

 +  (4 σ 3   (II )  ( f 2)  + 5 (1 −  σ 3   (II )  ( f 2) )  − 10  σ 3   (II )  (p2)  − 6 σ 3   (II )  (n) )  

 ×  ϕ  1  ′   (4  σ 3   (II )  ( f 2)  + 5 (1 −  σ 3   (II )  ( f 2) ) )  

 ≥ 0. 

Player 2 is ex ante best responding if and only if

 1 ∈  arg max  
 λ 2  ∈ [0,1] 

      1 _ 
2
    ϕ 2   ( (5  σ 3   (I )  ( f 2)  + 4 (1 −  σ 3   (I )  ( f 2) ) )   λ 2  

 +  (10 (1 −  σ 3   (I  )  (n)  −  σ 3   (I )  (p2) )  + 6 σ 3   (I )  (n) )  (1 −  λ 2  ) )  

 +   1 _ 
2
    ϕ 2   ( (5 σ 3   (II )  ( f 2)  + 4 (1 −  σ 3   (II )  ( f 2) ) )   λ 2  

 +  (10 (1 −  σ 3   (II )  (n)  −  σ 3   (II )  (p2) )  + 6 σ 3   (II )  (n) )  (1 −  λ 2  ) ) . 
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This is equivalent to

(A3)   (5 σ 3  (I ) ( f 2)  + 4 (1 −  σ 3  (I ) ( f 2) )  

 − 10 (1 −  σ 3  (I )(n) −  σ 3  (I ) (p2) )  − 6 σ 3  (I )(n)) 

   ×  ϕ  2  ′   (5 σ 3   (I )  ( f 2)  + 4 (1 −  σ 3   (I )  ( f 2) ) )  

 +  (5 σ 3   (II )  ( f 2)  + 4 (1 −  σ 3   (II )  ( f 2) )  

 − 10 (1 −  σ 3   (II )  (n)  −  σ 3   (II )  (p2) )  − 6 σ 3   (II )  (n) ) 

   ×  ϕ  2  ′   (5 σ 3   (II )  ( f 2)  + 4 (1 −  σ 3   (II )  ( f 2) ) )  

 ≥ 0. 

Suppose, for example, that player 2 is not ambiguity averse enough to satisfy 
(A1). If we set   σ 3   (II )  (p2)  =  σ 3   (I )  ( f 2)  =  σ 3   (II)  ( f 1)  = 1  and   σ 3   (I )  (p2)   
= 1 −  σ 3   (I )  (p1)  , then (A2) and (A3) become

   (4 − 10  σ 3   (I )  (p2) )   ϕ  1  ′   (4)  − 5  ϕ  1  ′   (5)  ≥ 0 

and

   (5 − 10 (1 −  σ 3   (I )  (p2) ) )   ϕ  2  ′   (5)  + 4 ϕ  2  ′   (4)  ≥ 0. 

If we set   σ 3   (I )  (p2)  = 0.1 , then even an ambiguity neutral player 2 will have  c  as a 
best response. As long as player 1 has

    
 ϕ  1  ′   (4) 

 ______ 
 ϕ  1  ′   (5) 

   ≥   5 _ 
3
   

then this is an ex ante equilibrium.
Similarly, if player 2 has

    
 ϕ  2  ′   (4) 

 ______ 
 ϕ  2  ′   (5) 

   ≥   5 _ 
3
    ,

then setting   σ 3   (I )  (p1)  =  σ 3   (I )  ( f 2)  =  σ 3   (II )  ( f 1)  = 1  and   σ 3   (II )  (p2)  
= 0.9  gives an ex  ante equilibrium without conditions on 1’s ambiguity  
aversion. ∎

PROOF OF PROPOSITION 2:
Suppose  x > 1 . Following the play of  d  by either 1 or 2, the only best response to 

any updated belief of player 3 is to play  n  with probability 1 as this yields 3 a payoff 
of  x > 1 > 0 . Thus,   σ 3   (I, d)  (n)  =  σ 3   (II, d)  (n)  = 1  in any sequential optimum. 
Given that, both players 1 and 2 expect to get a payoff of 6 if they deviate to  d , which 
is higher than any payoff to playing  c  (i.e., 4 or 5).
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Suppose  x ≤ 0.5  and fix an ex  ante equilibrium  σ  yielding peace with 
 probability 1. We will construct a sequential optimum   ( σ ˆ  , ν)   yielding peace with 
probability  1. Set    σ ˆ   3   (I, d)  (p1)  =  σ 3   (I, d)  (p1)  +  σ 3   (I, d)  (n) /2 ,    σ ˆ   3   (I, d)  (p2)  
=  σ 3   (I, d)  (p2)  +  σ 3   (I, d)  (n) /2 , and    σ ˆ   3   (I, d)  (n)  = 0 , and use the analogous 
construction to determine    σ ˆ   3   (II, d)  . At all other information sets, let   σ ˆ   = σ . 
Observe that   σ ˆ    yields peace with probability 1. We next verify that   σ ˆ    is an ex ante 
equilibrium. Player  3  is trivially ex ante best responding, so it suffices to show 
that 1 and 2 are as well. Since  10 / 2 < 6 , for both parameters  I  and  II , player 
1 and 2’s expected payoff to deviating towards  d  is less under    σ ˆ   3    than under   σ 3   . 
Therefore  c  remains an ex ante best response for both players and   σ ˆ    is an ex ante 
equilibrium. It remains to specify beliefs and check optimality for all players at 
all information sets. Given beliefs satisfying the strong smooth rule using   σ ˆ   , by 
Theorem 2, it is sufficient to check optimality against  one-stage deviations, and 
therefore only at information sets where the player has a  nontrivial move. Begin 
with player 3. Following the play of  c, c , 3 is indifferent among any mixture over  
f 1  and  f 2  and is thus best responding. Following the breakdown of negotiations, 
observe that at either of player 3’s two  nonsingleton information sets the strong 
smooth rule does not restrict 3’s beliefs, and any mixture over actions  p1  and  p2  is 
a best response to some beliefs. Let 3’s respective beliefs at these information sets 
be such that    σ ˆ   3   (I, d)   and    σ ˆ   3   (II, d)   are, respectively, best responses. Next, specify 
beliefs for players 1 and 2 that place probability  1 / 2  on each of the two degenerate  
π  on the corresponding information set. Since these beliefs maintain the ex ante  
μ -weights and there is no change in payoffs compared to the ex ante evaluations, 
these beliefs satisfy the strong smooth rule using   σ ˆ    and playing  c  is a best response 
for 1 and 2 at the information sets where they move because it was an ex ante  
best response.

Suppose  0.5 < x ≤ 1 . Then no  non-degenerate mixture over  p1  and  p2  can 
be a best response at either of player 3’s  non-singleton information sets because 
it would be dominated by replacing one of them in the mixture by  n . If players 1 
and 2 are both sufficiently ambiguity averse so that (A1) is satisfied, the proof of 
part (ii) of Proposition 1 shows that there is an ex ante equilibrium yielding peace 
with probability 1 in which player 3 uses only degenerate mixtures of  p1  and  p2 . 
The arguments in the  x ≤ 0.5  case applied to this ex ante equilibrium show that it 
is also sequentially optimal. ∎

PROOF OF REMARK 1:
Observe that under  0.5 < x ≤ 1 , player 3 is limited to mixtures of  p1  and  n   

or  p2  and  n  in order to be best responding. Inequalities (A2) and (A3) are  necessary 
for players 1 and 2 to be best responding. We now show that, under (A3), the 
 maximal value of the  left-hand side of (A2) is negative, contradicting (A2). Since 
the payoffs do not depend on the parameter ( I  or  II  ), we may assume without loss of 
generality that   σ 3   (I)  ( f 2)  ≥  σ 3   (II )  ( f 2)  . Fixing   σ 3   (I )  ( f 2)   and   σ 3   (II )  ( f 2)  , since 
the  coefficients of   σ 3   (I )  (n)  ,   σ 3   (I )  ( p2)  ,   σ 3   (II )  (n)  , and   σ 3   (II )  (p2)   are negative 
in (A2) and positive in (A3), the maximal value of the  left-hand side of (A2) is 
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obtained when (A3) is binding. This equality under ambiguity neutrality of player 2 
is equivalent to

  σ 3   (II )  (p2)  

 =   
12 −  σ 3   (I )  ( f 2)  −  σ 3   (II )  ( f 2)  − 4  σ 3   (I )  (n)  − 10  σ 3   (I )  (p2)  − 4  σ 3   (II )  (n) 

      ___________________________________________________________   
10

   . 

Substituting using this and   ϕ 1   (x)  = −  e   −xln (5/3)   , the  left-hand side of (A2) becomes 
(up to multiplication by a positive constant)

   (5 −  σ 3   (I )  ( f 2) )    (  3 _ 
5
  )    

5− σ 3   (I )  ( f 2) 

  +  (− 7 +  σ 3   (I )  ( f 2) )    (  3 _ 
5
  )    

5− σ 3   (II )  ( f 2) 

  

  −  σ 3   (I )  (n)  [6   (  3 _ 
5
  )    

5− σ 3   (I )  ( f 2) 

  − 4   (  3 _ 
5
  )    

5− σ 3   (II)  ( f 2) 

 ]  

  −  σ 3   (I )  (p2)  [10  (  3 _ 
5
  )    

5− σ 3   (I )  ( f 2) 

  − 10  (  3 _ 
5
  )    

5− σ 3   (II )  ( f 2) 

 ]  − 2 σ 3   (II )  (n)   (  3 _ 
5
  )    

5− σ 3   (II )  ( f 2) 

 . 

To maximize this expression, which is linear in   σ 3   (I )  (n)  , 
  σ 3   (I )  (p2)  , and   σ 3   (II )  (n)   with negative coefficients, the three variables 
must be as low as possible. Therefore   σ 3   (II )  (n)  = 0  and   σ 3   (II)  (p2)  = 1 ,  
implying   σ 3   (I )  (n)  =  (1/2)  −  ( σ 3   (I )  ( f 2)  +  σ 3   (II )  ( f 2)  + 10  σ 3   (I )  (p2) ) /4  and 
  σ 3   (I )  (p1)  =  (1/2)  +  ( σ 3   (I )  ( f 2)  +  σ 3   (II )  ( f 2)  + 6  σ 3   (I )  (p2) ) /4 . Since  
  σ 3   (I )  (p2)  > 0  implies   σ 3   (I )  (p1)  > 0  , the restriction to mixtures of  p1  and  n  or  
p2  and  n  implies    σ 3   (I )  (p2)  = 0 . Simplifying using these values yields

    
4 +  σ 3  (I )( f 2) + 3 σ 3  (II )( f 2)

   _______________________  
2
     (  3 _ 

5
  )    

5− σ 3  (I )( f 2)
  −  (5 +  σ 3  (II )( f 2))    (  3 _ 

5
  )    

5− σ 3  (II )( f 2)
  . 

This expression is increasing in   σ 3   (I )  ( f 2)  , and under   σ 3   (I )  ( f 2)  = 1 , is decreas-
ing in   σ 3   (II )  ( f 2)  , thus it is maximized when   σ 3   (I )  ( f 2)  = 1  and   σ 3   (II )  ( f 2)  = 0   
at the value of  − 81 / 1,250 . Therefore (A2) and (A3) cannot be simultaneously 
satisfied.

The  x ≤ 0.5  statement follows from the proof of Proposition 2. ∎

PROOF OF PROPOSITION 3:
Fix an ex ante equilibrium  σ  yielding peace with probability 1. Suppose  x > 0.5 , 

and that an SEA yielding peace with probability  1  exists. Theorem 11 implies that 
formula (A12) is necessary for smooth rule consistency. For player 3, since 
any  σ  yielding peace with probability 1 has    p –   −i,  σ −i     (I, d | I)  =   p –   −i,  σ −i     (II, d | II)   and  
   p –   −i,  σ −i     (I, c, d | I)  =   p –   −i,  σ −i     (II, c, d | II)   irrespective of the sequence   σ   k   of 
 completely mixed strategy profiles chosen to converge to  σ , formula (A12) 
implies that beliefs are the same at both information sets where 3 has a  nontrivial 
move. Furthermore,  x > 0.5  implies that given such beliefs, either all of 3’s 
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best responses never involve  p1  or all of them never involve  p2 . In the former  
case, player 1 will play  d  with probability 1, and in the latter case, player 2 will 
play  d  with  probability 1. This contradicts the existence of such an SEA.

Suppose  x ≤ 0.5 . We will construct an SEA   ( σ ˆ  , ν)   yielding peace with  
 probability  1. Construct   σ ˆ    as in the part of the proof of Proposition 2 that  
assumes  x ≤ 0.5 . By the argument there,   σ ˆ    is an ex  ante  equilibrium. It 
remains to  specify  an  interim belief system  satisfying smooth rule  consistency 
and check  optimality  for all players and  information sets. Consider 
any  sequence    σ ˆ     k    of  completely  mixed strategies  converging to   σ ˆ    such that, for 
 players 1 and 2,    σ ˆ    1  

k   (c)  = 1 −   1 _ 
k + 1

    ,    σ ˆ    1  
k   (d)  =   1 _ 

k + 1
    and    σ ˆ    2  

k   (c)  = 1 −   1 _ 
k + 1

    ,  
   σ ˆ    2  

k   (d)  =   1 _ 
k + 1

   . By Lemma 4 and Theorem  11, formula (A12) identifies an 

interim  belief system   ν ˆ     satisfying smooth rule consistency. By Theorem  3, for 
optimality, it is sufficient to check against  one-stage deviations, and therefore only 
at information sets where the player has a  non-trivial move. Begin with player 3. 
Following the play of  c, c , 3 is indifferent among any mixture over  f 1  and  f 2  and 
is thus best responding. Off the equilibrium path, observe that at either of player 3’s 
two information sets where 3 has a  nontrivial move, since  x ≤ 0.5 , any mixture 
over actions  p1  and  p2  is a best response to beliefs placing all weight on a  half-half 
measure over the two elements of the information set. At either of these informa-

tion sets, since    p –   −i,  σ −i     ( h   t  |  h   0 )  =  lim k→∞     
  1 _ 
k + 1

  
 _ 

  1 _ 
k + 1

   +   k _ 
  (k + 1)    2 

  
   =   1 _ 2  ,   ν ˆ   3,  I i      is degenerate on a 

 half-half measure over the two elements of the information set. Therefore    σ ˆ   3   (I, d)   
and    σ ˆ   3   (II, d)   are, respectively, best responses given    ν ˆ   3,  I i      at those information sets. 
Next turn to players 1 and 2. Since no uncertainty resolves for either player before 
they make their respective  nontrivial move, their beliefs    ν ˆ   i,  I i      place  probability  1 / 2  
on each of the two degenerate  π  on the corresponding information set, where 
the  1 / 2  is inherited from  μ . Therefore playing  c  is a best response given    ν ˆ   i,  I i      
at those  information sets for 1 and 2 because it was an ex ante best response. ∎

B. Proofs of Results in Section IIB

We next state and prove a key lemma on the preservation of optimality under 
smooth rule updating:

DEFINITION 11 (Reachability): Player  i  views information 
set   I  i   ⊈ Θ  as reachable from  information set   I  i  

−1   given  σ  and  ν  if  
  ∑  h   s ( I i  )  ∈ I i    

 
     ∑  π ˆ  ∈Δ ( I  i  

−1 )   
 
     p  σ   ( h   s ( I i  )   |  h   s ( I i  ) −1 )  π ˆ   ( h   s ( I i  ) −1 )   ν i,  I  i  −1    ( π ˆ  )  > 0 .

LEMMA 1: Fix a game  Γ , a   (σ, ν)  , such that  σ  is an ex  ante equilibrium,  
a player  i  and an information set   I  i    such that either   I  i   ⊆ Θ  or  i  views   I  i    as 
 reachable  from   I  i  

−1   given  σ  and  ν . If   ν i,  I i      is derived from   ν i,  I  i  −1     (or, if   I  i   ⊆ Θ ,  
from   μ i    ) via the smooth rule using  σ  and, for all   σ  i  ′   ∈  Σ i   ,

   V  i,  I  i  −1    (σ)  ≥  V  i,  I  i  −1    ( σ  i  ′   ,  σ −i  ) , 
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(or, if   I  i   ⊆ Θ , given ex ante optimality), then, for all   σ  i  ′   ∈  Σ i   ,

   V  i,  I i     (σ)  ≥  V  i,  I i     ( σ  i  ′  ,  σ −i  ) . 

PROOF OF LEMMA 1:
The inequalities   V  i,  I i     (σ)  ≥  V  i,  I i     ( σ  i  ′  ,  σ −i  )   (respectively,   V  i   (σ)  ≥  V  i   ( σ  i  ′  ,  σ −i  )  )  

for all   σ  i  ′    are equivalent to the condition that   σ  i  ′   =  σ i      maximizes (5) 
( respectively,   σ  i  ′   =  σ i    maximizes (2)).

We want to show that   V  i, I  i     (σ)  ≥  V  i, I  i     ( σ  i  ′  ,  σ −i  )   for all   σ  i  ′   . By the above, it is suffi-
cient to show that   σ  i  ′   =  σ i    maximizes (5).

Let  t = s ( I  i  )  . Consider the case where  t > 0  (the case where  t = 0  is similar, 
using (2) instead of (A4), and is omitted). By assumption in the statement of the 
lemma,   V  i,  I  i  −1    (σ)  ≥  V  i,  I  i  −1    ( σ  i  ′  ,  σ −i  )   for all   σ  i  ′   ∈  Σ i   . As in (5), this is equivalent to 
the condition that   σ  i  ′   =  σ i    maximizes

(A4)    ∑ 
h∣ h   t−1 ∈ I  i  −1 

    u  i   (h)   p  i,  σ  i  ′     (h |  h   t−1 )   q    (σ, ν) , i,  I  i  
−1   (h) . 

Notice that since  i ’s strategy is a function only of  i ’s information sets, and, by perfect 
recall,   R  i   ( h   t )  =  R   i   ( I  i  )   for any  h  such that   h   t  ∈  I  i   ,   p  i,  σ  i  ′     ( h   t  |  h   t−1 )   is the same for any 
such  h . Thus, the objective function in (A4) can be equivalently written as

    ∑ 
 
h∣ h   t−1 ∈ I  i  −1 ,

  
 h   t ∉ I  i  

  

    u  i   (h)   p  i,  σ  i  ′     (h |  h   t−1 )   q    (σ, ν) , i,  I  i  
−1   (h)  

    +  p  i,  σ  i  ′     (  h 
–
    t  |   h 

–
    t−1 )   ∑ 

h∣ h   t ∈ I  i  
    u  i   (h)   p  i,  σ  i  ′     (h |  h   t )   q    (σ, ν) , i,  I  i  

−1   (h)  

for any   h 
–
   such that    h 

–
    t  ∈  I  i   . The advantage of doing so is making clear that only the 

term

(A5)    ∑ 
h∣ h   t ∈ I  i  

    u  i   (h)   p  i,  σ  i  ′     (h |  h   t )   q    (σ, ν) , i,  I  i  
−1   (h)  

is affected by the specification of   σ  i  ′    from   I  i    onward and no other part of   σ  i  ′    affects 
(A5). Therefore, since reachability implies   p  i,  σ  i  ′     (  h 

–
    t  |   h 

–
    t−1 )  > 0 ,   σ i    maximizes (A4) 

implies that   σ i    maximizes (A5). For that to imply   σ i    maximizes (5), it is sufficient to 
show that   q    (σ, ν) , i,  I i    (h)  ∝  q    (σ, ν) , i,  I  i  

−1   (h)   holds for   {h ∣  h   t  ∈  I  i  }  . This proportionality 
may be shown by using the local measure definition (6), applying the smooth rule 
to substitute for   ν i,  I i     (π)   for all  π ∈ Δ ( I  i  )   and then using the expression for    π ˆ    I i      and 
cancelling terms. ∎

THEOREM 10: Fix a game  Γ . Suppose  σ  is an ex ante equilibrium and, for each 
player  i  and each information set   I  i   ⊈ Θ ,   ∑  h   s ( I i  )  ∈ I i    

 
      p  σ   ( h   s ( I i  )   |  h   s ( I i  ) −1 )  > 0 . Then,  

 σ  is sequentially optimal.
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PROOF OF THEOREM 10:
By ex  ante optimality of  σ , (7) in the definition of sequential optimality is  

satisfied. Since   ∑  h   s ( I i  )  ∈ I i    
 
     p  σ   ( h   s ( I i  )   |  h   s ( I i  ) −1 )  > 0  for all   I  i   ⊈ Θ , recursive substitution 

in the smooth rule formula using  σ  starting from   I  i   ⊆ Θ  implies that  i  views   I  i    as 
reachable from   I  i  

−1   given  σ  and any  ν  satisfying the smooth rule using  σ . Therefore, 
by Lemma 1, (8) in the definition of sequential optimality is satisfied for all  
 i  and   I  i   . ∎

PROOF OF THEOREM 1:
The if direction follows by definition. We show the only if direction. Suppose   

(σ, ν)   is sequentially optimal. We show that   (σ,  ν ˆ  )  , where, for all  i ,   I  i   , if   I  i   ⊆ Θ  
or if  i  views   I  i    as reachable from   I  i  

−1   given  σ  and  ν ,    ν ˆ   i,  I i      is derived via the smooth 
rule, and    ν ˆ   i,  I i     =  ν i,  I i      everywhere else, is sequentially optimal. By construction,  
  ν ˆ    satisfies the smooth rule using  σ  except, possibly, for   I  i    not viewed as reach-
able from   I  i  

−1   given  σ  and  ν . However, from the definition of the smooth rule  
(Definition 5), observe that it is exactly in such cases where the smooth rule allows 
any updated beliefs. Thus   ν ˆ    satisfies the smooth rule using  σ . Since   ν ˆ    does not 
enter into the ex ante function   V  i   , the fact that   (σ, ν)   is sequentially optimal directly  
implies that   V  i   (σ)  ≥  V  i   ( σ  i  ′  ,  σ −i  )   for all   σ  i  ′   ∈  Σ i   . To see that   (σ,  ν ˆ  )    satisfies the 
optimality conditions   V  i,  I i     (σ)  ≥  V  i,  I i     ( σ  i  ′  ,  σ −i  )   for all   σ  i  ′   ∈  Σ i   , observe that  
(i) where    ν ˆ   i,  I i     =  ν i,  I i     , it directly inherits this from   (σ, ν)   and (ii)  everywhere 
else, Lemma 1 shows that smooth rule updating ensures the required  
optimality. ∎

PROOF OF THEOREM 2:
The only if direction follows by definition. For the if direction, suppose  ν  is an 

interim belief system satisfying the strong smooth rule using  σ  such that   (σ, ν)   
has no profitable  one-stage deviations. First, for each player  i , observe that  having 
no profitable  one-stage deviations implies optimality of   σ i     according to   V  i,  I i      for 
all   I  i   ∈    i  

T  . Proceed by induction on the stage  t . Fix any  t  such that  0 < t ≤ T , 
and suppose that, for each player  i ,   σ i    is optimal according to   V  i,  I i      for all   I  i   ∈    i  

t  . 
We claim that, for each player  i ,   σ i    is optimal according to   V  i,  I i      for all   I  i   ∈    i  

t−1  .  
The argument for this is as follows. Fix a player  i  and   I  i   ∈    i  

t−1  . Consider any 
 strategy   σ  i  ′    for player  i . For any   J  i   ∈    i  

t  , the optimality of   σ i    according to   V  i,  J i       
implies (see (5))

(A6)    ∑ 
h∣ h   t ∈ J  i  

    u  i   (h)   p  i,  σ i     (h |  h   t )   q    (σ, ν) , i,  J  i    (h)  ≥   ∑ 
h∣ h   t ∈ J  i  

    u  i   (h)   p  i,  σ  i  ′     (h |  h   t )   q    (σ, ν) , i,  J  i    (h) . 

Since  ν  satisfies strong smooth rule updating using  σ , for all such   J  i    for  
which   I  i   =  J  i  

−1   and   ∑  h   t ∈ J i    
 
     ∑  π ˆ  ∈Δ ( I i  )   

 
     p  −i,  σ −i     ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 )  ν i,  I i     ( π ˆ  )  > 0 ,  

  q    (σ, ν) , i,   J i    (h)  ∝  q    (σ, ν) , i,  I i    (h)   holds for   {h ∣  h   t  ∈  J  i  }  . This proportionality 
 follows from using the local measure definition (6), applying the strong smooth 
rule  iteratively to substitute for   ν i,  I i      and simplifying. After substituting in (A6) 
for   q    (σ, ν) , i,  J  i    ,  cancelling the constant of proportionality, and multiplying by  
  p  i,  σ  i  ′     ( h   t  |  h   t−1 )  , which is constant for any  h  such that   h   t  ∈  J  i    because  i ’s strategy is a 
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function only of  i ’s information sets and, due to perfect recall,   R  i   ( h   t )  =  R  i   ( J  i  )   for 
any  h  such that   h   t  ∈  J  i   , (A6) becomes

(A7)    ∑ 
h∣ h   t ∈ J i  

    u  i   (h)   p  i,  σ  i  ′     ( h   t  |  h   t−1 )   p  i,  σ i     (h |  h   t )   q    (σ, ν) , i,  I i    (h)  

   ≥   ∑ 
h∣ h   t ∈ J i  

    u  i   (h)   p  i,  σ  i  ′     ( h   t  |  h   t−1 )   p  i,  σ  i  ′     (h |  h   t )   q    (σ, ν) , i,  I i    (h)  

   =   ∑ 
h∣ h   t ∈ J i  

    u  i   (h)   p  i,  σ  i  ′     (h |  h   t−1 )   q    (σ, ν) , i,  I i    (h) . 

If   I  i   =  J  i  
−1   but   ∑  h   t ∈ J i    

 
     ∑  π ˆ  ∈Δ ( I i  )   

 
    p  −i,  σ −i     ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 )   ν i,  I i     ( π ˆ  )  = 0 , then  

  q    (σ, ν) , i,  I  i    (h)  = 0  for all  h  with   h   t  ∈  J  i   . Thus, summing (A7) for all   J  i   ∈    i  
t   for 

which   I  i   =  J  i  
−1   and   ∑  h   t ∈ J  i    

 
     ∑  π ˆ  ∈Δ ( I  i  )   

 
    p  −i,  σ −i     ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 )   ν i,  I i     ( π ˆ  )  > 0  is the 

same as summing for all   J  i   ∈    i  
t   such that   J  i  

−1  =  I  i   , yielding:

(A8)    ∑ 
h∣ h   t−1 ∈ I i  

    u  i   (h)   p  i,  σ  i  ′     ( h   t  |  h   t−1 )   p  i,  σ i     (h |  h   t )   q    (σ, ν) , i,  I i    (h)  

   ≥   ∑ 
h∣ h   t−1 ∈ I i  

    u  i   (h)   p  i,  σ  i  ′     (h |  h   t−1 )   q    (σ, ν) , i,  I i    (h) . 

The absence of profitable  one-stage deviations implies   σ i    is optimal according to   V  i,  I i      
among all strategies deviating only at   I  i   . By (A6) applied to   I  i    and restricted to such 
deviations,

(A9)    ∑ 
h∣ h   t−1 ∈ I i  

    u  i   (h)   p  i,  σ i     (h |  h   t−1 )   q    (σ, ν) , i,  I i    (h)  

   ≥   ∑ 
h∣ h   t−1 ∈ I i  

    u  i   (h)   p  i,  σ  i  ′     ( h   t  |  h   t−1 )   p  i,  σ i     (h |  h   t )   q    (σ, ν) , i,  I i    (h) . 

Combining (A9) and (A8) implies

(A10)    ∑ 
h∣ h   t−1 ∈ I i  

    u  i   (h)  p  i,  σ i     (h |  h   t−1 )  q    (σ, ν) , i,  I i    (h)  ≥   ∑ 
h∣ h   t−1 ∈ I i  

    u  i   (h)  p  i,  σ  i  ′     (h |  h   t−1 )  q    (σ, ν) , i,  I i    (h) . 

Since (A10) holds for any   σ  i  ′   , it is the same as (A6) with  t − 1  in the role of  t   
and   I  i    in the role of   J  i   . Therefore   σ i    is optimal according to   V  i, I  i     . Since this conclu-
sion holds for any   I  i   ∈    i  

t−1  , the induction step is completed. It follows that   (σ, ν)    
satisfies the optimality conditions (8) in the definition of sequentially optimal.

It remains to show that  σ  also satisfies the ex ante optimality conditions (7). Since  ν  
satisfies smooth rule updating using  σ , for all   I  i   ⊆ Θ ,   q    (σ, ν) , i,  I i    (h)  ∝  q    (σ,  μ i  ) , i  (h)   
holds for   {h ∣  h   0  ∈  I  i  }  . Using this to substitute for   q    (σ, ν) , i,  I  i     in (A10) with  t = 1 , 
cancelling the constant of proportionality and summing for all   I  i   , yields:

(A11)    ∑ 
h
      u  i   (h)   p  i,  σ i     (h |  h   0 )   q    (σ,  μ i  ) , i  (h)  ≥  ∑ 

h
      u  i   (h)   p  i,  σ  i  ′     (h |  h   0 )   q    (σ,  μ i  ) , i  (h) . 
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Since (A11) holds for any   σ  i  ′   ,  σ  maximizes (2), which is equivalent to the ex ante 
optimality condition (7). ∎

PROOF OF COROLLARY 1:
Assume ambiguity neutrality. From Theorem 1 and the fact that under 

 ambiguity neutrality the smooth rule specializes to Bayes’ rule,  σ  is sequentially 
optimal if and only if there exists an interim belief system   ν ˆ    satisfying Bayes’ 
rule such that   (σ,  ν ˆ  )   is sequentially optimal. Sequential optimality is sequential 
 rationality plus ex ante equilibrium, immediately implying the only if direction of 
the corollary. To show the if direction, repeat the argument in the last paragraph of 
the proof of Theorem 2 showing that, for each  i , optimality of   σ i    at all   I  i   ⊆ Θ  using 
smooth rule updated beliefs implies ex ante optimality of   σ i   . ∎

C. Proofs of Results in Section IIC

LEMMA 2: If   (σ, ν)   satisfies smooth rule consistency, then  ν  satisfies the strong 
smooth rule using  σ .

PROOF OF LEMMA 2:
By definition of smooth rule consistency, there exists a sequence of 

completely mixed strategy profiles    { σ   k }   k=1  
∞   , with   lim k→∞    σ   k  = σ , such 

that  ν =  lim k→∞    ν   k  , where each   ν   k   is the interim belief system satisfying the  

smooth rule using   σ   k  . Since   ∑  h   s ( I i  )  ∈ I i    
 
     p   σ   k    ( h   s ( I i  )   |  h   s ( I i  ) −1 )  > 0  for all  

  I  i   ⊈ Θ ,  recursive substitution in the smooth rule formula using   σ   k   starting 
from   I  i   ⊆ Θ  implies that, for any  k ,  i  views   I  i    as reachable from   I  i  

−1   given   σ   k   
and   ν   k   and so the formulas (9) and (10) hold for all   I  i   . For any player  i  and   I  i   , if 
either   I  i   ⊆ Θ  or   ∑  h   t ∈ I i    

 
    ∑  π ˆ  ∈Δ ( I  i  

−1 )   
 
     p  −i,  σ −i     ( h   t  |  h   t−1 )  π ˆ   ( h   t−1 )   ν i,  I  i  −1    ( π ˆ  )  > 0 , then, by 

continuity in the strategy profile of the formulas (9) and (10),  ν  satisfies the strong 
smooth rule using  σ  at such information sets. Finally, notice that at all remaining 
information sets,  ν  trivially satisfies the strong smooth rule given  σ  since this rule 
does not restrict beliefs there. ∎

PROOF OF THEOREM 3:
One direction is by definition. For the other direction it is enough to show that if   

(σ, ν)   has no profitable  one-stage deviations and satisfies smooth rule  consistency 
then   (σ, ν)   is sequentially optimal. This follows directly from Lemma 2 and 
Theorem 2. ∎

PROOF OF THEOREM 4:
Fix a sequence   ε   k  =   ( ε  I  

k )  I∈ ∪ i∈N    i      of strictly positive vectors of dimension  
  | ∪ i∈N     i  |  , converging in the  sup-norm to  0  and such that   ε   I  i    

k  ≤ 1/ |  A i   ( I i  ) |   for all play-

ers  i  and information sets   I  i   . For any  k , let   Γ   k   be the restriction of the game  Γ  defined 
such that the set of feasible strategy profiles is the set of all completely mixed   σ   k   
satisfying   σ  i  

k  ( I  i  )  ( a  i  )  ≥  ε   I  i    
k   for all  i ,   I  i   , and actions   a  i   ∈  A  i   ( I  i  )  . Consider the agent 
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normal form   G   k   of the game   Γ   k   (see, e.g., Myerson 1991, 61). Since the payoff 
functions are concave and the set of strategies of each player in   G   k   is  nonempty, 
compact and convex,   G   k   has an ex ante equilibrium by Glicksberg (1952). Let    σ ˆ     k   
be the strategy profile in the game   Γ   k   corresponding to this equilibrium. Then    σ ˆ     k   
is an ex ante equilibrium of   Γ   k  . By Theorem 10, since all information sets are on 
the equilibrium path, there exists an interim belief system   ν   k   such that   (  σ ˆ     k ,  ν   k )   is 

sequentially optimal. By Theorem 1, there exists an interim belief system    ν ˆ     k   sat-
isfying the smooth rule using    σ ˆ     k   such that   (  σ ˆ     k ,   ν ˆ     k )   is a sequential optimum of   Γ   k  . 

By compactness of the set of strategy profiles, the sequence    σ ˆ     k   has a convergent 
 sub-sequence, the limit of which is denoted by   σ ˆ   . By continuity in the strategy pro-
file of the smooth rule formula and compactness of the set of interim belief systems, 
an associated  sub-sequence of    ν ˆ     k   converges to a limit interim belief system which 
we denote by   ν ˆ   . By continuity of the payoff functions,   σ ˆ    is an ex ante equilibrium 
of  Γ . Given any information set   I  i    and continuation strategy    σ ̃    i  

 I  i     of player  i  in  Γ , 
let    σ ̃    i  

k,  I i     be a feasible strategy in   Γ   k   for this player that is closest (in the  sup-norm) 
to    σ ̃    i  

 I i    . Since, by sequential optimality of   (  σ ˆ     k ,   ν ˆ     k )   for each  k ,    σ ˆ    i  
k,  I i     is weakly better 

than    σ ̃    i  
k, I  i     for player  i  given belief    ν ˆ    i, I  i    

k   , and since, along the  sub-sequence,    σ ̃    i  
k,  I i     converges 

to    σ ̃    i  
 I i     and    ν ˆ    i,  I i    

k    converges to    ν ˆ   i,  I i     , continuity of the payoff functions implies that    σ ˆ    i  
 I i     

is weakly better than    σ ̃    i  
 I i     for this player given belief    ν ˆ   i,  I i     . Therefore   ( σ ˆ  ,  ν ˆ  )   satisfies 

sequential optimality. Finally, observe that   ( σ ˆ  ,  ν ˆ  )   satisfies smooth rule  consistency  
(since it is explicitly constructed as the limit of an appropriate sequence).  
Therefore   ( σ ˆ  ,  ν ˆ  )   is an SEA of  Γ . ∎

Our next result provides an explicit formula for interim belief systems satisfying 
smooth rule consistency. This smooth  rule-like formula, which will be generally 
useful when working with SEA, uses a limit of likelihoods of the partial histories in 
an information set given  θ  and   σ  −i  

k   . Before stating the result, we need some notation 
and a lemma.

NOTATION 3: Let    p –   −i, σ −i     ( h   t  |  h   0 )   denote   lim k→∞     
 p  −i,  σ  −i  

k     ( h   t  |  h   0 ) 
  _____________  

 ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     0 ) 
   , where  t = s ( I  i  )  .  

For each information set   I  i   , consider the smallest  0 ≤ r ≤ t  such that there 
exists  h ∈ H  and    I ˆ   i    for which   h   t  ∈  I  i   ,   h   r  ∈   I ˆ   i   , and   p  σ   ( h   t  |  h   r )  > 0 . This generates 

an    I ˆ   i    for each   I  i    . Let    i, σ    denote the set of all these    I ˆ   i    that are  nonsingleton and 

for which    I ˆ   i   ⊈ Θ .

The next lemma shows that existence of    p –   −i,  σ −i     ( h   t  |  h   0 )   need be checked only at 
information sets in    i, σ   .

LEMMA 3: Fix a game  Γ , a strategy profile  σ  and a sequence of completely 

mixed strategy profiles    { σ   k }   k=1  
∞    such that   lim k→∞    σ   k  = σ . If    p –   −i,  σ −i     ( h   t  |  h   0 )   exists 
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for each player  i  and each   h   t  ∈  I  i   ∈   i, σ   , then    p –   −i,  σ −i     ( h   t  |  h   0 )   exists for each  
 i  and   h   t  ∈  I  i   ∈   i    .

PROOF OF LEMMA 3:
If   I  i    is a singleton,    p –   −i,  σ −i     ( h   t  |  h   0 )  = 1 . If   I  i   ⊈ Θ , consider the    I ˆ   i   ∈   i, σ    

 corresponding to   I  i   , and if   I  i   ⊆ Θ , set    I ˆ   i   =  I  i   . Let  r = s (  I ˆ   i  )  . Observe that for 
all   h   t  ∈  I  i   ,

    p –   −i,  σ −i     ( h   t  |  h   0 )  =   lim  
k→∞

     

 p  −i,  σ  −i  
k     ( h   t  |  h   r )    

 p  −i,  σ  −i  
k     ( h   r  |  h   0 ) 

  ______________  
 ∑   h ̃     r ∈  I ˆ   i    

 
     p  −i,  σ  −i  

k     (  h ̃     r  |   h ̃     0 ) 
  

   ______________________________   

 ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     r )    
 p  −i,  σ  −i  

k     (  h ˆ     r  |   h ˆ     0 ) 
  ______________  

 ∑   h ̃     r ∈  I ˆ   i    
 
     p  −i,  σ  −i  

k     (  h ̃     r  |   h ̃     0 ) 
  

   

 =   
 p  −i,  σ −i     ( h   t  |  h   r )    p –   −i,  σ −i     ( h   r  |  h   0 ) 

   ___________________________   
 ∑   h ˆ     t ∈ I i    

 
     p  −i,  σ −i     (  h ˆ     t  |   h ˆ     r )    p –   −i,  σ −i     (  h ˆ     r  |   h ˆ     0 ) 

   , 

where the last equality follows since   ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ −i     (  h ˆ     t  |   h ˆ     r )  > 0  and    p –   −i,  σ −i     ( h   r  |  h   0 )   

exists for all   h   r  ∈   I ˆ   i    (either by assumption since    I ˆ   i   ∈   i, σ   , or, if    I ˆ   i   ⊆ Θ , because 
it is constant in  k ). Thus   p –    − i,  σ −i      ( h   t  |  h   0 )      exists. ∎

THEOREM 11. Fix a game  Γ , a strategy profile  σ  and a sequence of completely 
mixed strategy profiles    { σ   k }   k=1  

∞    such that   lim k→∞    σ   k  = σ . Then   (σ, ν)   satisfies 

smooth rule consistency using    { σ   k }   k=1  
∞    if and only if, for    { σ   k }   k=1  

∞   ,    p –   −i, σ −i     ( h   t  |  h   0 )   
exists for each player  i  and each   h   t  ∈  I  i   ∈   i, σ   , and  ν  satisfies the formula

(A12)    ν i,  I i     (π)  ∝   ∑ 
 π ˆ  ∈Δ (Θ) ∣   π ˆ   

–
    I i    =π 

     
 ϕ  i  ′   ( ∑ h∈H  

 
     u  i   (h)   p  σ   (h |  h   0 )  π ˆ   ( h   0 ) ) 

   __________________________   
 ϕ  i  ′   ( ∑ h∣ h   t ∈ I i    

 
     u  i   (h)   p  σ   (h |  h   t ) π ( h   t ) ) 

   

  ×  (  ∑ 
 h   t ∈ I i  

     p –   −i,  σ −i     ( h   t  |  h   0 )  π ˆ   ( h   0 ) )   μ i   ( π ˆ  )  

for each  i  and   I  i   , where     π ˆ   
–
    I i     ∈ Δ ( I  i  )   is given by     π ˆ   

–
    I i     ( h   t )  =   

  p –   −i,  σ −i     ( h   t  |  h   0 )  π ˆ   ( h   0 ) 
  _________________  

 ∑   h ˆ     t ∈ I i    
 
      p –   −i,  σ −i     (  h ˆ     t  |   h ˆ     0 )  π ˆ   (  h ˆ     0 ) 

    for 
all   h   t  ∈  I  i    .

PROOF OF THEOREM 11:
We first establish that the formula and the assumed existence of  

   p –   −i,  σ −i     ( h   t  |  h   0 )   imply that   (σ, ν)   satisfies smooth rule consistency using    { σ   k }   k=1  
∞   . 

Fix  i,  I  i   . Since each   σ   k   is completely mixed, the smooth rule using    { σ   k }   k=1  
∞    has bite 

at each  information set and so, applying the formulas in the smooth rule iteratively 
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 starting from   μ i   , for each  k , the belief   ν  i,  I i    
k    determined by smooth rule updating 

using    { σ   k }   k=1  
∞    satisfies: for  π ∈ Δ ( I  i  )  ,

(A13)   ν  i,  I i    
k   (π)  ∝   ∑ 

 π ˆ  ∈Δ (Θ) ∣  π ˆ    I i    =π
      
 ϕ  i  ′   ( ∑ h∈H  

 
     u  i   (h)   p   σ   k    (h |  h   0 )  π ˆ   ( h   0 ) ) 

   ________________________   
 ϕ  i  ′   ( ∑ h∣ h   t ∈ I i    

 
     u  i   (h)   p   σ   k    (h |  h   t ) π ( h   t ) ) 

   

  ×  (  ∑ 
 h   t ∈ I i  

    p  −i,  σ  −i  
k     ( h   t  |  h   0 )  π ˆ   ( h   0 ) )   μ i   ( π ˆ  ) , 

where

    π ˆ    I i     ( h   t )  =   
 p  −i,  σ  −i  

k     ( h   t  |  h   0 )  π ˆ   ( h   0 ) 
  _____________________  

 ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     0 )  π ˆ   (  h ˆ     0 ) 
   for all  h   t  ∈  I  i   . 

It remains to show that the limit of   ν  i,  I i    
k    equals   ν i,  I i      (as defined in (A12)). Divide 

(A13) by   ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     0 )  > 0 , which is constant with respect to  π . Then the 
limit of   ν  i,   I i    

k   (π)   is proportional to

(A14)    lim  
k→∞

     ∑ 
 π ˆ  ∈Δ (Θ) ∣  π ˆ    I i    =π

      
 ϕ  i  ′   ( ∑ h∈H  

 
     u  i   (h)   p   σ   k    (h |  h   0 )  π ˆ   ( h   0 ) ) 

   _________________________   
 ϕ  i  ′   ( ∑ h∣ h   t ∈ I i    

 
     u  i   (h)   p   σ   k    (h |  h   t ) π ( h   t ) ) 

   

  ×  
(

  ∑ 
 h   t ∈ I i  

      
 p  −i,  σ  −i  

k     ( h   t  |  h   0 ) 
  ______________  

 ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     0 ) 
    π ˆ   ( h   0 ) 

)
   μ i   ( π ˆ  ) . 

By Lemma 3,    p –   −i,  σ −i     ( h   t  |  h   0 )   exists. Then (A14) is proportional (in  π ∈ Δ ( I  i  )  )  
to the  right-hand side of (A12) since, whenever it exists,   lim k→∞     π ˆ    I  i     ( h   t )  =  

 lim k→∞    
 p  −i,  σ  −i  

k     ( h   t  |  h   0 )  π ˆ   ( h   0 ) 
  _____________  

 ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     0 ) 
  /  

 ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     0 )  π ˆ   (  h ˆ     0 ) 
  _________________  

 ∑   h ˆ     t ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     t  |   h ˆ     0 ) 
   =   

  p –   −i,  σ −i     ( h   t  |  h   0 )  π ˆ   ( h   0 ) 
  _________________  

 ∑   h ˆ     t ∈ I i    
 
      p –   −i,  σ −i     (  h ˆ     t  |   h ˆ     0 )  π ˆ   (  h ˆ     0 ) 

   =    π ˆ   –    I i     ( h   t )  . 

Therefore   (σ, ν)   satisfies smooth rule consistency using    { σ   k }   k=1  
∞   .

Next, assume that   (σ, ν)   satisfies smooth rule consistency using    { σ   k }   k=1  
∞   .  

Therefore  ν =  lim k→∞    ν   k  , where each   ν   k   is the interim belief  system deter-
mined by smooth rule updating using   σ   k   (see (A13) for the formula). Fix 
any  i,  I i   . The  existence of    lim k→∞    ν   k  , as described in (A14), requires the existence of  

  lim k→∞     
 p  −i,  σ  −i  

k     ( h   s ( I i  )   |  h   0 ) 
  _________________  

 ∑   h ˆ     s ( I i  )  ∈ I i    
 
     p  −i,  σ  −i  

k     (  h ˆ     s ( I i  )   |   h ˆ     0 ) 
    for each   h   s ( I i  )   ∈  I  i   . Therefore, using    { σ   k }   k=1  

∞   ,  

   p –   −i,  σ −i     ( h   s ( I i  )   |  h   0 )   exists for all information sets. Then (A12) yields a well-defined 
interim belief system   ν ˆ   , and, by the argument in the earlier direction of this proof,   

(σ,  ν ˆ  )   satisfies smooth rule consistency using    { σ   k }   k=1  
∞   . Thus,   ν ˆ   =  lim k→∞    ν   k  = ν . 

Therefore  ν  satisfies (A12) using    { σ   k }   k=1  
∞   . ∎
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THEOREM 12: Fix a game  Γ . Suppose   (σ, ν)   is sequentially optimal and for each 

player  i , and each information set   I  i   ⊈ Θ ,   ∑  h   s ( I i  )  ∈ I i    
 
     p  σ   ( h   s ( I i  )   |  h   0 )  > 0  . Then there 

exists   ν ˆ    satisfying (A12) such that   (σ,  ν ˆ  )   is an SEA.

PROOF OF THEOREM 12:
Consider a sequence of a completely mixed strategy profiles converging to  σ . 

Since the limits    p –   −i,  σ −i     ( h    s i   ( I i  )   |  h   0 )   in Theorem 11 exist if   ∑  h   s ( I i  )  ∈ I i    
 
     p  σ   ( h   s ( I i  )   |  h   0 )  > 0  

for all   I  i   ⊈ Θ , there exists   ν ˆ    satisfying (A12). Theorem 11 then implies that   (σ,  ν ˆ  )   
satisfies smooth rule consistency, and is thus an SEA. ∎

Finally, the next lemma shows that for many common specifications of 
 completely mixed sequences    { σ   k }   k=1  

∞   ,    p –   −i,  σ  −i  
k     ( h   t  |  h   0 )   exists everywhere and has a 

simple formula.

LEMMA 4. Suppose   σ   k   is such that, for each  i  and   I  i   , for all   a  i   ∈  A  i   ( I  i  )  ,  

  σ  i  
k  ( I  i  )  ( a  i  )  ∝  c   a i      k    d    a i       with   c   a i     > 0  and   d    a i     ≥ 0 . Then    p –   −i,  σ  −i  

k     ( h   t  |  h   0 )   exists for all  
 i  and   I  i   .

PROOF OF LEMMA 4:
Under the assumption on   σ   k  , for each  i ,   I  i   , and   h   t  ∈  I  i   ,

    p –   −i,  σ  −i  
k     ( h   t  |  h   0 )  =   lim  

k→∞
     

 ∏ j≠i  
      ∏ 0≤s<t  

      σ  j  
k  ( I  j   ( h   s ) )  ( h  s, j  ) 

   ______________________________   
 ∑   h ˆ     t ∈ I i    

 
     ∏ j≠i  

      ∏ 0≤s<t  
      σ  j  

k  ( I  j   (  h ˆ     s ) )  (  h ˆ   s, j  ) 
   =   lim  

k→∞
     

 C   h   t     k    D  h   t    
 ___________  

 ∑   h ˆ     t ∈ I i    
 
     C    h ˆ     t     k    D   h ˆ     t    

   

for   C   h   t    =  ∏ j≠i  
 
    ∏ 0≤s<t  

 
     c   h s, j      and   D   h   t    =  ∑ j≠i  

 
     ∑ 0≤s<t  

 
     d   h s, j     . This limit exists and is 

equal to

    
 ∑   h ˆ     t ∈ { h   t } ∣ D    h ˆ     t   = max   h 

–
    t ∈ I i      D    h 

–
    t      

 
     C    h ˆ     t   

  ___________________  
 ∑   h ˆ     t ∈ I i  ∣ D    h ˆ     t   = max   h 

–
    t ∈ I i      D    h 

–
    t      

 
     C    h ˆ     t   

   .  ∎
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