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Abstract 

The extent to which scientific advances support marketplace inventions is largely unknown.  We study 

4.8 million U.S. patents and 32 million research articles to determine the minimum citation distance 

between patented inventions and prior scientific advances.  We find that most cited research articles 

(80%) link forward to a future patent.  Similarly, most patents (61%) link backwards to a prior research 

article. Linked papers and patents typically stand 2-4 degrees distant from the other domain.  Yet 

advances directly along the patent-paper boundary are strikingly more impactful within their own 

domains.  The distance metric further provides a typology of the fields, institutions, and individuals 

involved in science-to-technology linkages.  Overall, the findings are consistent with theories that 

emphasize substantial and fruitful connections between patenting and prior scientific inquiry. 
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Scientific research can propel both fundamental understanding and practical application, but the extent to 

which scientific advances support technological progress is unclear (1-3).  According to the “linear 

model” of science, basic research, focused on understanding, provides a foundation for eventual 

technological applications (1, 4-7). For example, Riemannian geometry, an abstract mathematical 

advance that was initially widely ignored, later proved essential to Einstein’s development of general 

relativity and, ultimately, to time dilation corrections in the Global Positioning System.  In biology, basic 

research into extremophile bacteria later proved essential to the development of the polymerase chain 

reaction, the DNA amplification technique that is vital to modern biotechnology applications.  Such 

examples illustrate the potential value of the linear model as a conception of scientific and technological 

progress, a view that helps motivate the public case for supporting scientific research (1, 8-9).  

At the same time, many observers argue that basic research rarely pays off in practical application or that 

practical advances typically proceed without any inspiration from basic research (10-14).  These views 

suggest a potentially substantial disconnect between the knowledge outputs of public science institutions, 

such as research universities or government laboratories, and inventive outputs in the private sector.  

Other scholars argue for a richer interplay between scientific and technological progress.  Characterizing 

scientific progress as advances in understanding and technological progress as advances in use, a common 

theme emphasizes that investigators focused on questions of use, engaged in solving real problems, may 

in turn generate new understandings and progress in basic science (2, 15-17).  For example, Pasteur’s 

germ theory of disease was closely intertwined with his work on industrial fermentation and food safety 

applications, and the development of the second law of thermodynamics was inspired by Carnot’s 

practical interest in the efficiency limits of steam engines (2, 7).  In these cases, new understandings of 

nature are seen less as independent exercises of human curiosity that pay off in unexpected, future 

applications, but rather as insights that spring up along the technological frontier. 

Amidst these diverse views of the interplay between scientific and technological progress, there are many 

anecdotes but little systematic evidence.  Our starting point is an integrated citation network that traces 

references from all 4.8 million patents issued by the U.S. Patent and Trademark Office (USPTO) from 

1976-2015 to all 32 million journal articles published from 1945-2013 as indexed by the Web of Science 

(WOS), the world’s largest collection of scientific research.  The citation network begins by locating 

patents that directly cite journal articles, which defines a “paper-patent boundary” where practical 

inventions and scientific advances are linked (18-21).  The network further determines the minimum 

citation distance for all other papers and patents to this boundary, creating a measure of distance that can 

be applied across a broad landscape of scientific and technological progress.  We further integrate 

information about fields, individuals, and institutions (universities, government labs, and publicly-traded 

firms) for each paper and patent.  The Supplementary Material (SM) details the underlying data sources 

and further discusses the use of citation networks to measure knowledge flows, including patent-to-paper 

citations (22-26). 

Fig. 1A presents a schematic of the integrated citation network and introduces our metric.  Formally, we 

define the distance metric 𝐷𝑖 ∈ {1,2,3, … } for each patent or paper 𝑖.  When a patent directly cites a paper, 

both nodes receive 𝐷𝑖 = 1, representing patents and papers at the “patent-paper boundary”.  For the set of 

all other paper and patents, we recursively determine the minimum citation distance to this boundary.  

Namely, a paper 𝑖 with 𝐷𝑖 = 𝑛 + 1 is one that is cited by a paper 𝑗 with 𝐷𝑗 = 𝑛 and is not cited by any 

paper 𝑘 with 𝐷𝑘 < 𝑛.  Similarly, a patent 𝑖 with 𝐷𝑖 = 𝑛 + 1 is one that cites a patent 𝑗 with  𝐷𝑗 = 𝑛 and 

does not cite any patent 𝑘 with 𝐷𝑘 < 𝑛.  Paper and patents that cannot be connected at any distance to the 
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paper-patent boundary are described as “unconnected”.  Note that the graph is directed:  we trace citations 

backwards in time, using the references in each patent and paper and jumping from the patent to the paper 

domain where 𝐷𝑖 = 1. 

Our first results concern connectivity, considering the extent to which papers or patents exist in 

independent spheres.  As shown in Fig. 1B, the patent-paper citation network has been dominated by a 

single connected component.  A majority of patents – 60.5% – made references that could ultimately be 

traced to scientific papers.  Similarly, among all scientific and engineering papers that received at least 

one citation, 79.7% could ultimately be connected to a patent.  In short, we find majority connectivity, 

where the substantial majority of cited research articles can be linked to a future patent, and the modest 

majority of patents can be linked to prior scientific research. 

At the boundary, 0.759 million patents directly cited 1.41 million papers, representing 21% of all 

connected patents and 10% of all connected papers (Fig. 1C).  While these numbers are substantial, the 

broader picture that emerges in Fig. 1C is one of indirect connectivity.  The modal connected science and 

engineering paper was 3 degrees from the nearest patent.  The modal connected patent was 2 degrees 

from the nearest paper.  Looking between 2 and 4 degrees of the patent-paper boundary captures 68% of 

all connected patents and 79% of all connected papers. 

Our second set of results applies the distance metric to characterize fields.  We used 185 WOS field 

classifications for science and engineering papers and the 388 primary USPTO technology classes that 

contained at least 20 patents each.  For each field or class, Fig. 2A presents the mean distance, 𝐷𝑚𝑒𝑎𝑛, 

among connected papers or patents as well as the percentage connectivity (i.e., the percentage of papers 

or patents in that field for which 𝐷 exists).  Here we see the enormous variation across fields.   𝐷𝑚𝑒𝑎𝑛 

ranged from 2.00 to 5.90 across science fields and from 1.17 to 5.65 across patent classes.  

Examining patents in Fig. 2A, the closest technology classes to the paper-patent boundary include 

combinatorial chemistry, molecular biology, superconducting technology, and artificial intelligence, all of 

which had 𝐷𝑚𝑒𝑎𝑛 < 1.50.  The most distant technology classes concern subjects such as locks, buttons, 

fasteners, envelopes, fire escapes, and chairs, all of which had 𝐷𝑚𝑒𝑎𝑛 > 4.75.  To further characterize this 

variation, we examined the full 𝐷 distributions for several major technology classes (Fig. 2B). For 

example, we see that 𝐷𝑚𝑜𝑑𝑒 = 1 for “multicellular living organism” patents, where 85% directly cited 

papers, while 𝐷𝑚𝑜𝑑𝑒 = 5 for “chairs and seats” patents, for which only 0.3% directly cited papers.   

Examining papers in Fig. 2A, we see that mathematics proved the most distant field from the patent 

frontier (𝐷𝑚𝑒𝑎𝑛 = 4.97).  Meanwhile, the closest fields to the patent frontier include nanotechnology, 

materials science & biomaterials, and computer science hardware & architecture, all with 𝐷𝑚𝑒𝑎𝑛 < 2.35.  

Fig. 2B provides the full 𝐷 distributions for several major fields.  Connected papers in mathematics, often 

considered a basic field of inquiry but one that can also be applied, had 𝐷𝑚𝑜𝑑𝑒 = 4 but with high 

variance.  Astronomy and astrophysics also had 𝐷𝑚𝑜𝑑𝑒 = 4 but with a sharper peak and typically greater 

proximity to the patent-paper boundary.  By contrast, biochemistry & molecular biology papers had 

𝐷𝑚𝑜𝑑𝑒 = 2, and computer science papers had 𝐷𝑚𝑜𝑑𝑒 = 1, where 42% of connected computer science 

papers were directly cited by patents.  This application to scientific fields suggests the potential usefulness 

of the distance metric for quantifying and tightening traditional but loose descriptors around “basic” and 

“applied” scientific research.  The SM shows that the field ordering by distance to the patent-paper 

boundary is robust to different referencing tendencies across fields, to dropping patent-examiner citations 

in patents, and considers a null model (Figs. S1, S8, S9).   Tables S1 and S2 provide the mean, mode, and 
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standard deviation of the distance metric and percentage connectivity for all patent technology classes and 

all WOS fields. 

Fig. S2 considers a related concept of distance:  time.  We calculated the total time period, 𝑇𝑖, in years 

along the shortest citation path between a paper and a patent.  This time period is the difference between 

the patent’s application year and the paper’s publication year.  At the boundary, where 𝐷 = 1, there was a 

mean delay of 6.66 years.  By 𝐷 = 6, the mean delay was 19.62 years for papers and 22.70 years for 

patents.  Fig. S2 further shows that the temporal distance varied substantially across fields, commensurate 

with the citation distance variation in Fig. 2A. 

Fig. 3 considers impact.  A common measure of impact for a scientific paper or patent is the number of 

citations it receives, and a transparent, field-independent metric considers the probability of a “home run,” 

defined as being in the upper 5% of citations received in that field and year (27-29).  Fig. 3A examines 

the probability of such home-run papers and patents.  Patents that drew directly on scientific papers (i.e., 

𝐷 = 1 patents) were found to be unusually heavily cited by other patents, appearing as home runs 7.62% 

of the time, or 52.4 percent more often than the background rate.  Other connected patents (i.e., 𝐷 ≥ 2 

patents) were home runs at approximately the background rate.  Fig. S3 shows more generally that impact 

decayed smoothly with distance from the frontier.  Meanwhile, patents whose cited prior art was 

disconnected from the corpus of papers were home runs at a rate of 3.74%, or 25.2 percent less often than 

the background rate.  Looking at papers in Fig. 3A, journal articles directly cited by a patent (i.e., 𝐷 = 1 

papers) were 3.72 times more likely to be highly cited by other papers.  In other words, the patent-paper 

boundary appears populated by advances that are especially impactful within their own domains:  patents 

that reference scientific papers were drawn on especially heavily by future patents, and papers cited 

directly by patented inventions were especially highly cited by other scientific papers.  Meanwhile, 

patents or papers that were disconnected from the other knowledge network were especially unlikely to be 

high impact within their own domains.   

The impact advantages are robust to numerous controls, including fixed effects for each year, field, 

number of authors (paper) or inventors (patent), institution type, and each number of references made by 

the paper or patent (Fig. S4).  Fixed effect regressions account in a flexible and non-parametric manner 

for these features (see Methods in SM). Tables S3-S4 present the underling regression results and also 

show that these results are robust to alternative measures of citation impact.  We also find similar results 

using patent maintenance fee payments rather than citations received (Table S5).  Maintenance fees, 

which are paid by the patent owner and prevent the patent from lapsing, provide a potentially more direct 

measure of market value (30-31).  Fig. S5 further shows that 𝐷 = 1 patents didn’t simply cite established, 

popular papers; rather, papers cited by a patent in the year the paper was published tended to become 

home runs within science over the ensuing years.  We also find that 𝐷 = 1 patents and papers were also 

far more likely to be home runs when looking within the outputs of a given inventor or author (Tables S6, 

S7).  Examining individual fields, Fig. 3B shows that 𝐷 = 1 patents and papers were the most highly 

cited within their own domains for the majority of scientific areas and technology classes.  In science, 

99% of fields, and in patenting, 86% of fields, showed that the highest impact work within the field 

occurs at 𝐷 = 1.  

Finally, we investigate the roles of institutions and individuals near the patent-paper boundary.  Fig. 4A 

considers institutions.  For comparison, we sorted relevant USPTO patents and WOS papers into three 

different institutional settings: universities, U.S. government laboratories, and firms.  Institutional 
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affiliations are based on patent assignee for the patents and based on postal and email addresses of the 

journal article authors (32-33).  The SM provides additional details of this sorting process.  Universities 

and government laboratories were relatively more engaged in high-𝐷 research whereas the research 

articles produced in firms shift towards 𝐷 = 1 (Fig. 4A).  These findings are consistent with and can help 

quantify long-standing ideas about the research outputs that for-profit institutions are likely to undertake 

(34).  Table S8 provides associated regression analysis, including fixed effects for the number of 

references made, citations received, field, year, and number of authors or inventors.  The regressions 

show that university papers were on average 𝐷 = 0.358 further from the frontier than the firm papers.  

Decomposing this increased distance among university papers shows that approximately one-third of this 

increased distance was due to field composition (e.g., university researchers publish more in high-𝐷 fields 

like mathematics than corporate researchers do) and two-thirds appeared as institutional differences 

within a given field (e.g., university papers in mathematics have higher 𝐷 than firms’ papers in 

mathematics).  

Fully 57% of university-assigned patents had 𝐷 = 1, indicating the intensiveness of university patenting 

near the boundary (Fig. 4A).  Patents from firms peaked at 𝐷 = 2, with only 19% at 𝐷 = 1.  Patents by 

government laboratories appeared in between the other institutions.  Table S9 provides associated 

regression analysis, showing that, compared to firms, approximately one-half of university patents’ 

increased proximity to science was due to field composition (university researchers patented in low-𝐷 

technology classes) and one-half appeared as institutional differences within a given field (e.g., university 

patents in material science had lower 𝐷 than firms’ patents in material science). 

We next considered the institutional “hand-off” across the boundary where 𝐷 = 1.  For 𝐷 = 1 patents, 

78% were assigned to firms, yet 80% of 𝐷 = 1 papers had university authors (Fig. 4B).  The prevalence 

of hand-offs from university papers to business patents is consistent with long-standing conceptions that 

consider university outputs as public goods upon which marketplace invention can draw (1).  Thus, while 

university patenting is particularly closely related to science (Fig. 4A) and can thus play a direct role in 

technology transfer (35-36), the lion’s share of 𝐷 = 1 patents still comes from firms.  Related, other 

patents typically connected to the patent-paper frontier through these 𝐷 = 1 firm patents (Fig. S6). 

Fig. 4C examines the role of the same individual in spanning the paper-patent boundary.  We define these 

cases by matching the inventor names for the patent with the author names for the paper that the patent 

cites (see SM for further discussion).  For  𝐷 = 1 university patents, 55.4% cited a paper written by an 

individual with the same name.  A high percentage also appeared for government patents, but the 

percentage fell to 14.3% for 𝐷 = 1 corporate patents.  In Stokes’ theoretical characterization of “Pasteur’s 

Quadrant” (2), where the same individual may be engaged in advancing both understanding and use, 

universities and government labs appear to be especially common homes for such individuals, who in turn 

appear highly productive.  Fig. S7 and Table S10 show that both the paper and the patent produced by 

such an individual were especially likely to be home runs in their respective domains.  

Conclusions 

Contrary to conceptions in which technological and scientific progress operate in independent spheres, we 

find majority connectivity between the corpus of patented inventions and the corpus of scientific papers.  

However, these connections are typically indirect, and both scientific fields and patenting technology 

classes vary enormously in their connectivity and proximity to the other domain.  These findings are 

consistent with and can help quantify some features of the “linear model” of science, which imagines that 
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scientists typically work to advance understanding but that such advances may underlie practical 

applications, often in indirect or unexpected ways.  The prevalence of private-sector patents linking back 

to the output of universities and government laboratories is further consistent with institutional views of 

the linear model.  While these features of the linear model appear to receive strong support, note that our 

data do not address potentially “non-linear” reverse linkages where technological advances, including 

new equipment and tools, may also drive scientific progress (7, 11, 17). 

The distance metric further reveals facts that are consistent with and help quantify the fruitful, creative 

interplay between understanding and application (2, 19, 21).  Patented inventions that draw directly on 

scientific advances were especially impactful compared to other patents.  Moreover, papers directly cited 

by patents were also the highest impact papers within the scientific domain.  These facts are consistent 

with a sharp complementarity between understanding and use and are also reflected at the individual 

level; an individual scientist/inventor, especially in university and government laboratory settings, often 

personally spanned the boundary, working to advance both the scientific and technological frontiers and 

managing to hit “home runs” in both domains.   

Beyond loose classifications of “basic” or “applied” research and related terminologies (6, 7), the distance 

metric provides a quantifiable typology to describe R&D outputs and the nature of their impacts.  The 

typology can characterize the research outputs of not only fields, but also journals, funders, research 

institutions, and individuals themselves.  Indices based on the 𝐷 metric may thus present useful tools for 

understanding and evaluating types of research, institutional priorities, funding outcomes, and individual 

careers. While the distance metric in our application uses a directed graph, from patented invention to 

scientific advance, one may also deploy the metric on knowledge networks built using other link 

definitions. For example, full text analyses might allow one to characterize “necessary” precursor 

knowledge as opposed to the standard of “relevant” precursor knowledge that appear to be indicated by 

citation networks (see SM discussion).  One might also build a metric that runs from scientific advances 

back to prior patented technologies, given appropriate reference information.  And one might consider 

inventions or other applications outside patents.  Such studies would further enrich our understanding of 

the interplay between scientific advance and technological progress to engage additional theories (11, 17).   
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Fig. 1.  Connectivity and distance.   (A) The directed graph of the integrated citation network from 

patents toward papers defines a distance metric, 𝐷. (B) The share of papers that link forward to a future 

patent and the share of patents that link backward to a prior research article.  (C) The distance distribution 

of connectivity. 
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Fig. 2.  Application to Fields.  (A) Distance metric. The mean distance, 𝐷𝑚𝑒𝑎𝑛, to the paper-patent 

boundary is presented for each field (x-axis) together with the percentage of knowledge outputs in that 

field that are connected to the integrated citation network (y-axis).  (B) The full 𝐷 distribution for several 

fields.  
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 Distance where Home Run Rate is Largest, 

by Field or Class 
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Papers  

(WOS fields) 
99% 1% 0% 
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(USPTO classes) 
86% 14% 0% 

 

 

Fig. 3.  Distance and Impact.  (A)  Impact close to and far from the paper-patent boundary.  A “home 

run,” is defined as being in the upper 5% of citations received in that field and year, for a patent or a 

research paper. (B) Home runs outcomes relative to distance for each field, when each field is analyzed 

separately.  The SM examines alternative impact measures, including methods based on patent renewal 

payments. 
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Fig. 4.  Institutions and Individuals.  (A) The 𝐷 distribution for different institutional settings, including 

universities, government laboratories, and firms. (B) Production of patents and papers by institutional 

type at the 𝐷 = 1 boundary. (C) The share of 𝐷 = 1 patents where a citing inventor and cited author have 

the same name, by patent assignee type.   
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Materials and Methods 

 

DATA 

 

Our measurement approach builds on large literatures that use patent citations and 

paper citations to trace knowledge flows (e.g., 37-40) and literature examining references 

in patents to publications (e.g., 18-19, 41).  The integrated citation network introduced in 

this paper merges patent and paper datasets. 

 

Patent Data 

 

We studied all 4.8 million patents granted by the United States Patent and 

Trademark Office (USPTO) between 1976 and 2014.  These data are drawn from 

overlapping datasets, including the Patent Data Project 

(https://sites.google.com/site/patentdataproject/Home) of the National Bureau of 

Economic Research and the updated patent data of Kogan et al. (2015) 

(https://iu.app.box.com/v/patents). 

 

Together, these data record the patent number, application year, patent references, 

inventor names, assignee (owner), and the technological class of the patent.  In all of our 

analyses, we use the application year to locate the patent in time.  Technological class for 

each patent is determined by the USPTO, which identifies 430 different primary classes.  

Our analysis focuses on the 388 classes that have more than 20 patents in our citation 

network.
1
 

 

Patent renewal data is obtained from a USPTO database that records maintenance 

fee events (which occur in the 4
th

, 8
th

, and 12
th

 year after the patent was granted).  This 

data is available for patents granted from September 1, 1981 to the present and is 

available here:  https://bulkdata.uspto.gov/data2/patent/maintenancefee/ 

 

Paper Data 

 

We examined 32.4 million scientific publications, constituting all research articles 

indexed in the Thomson Reuters Web of Science (WOS) database that were published 

over the 1945-2013 period.  The WOS records paper titles, bibliographic information 

(journal, volume, issue, page), citations, author information (names, affiliations), and 

citation links to other papers in the database.  From the total of 32.4 million journal 

articles, only the publications that are cited at least once can fall into our citation network 

(17.0 million papers).  We build the integrated networks with this full set of data, which 

includes science and engineering, social science, and arts and humanities fields, and then 

focus the analysis on the 23.7 million journal articles in science and engineering fields, as 

codified by the WOS.  These science and engineering papers are categorized by the WOS 

                                                 
1
 In Fig. 2C, we further focus on the 306 classes that have more than 10 patents at D=1. 

https://bulkdata.uspto.gov/data2/patent/maintenancefee/
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into 185 different subfields.
2
  The WOS data are available to researchers through 

Thomson Reuters and described in detail at www.webofknowledge.com. 

 

Patent-Paper Boundary 

 

Patent citations to WOS articles were provided by Gaetani and Li Bergolis (20), who 

used a full-text patent XML database from the USPTO to match non-patent references in 

the patents to WOS articles.
3
  Matching was based on name of first author, journal, 

publication year, article title, volume, and page numbers. 

 

In the WOS, the bibliographic information is organized in the database into name, 

journal, title, etc.  In the USPTO reference, the reference information is contained in a 

single string.  The matching algorithm of Gaetani and Li Bergolis (20) thus, as a first 

step, extracts the name of the first author and publication year from the patent reference 

and then locates the subset of WOS papers that match this information.  In the second 

matching step, the WOS paper is selected that has the closest match to the USPTO 

reference string based on volume and page numbers and shared words in the journal 

name and paper title. 

 

In some robustness tests, we will also consider the patent citation network dropping 

references in patents that were added by patent examiners.  Patent-examiner added 

citations are denoted in the XML files and easily identified for patents issued in or after 

the year 2001. 

 

METHODS 

 

1. Citation linkages 

 

The D-metric builds from the integrated citation network of U.S. patents and Web of 

Science journal articles.  The analytic methodology for calculating the D-metric is 

provided in the main text.  Here we provide further background, based in existing 

literature, regarding the uses and interpretations of citations linkages. 

 

Citation Linkages and Knowledge Flows 

 

Using citation linkages to inform knowledge flows is a core methodology in existing 

literature (22).  Studies use citations to study knowledge flows and spillovers across 

space (e.g., 37), over time (e.g., 42), across fields (e.g., 43), across organizations (e.g., 

44), and through social networks (e.g., 45).  Other work uses citation linkages to inform 

how prior knowledge is combined into new knowledge (e.g., 40). 

 

While the use of citations to study knowledge flows is common in the existing 

literature, it is important to recognize that citations, linking a new knowledge output to a 

specific, prior knowledge output, is a proxy measure and may have multiple 

                                                 
2
 Results for non-science and engineering fields are available from the authors upon request. 

3
 Full text XML patent data are available from the USPTO at https://bulkdata.uspto.gov/. 
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interpretations.  For example, in patents, citations may be used to delineate property 

rights vis-à-vis relevant prior work, which can be distinct from denoting important 

creative inputs (e.g., 46).  With papers, references may be added to inform referees (47).  

A related question is whether one should treat all references as equally important, even 

when they represent knowledge flows, as some prior references may be more 

consequential than others. 

 

While citation linkages are the subject of ongoing research, we note a few additional 

points here relevant to our study.  First, for patents, we consider several robustness 

analyses below restricting references in patents to those added by the applicant as 

opposed to the examiner, where the applicant-added references presumably come closer 

to demarcating knowledge flows from the inventor’s perspective.  Second, our analyses 

largely consider groups of knowledge outputs (by field, by institution, etc.), which may 

help avoid some problems with noise at the individual patent or citation level (48).  

Lastly, we emphasize that the D metric is flexible in that it can be applied to other 

definitions of knowledge links as these develop in future literature.  For example, there 

are ongoing efforts to use full text analysis to determine key prior ideas within a given 

patent or paper.  With the advent of such new link definitions, future research can deploy 

the D methodology upon them. 

 

Scientific Non-Patent References 

 

The study of non-patent references to scientific literature (sNPRs) has been 

previously conducted in studies of specific fields or smaller samples of patents, and with 

an emphasis on the immediately linked patent or paper.  In the language of the  metric, 

an sNPR occurs at , as opposed to the full range of  studied in this paper.  Narin 

et al. (18) study sNPRs in U.S. patents issued in 1987-88 and 1993-94. They find that the 

frequency of sNPRs is increasing and that the cited papers in their sample typically come 

from publically-supported research.  Hicks et al. (25) study 50,000 sNPRs linking 

private-sector patents from 1993-1997 to non-private sector papers and show that these 

linkages are often geographically localized.  Looking at specific fields, Finardi (49) 

studies the time lag between nanotechnology patents and the publication year of these 

patents’ sNPRs, and Lo (50) shows that genetic engineering patents draw the majority of 

their prior art citations from papers rather than other patents.  Fleming and Sorenson (19) 

study U.S. patents issued in May-June of 1990 and show that the patents with sNPRs are 

more highly cited than other patents.  By contrast, Cassiman et al. (21) study 

approximately 1,000 EPO patents issued to 79 Flemish firms over 1995-2001 and argue 

that sNPRs do not predict greater future patent citations.  Gaetani and Li Bergolis (20), 

who provide the sNPR data match we use between the full set of U.S. patents and the 

Web of Science, study patent references to approximately 200 extremely high impact 

research articles to examine the effect of scientific breakthroughs on the performance of 

the patenting firms.  

 

Regarding the interpretation of sNPRs, several authors have studied the meaning of 

these linkages.  Meyer (23), using a case study methodology of nanotechnology, suggests 

that sNPRs can represent a simultaneity of scientific and inventive output within the same 
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individual, so that knowledge flows are moving in both directions (a theme we discuss 

vis-à-vis Stokes (2) in the paper).  Meyer (23) also concludes that sNPRs are a general 

indicator of the science-relation of a field.  Tjissen et al. (24) study patent citations to 

Dutch research papers and conclude that “these citations reflect genuine links between 

science and technology.”  Nagaoka and Yamauchi (51) conduct a survey of 843 inventors 

and find both that there are important linkages to science and that patent citations to 

scientific literature are an incomplete and noisy indicator of the knowledge flow, with 

errors of both over- and under-inclusion.  Callaert et al. (26) interview 36 Belgian 

inventors in nanotechnology, biotechnology, and life sciences, and find among their EPO 

patents that only 20% of the sNPRs are described as “unimportant” by the inventor, 

whereas 34% are described as “background” while 44% are described as “important” or 

“very important”.  Hicks et al. (25) argue that the tendency for geographically localized 

linkages in their sample of sNPRs suggests that these are substantive spillovers.  As we 

will show below, fully 96% of sNPRs after 2001 in USPTO patents are provided by the 

applicant, not the patent examiner, which may further suggest these are relatively 

substantive linkages.  Overall, while this literature is still developing, sNPRs appear to a 

substantive if noisy indictor of the role of specific, prior scientific advances. 

 

Patent Examiner Added Citations 

 

Patent references can be provided by both (a) the applicant and (b) the examiner 

(46).  In both cases, the cited references indicate some type of relevant prior knowledge.  

However, the two different sources of citation may suggest different interpretations.  For 

example, patent-examiner added references are likely to be less important for 

understanding the material used in the inventor’s creative process.
4
  For patents issued in 

the year 2001 or later, the XML patent database (see above) directly identifies which 

references were added by examiners, both for the patent references and the non-patent 

references in each patent document.  To help narrow interpretations and perform 

robustness checks, we have therefore further explored the citation network when patent-

examiner added citations are eliminated.   

 

We find that 36% of patent-to-patent references are added by examiners.  By 

contrast, only 4% of patent-to-publication references are added by examiners.  Thus an 

immediate observation is that, when patent examiners add references, they are far more 

likely to add a reference to other patents as prior art and rarely add references to other 

publications.  For the network, it follows that (a) the identity of   patents and papers 

is driven almost entirely by applicant-added references; (b) the  metric is little changed 

for papers in general when dropping patent-examiner citations, because the identity of 

  papers changes little and papers with   are determined through paper-to-

paper references; and (c) the  metric may shift more for patents with , as more of 

the patent-to-patent references are (36%) added by examiners.   

 

Given the proportion of patent-to-patent references added by examiners, we further 

consider how the  distribution for patents appears when the patent-examiner added 

                                                 
4
 Although there may be under-inclusion of prior references by applicants and it is thus possible that the 

inventor may have used the prior advance without citing it; see, e.g., Nagaoka and Yamauchi (2015). 
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citations are dropped.  Dropping a reference from a patent’s reference list can have two 

possible effects: (i) it can cause a patent to become disconnected or (ii) it can cause the  

for that patent to either stay the same or rise.  The findings are as follows.  First, among 

post-2001 patents, 44.7% of the patents are disconnected using a network built only from 

applicant-added references, which is a similar proportion when studying the full sample 

average as in Fig. 1.  Second, and conditional on being in the connected network, Fig. 

S9A compares the  distribution for patents issued after 2001, both when patent 

examiner references are included in building the network and when they are not. We see 

that peaking behavior flattens somewhat at  and  using only applicant-added 

references, but overall the shape of the distribution is broadly similar.  Finally, Fig. S9B 

compares the  for each technology class, both when patent examiner references are 

included in building the network and when they are not.  We see that the field ordering in 

terms of distance is largely stable. 

 

2. Institution and Individual Matching 

 

Institutional definitions and matching 

 

Three categories for institutions involved in patenting and publishing articles were 

considered: (a) universities, (b) government laboratories, and (c) firms. 

 

a) Universities: To find articles that are published from a university, we used the method 

of Bryan and Ozcan (33).  In particular, we explored the author(s) addresses provided 

by the WOS database and searched for one of the following strings in the address 

entry: university , alumni , univ , national cancer , brigham , jackson lab , research 

center , akademie , vib , RIKEN , Eye & Ear , medical school , national jewish health 

, eth zurich , Center for , univeristy , higher education , cold spring harbor , akadamie 

, centre for , fundacio , Université , centre , planck , universuty , Universitât , 

fundacion , UNIVERSITÀ , agence nationale , insitute , UNIVERSITÉ , eye and ear 

in rmary , Society for , Unversity , cancer centre , universite , institue , istituto , 

cancer center , fondation , universiteit , universitet , universitaet , city of hope , 

educational fund , zentrum , consejo , ecole , universtiy , centro , kettering , mayo , 

schule , institucio , centrum , hospital for sick , children's hospital , academisch , 

universita , universit 'at , unviersity , georgia tech , school of , consiglio nazionale , 

intellectual properties , fondazione , national centre , centro nacional , centre national 

, foundation , regents , council , fred hutchinson , general hospital corporation , 

universidade , research hospital , medical center , foundation , universitat , 

universidad , colegio , univerisite , institut , institute , instituto , trustees , academia , 

academy , or college. The same procedure was followed for patents and we looked for 

the aforementioned strings in the assignee entry of patents in the patent data.   

 

b) Government laboratories: To find papers that are published in government labs, we 

used a list of government labs provided by the NSF and searched for these labs in the 

author(s) address entry. The list consists of the following government labs: Aerospace 

Federally Funded Research and Development Center , Ames Laboratory, Argonne 

National Laboratory, Arroyo Center, Brookhaven National Laboratory, Center for 

https://www.nsf.gov/cgi-bin/good-bye?http://www.aero.org/
https://www.nsf.gov/cgi-bin/good-bye?http://www.aero.org/
http://www.ameslab.gov/
http://www.anl.gov/
http://www.anl.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.rand.org/ard.html
http://www.bnl.gov/world/
https://www.nsf.gov/cgi-bin/good-bye?http://www.caasd.org/
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Advanced Aviation System Development, Center for Communications and 

Computing, Center for Enterprise Modernization, Center for Naval Analyses, Center 

for Nuclear Waste Regulatory Analyses, CMS Alliance to Modernize Healthcare, 

Fermi National Accelerator Laboratory, Frederick National Laboratory for Cancer 

Research, Homeland Security Studies and Analysis Institute, Homeland Security 

Systems Engineering and Development Institute, Idaho National Laboratory, Jet 

Propulsion Laboratory, Judiciary Engineering and Modernization Center, Lawrence 

Berkeley National Laboratory, Lincoln Laboratory, Los Alamos National Laboratory, 

National Biodefense Analysis and Countermeasures Center, National Center for 

Atmospheric Research, National Cybersecurity Center of Excellence, National 

Optical Astronomy Observatory, National Defense Research Institute, National 

Optical Astronomy Observatory,  National Radio Astronomy Observatory, National 

Renewable Energy Laboratory, National Security Engineering Center, National Solar 

Observatory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, 

Princeton Plasma Physics Laboratory, Project Air Force, Sandia National 

Laboratories, Savannah River National Laboratory, Science and Technology Policy 

Institute, SLAC National Accelerator Laboratory, Software Engineering Institute, 

Systems and Analyses Center, and Thomas Jefferson National Accelerator Facility. 

To identify patents that have a government lab as an assignee, we searched for the 

aforementioned strings in the assignee entry of patents in the patent data.   

 

c) Firms: For papers, we looked for journal articles that have one of the following 

strings in their corresponding author(s) address: Inc, Group, Foundation, Co, limited, 

LTD, LLC, Corp, Company, LP, and LLP. For the patent side, we used the NBER 

PDP Project data which matches patent data to Compustat firms.  Note that this patent 

dataset concludes in 2006, so the institutional analyses conclude in that year. 

 

Individual name matching at  

 

The inventor names for patents are obtained from the NBER Patent Data Project 

(see Data above).  The author names for papers are obtained from the WOS.  For a patent 

that directly cites a paper, we considered whether any inventor on the patent shares the 

same name as any author on the paper.  Names are matched based on last name and first 

initial. The idea of this algorithm is that, while names themselves may be difficult to 

disambiguate across millions of patents and papers, it is very rare that a person with a 

given name directly cites a person with the same name that is not himself/herself (27). 

 

Name Disambiguation 

 

In regression analysis, we consider models with fixed effects for the specific 

inventor or author.  These regressions ask whether a given individual’s output is higher 

impact, compared to that same individual’s other output, when the output is at the patent-

paper boundary. 

 

To run these regressions, we need individual identifiers for inventors and authors.  

Name disambiguation is a well-known challenge across many domains.  For patents, we 

https://www.nsf.gov/cgi-bin/good-bye?http://www.caasd.org/
https://www.nsf.gov/cgi-bin/good-bye?https://www.ida.org/IDAFFRDCs/CenterforCommunications.aspx
https://www.nsf.gov/cgi-bin/good-bye?https://www.ida.org/IDAFFRDCs/CenterforCommunications.aspx
https://www.nsf.gov/cgi-bin/good-bye?http://www.mitre.org/about/ffrdcs/cem.html
https://www.nsf.gov/cgi-bin/good-bye?http://www.cna.org/centers/cna/
https://www.nsf.gov/cgi-bin/good-bye?http://www.swri.org/4org/d20/home/who/CNWRA.htm
https://www.nsf.gov/cgi-bin/good-bye?http://www.swri.org/4org/d20/home/who/CNWRA.htm
https://www.nsf.gov/cgi-bin/good-bye?http://www.mitre.org/centers/cms-alliances-to-modernize-healthcare/who-we-are
http://www.fnal.gov/
https://frederick.cancer.gov/
https://frederick.cancer.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.homelandsecurity.org/
https://www.nsf.gov/cgi-bin/good-bye?http://www.mitre.org/work/hs_sedi/
https://www.nsf.gov/cgi-bin/good-bye?http://www.mitre.org/work/hs_sedi/
http://www.inl.gov/
http://www.jpl.nasa.gov/
http://www.jpl.nasa.gov/
https://www.nsf.gov/cgi-bin/good-bye?https://www.mitre.org/centers/judiciary-engineering-and-modernization-center/who-we-are
http://www.lbl.gov/
http://www.lbl.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.ll.mit.edu/
http://www.lanl.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.bnbi.org/
https://www.nsf.gov/cgi-bin/good-bye?http://www.ncar.ucar.edu/
https://www.nsf.gov/cgi-bin/good-bye?http://www.ncar.ucar.edu/
https://nccoe.nist.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.noao.edu
https://www.nsf.gov/cgi-bin/good-bye?http://www.noao.edu
https://www.nsf.gov/cgi-bin/good-bye?http://www.rand.org/nsrd/ndri.html
https://www.nsf.gov/cgi-bin/good-bye?http://www.noao.edu
https://www.nsf.gov/cgi-bin/good-bye?http://www.noao.edu
https://www.nsf.gov/cgi-bin/good-bye?http://www.nrao.edu/
http://www.nrel.gov/
http://www.nrel.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.mitre.org/centers/national-security-and-engineering-center/who-we-are
https://www.nsf.gov/cgi-bin/good-bye?http://www.nso.edu/
https://www.nsf.gov/cgi-bin/good-bye?http://www.nso.edu/
http://www.ornl.gov/
http://www.pnl.gov/
http://www.pppl.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.rand.org/paf.html
http://www.sandia.gov/
http://www.sandia.gov/
http://srnl.doe.gov/
https://www.nsf.gov/cgi-bin/good-bye?http://www.ida.org/stpi/
https://www.nsf.gov/cgi-bin/good-bye?http://www.ida.org/stpi/
https://www.nsf.gov/cgi-bin/good-bye?http://www6.slac.stanford.edu/
https://www.nsf.gov/cgi-bin/good-bye?http://www.sei.cmu.edu/
https://www.nsf.gov/cgi-bin/good-bye?https://www.ida.org/en/SAC.aspx
https://www.nsf.gov/cgi-bin/good-bye?http://www.jlab.org/
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use the Lai et al. (52) name-disambiguated inventor database, which to our knowledge is 

the state of art among publicly available inventor data.  For papers, we create individual 

identifiers based on the author name (last name and first initial) and WOS subfield. 

 

3. Regression Methods 

 

Regression Methods for Patent Impact 

 

Regression analyses of high-impact patents employ fixed-effect ordinary least 

squares models.  These take the following form.   

 

 
 

where  indexes a specific patent.  The variables are defined as follows.   

 

Dependent variable for patents:  The dependent variable measures impact.  In the main 

analysis (Fig. 3), we define a binary variable , where  indicates that the 

patent is in the upper 5
th

 percentile of citations received compared to other patents with 

the same technological class and application year, and   otherwise, where citations 

are counted within the first 8 years after the patent grant (27-28, 40).  Note that the 

citation counts only include citations from within the domain of patents (patents citing 

patents).  Similarly, for papers (see below), we count citations only from other papers to 

isolate impact within the paper domain.  Alternative measures considered below include 

using (i) an alternative binary variable using the upper 1
st
 percentile of citations received 

as the threshold to define high impact, (ii) the log of citations received within 8 years 

after application, and (iii) an integer count of the number of patent renewal fees paid for 

the patent (30-31).  

 

Predictors of interest:  We examine in regression the extent to which  patents 

predict high impact, defining a binary variable , where  if  and  

otherwise.  Similarly, we examine unconnected patents (for which  is not 

defined), defining a binary variable , where  if  and  

otherwise. 

 

Fixed effects:  To control for other possible influencers of impact and distance in a 

flexible manner, we include detailed fixed effects to account as follows. 

 

:  These fixed effects account for the number of references the patent makes.  In 

particular, the  are a series of individual binary variables , where  if 

patent  makes exactly  references and otherwise.  In practice, we use an 

individual fixed effect for each integer number of references up to 100 and then bin the 

few patents that make 100 or more references as one category. 

 

:  These fixed effects account for the institutional setting for the patent, based on 

the patent assignee. In particular, the  are four individual binary variables  
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for four possible institutional categories, , where  if patent  has 

assignee type , and otherwise. The four assignee types are universities (u), 

government laboratories (g), publicly-traded U.S. firms (f), or other (o).  The other 

category indicates that the algorithm described above (see “Institutional definitions and 

matching” under Methods) did not classify the patent to one of the other three categories. 

 

:  These fixed effects account for the number of inventors on the patent.  In 

particular, the  are a series of individual binary variables , where  

if patent  has exactly  inventors and otherwise.  We use an individual fixed 

effect for each integer number of inventors. 

 

:  These fixed effects account for the technological class of the patent.  The  

are a series of individual binary variables , where  if patent  is in 

technological class  and otherwise.   

 

:  These fixed effects account for the application year of the patent.  The  are 

a series of individual binary variables , where  if patent  has 

application year  and otherwise. 

 

Regression Methods for Paper Impact 

 

Regression analyses of high-impact papers employ the same fixed-effect ordinary 

least squares model defined for patents above.  The variables are also adjusted for the 

different data.  Now impact (the dependent variable, ) refers to citations received by 

other papers.  The predictor variables are whether the paper is cited directly by a patent 

(a  paper) and whether the paper is disconnected from the patent-paper citation 

network.  For the fixed effects, the number of inventors is replaced by the number of 

authors in the , the technological class is replaced by the WOS field code in the , 

and the application year is replaced by the paper’s publication year in the . 

 

 

Regression Methods with Individual Fixed Effects 

 

Regression analyses of high-impact patents alternatively employ fixed-effects for 

each individual inventor or author.   The Data section above describes the definition of 

the individual indicators.  The data in these regressions takes the set of connected patents 

(or papers) and considers patent lists for each inventor (or paper lists for each author).   

 

The regressions take the following form:   

 

 
where j indexes individual inventors (or authors).  For patents, the fixed effects  are a 

series of individual binary variables , where  if person  was an inventor 

of patent  and otherwise.  Similarly, for papers, the fixed effects  are a series 
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of individual binary variables , where  if person  was an author of 

paper  and otherwise.  The field and year fixed effects are defined as above. 

 

Regression Methods for Distance and Institutions 

 

Regression analyses to examine the link between institutional type and distance 

employ fixed-effect ordinary least squares models.  These take the following form.   

 

 
where  indexes a specific patent (or paper for the paper regressions).  The variables are 

defined as follows.   

 

Dependent variable:  The dependent variable is the integer distance metric as defined in 

the text. 

 

Predictors of interest:  We examine in regression the extent to which university and 

government laboratory patents (or papers) are nearer or further to the patent-paper 

boundary, compared to private-sector patents (or papers).  Specifically, we define a 

binary variable , where  if the institutional setting for the knowledge 

output is a university, and otherwise.  Similarly, we define a binary variable 

, where  if the institutional setting for the knowledge output is a 

government laboratory, and otherwise. The omitted institutional category in the 

regressions is publicly-traded U.S. firms.  Thus the institutional coefficients (  and ) 

tell us how the distance for patents (or papers) in these institutional settings differs from 

those in a private-sector setting.
5
 

 

Fixed effects:  To control for other possible influencers of impact and distance in a 

flexible manner, we include detailed fixed effects as follows. 

 

:  These fixed effects account for the number of references the patent (or paper) 

makes.  See detailed definition above. 

 

:  These fixed effects account for the number of citations the patent (or paper) 

receives.  The  are a series of individual binary variables , where  if 

patent (or paper)  receives exactly  citations and otherwise.  In practice, we use 

an individual fixed effect for each integer number of citations received up to 100 and then 

bin 100 or more into one category. 

 

:  These fixed effects account for the number of inventors on the patent or 

authors on the paper.  See detailed definition above.  

 

                                                 
5
 Note that the regression sample here is restricted to these three institutional types.  Patents (or papers) for 

which the institutional setting could not be determined are not included in the estimation.  See “Institutional 

definitions and matching” under Methods above. 
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:  These fixed effects account for the technological class of the patent or WOS 

field of the paper.  See detailed definition above.  

 

:  These fixed effects account for the application year of the patent or publication 

year of the paper.  See detailed definition above.   

 

4. Distance and Citation Counts 

 

When , there can be a natural relationship between distance and reference counts.   

 For a patent, the more references the patent makes, the more pathways there 

are to patent-paper frontier, which can lead to a lower . 

 For a paper, the more citations a paper receives, the more pathways there are 

to that patent-paper frontier, which can lead to a lower . 

These features of the data do not appear at  because a direct citation from a patent 

to a paper cannot be constructed from citation behavior between patents or between 

papers.  

 

Whether it makes sense to account for a relationship between distance and citations 

counts depends on the question and the analysis.  For example, when , a 

relationship between a paper receiving more citations and smaller  is substantive in the 

sense that a more impactful paper (among other papers) also opens itself to closer links to 

future patentable applications.  Higher-impact papers, through the multiplicity of 

downstream work that builds on them, may naturally and meaningfully allow shorter path 

lengths to a patentable invention.  For patents, such a relationship does not follow, 

because patents connect to papers in our directed graph via backward references to prior 

patents, not forward citations.  For patents, more backwards references may lead to lower 

D (when ) by opening more pathways toward prior work, but this does not imply 

that the patent will be more cited itself.  Nonetheless, and with these nuances in mind, we 

take several approaches to clarify the results and their robustness to citation counts. 

 

Depending on the question, we confront the linkage between distance and citation 

counts in three different ways.  Our primary method uses fixed effect regressions.  Our 

secondary method focuses on the  case where the linkage does not arise.  Our final 

method uses a null model. This section discusses these methods in turn. 

 

Fixed effects 

 

Our regression models allow us to account in a flexible and non-parametric manner 

for the number of citations made or received.  The citation count fixed effects, by 

controlling for any average effect from the specific number of citations, mean that these 

regressions make comparisons across papers or patents that have the same number of 

references. 

 

The main analysis regarding institutions and distance (Fig. 4) confronts this issue by 

including fully-flexible controls for citation counts made or received (and shows that the 

link between institutional type and proximity to the frontier is robust to referencing 



 

 

12 

 

behavior, as well as numerous other features as discussed above).  For example, the 

regression with fixed effects for each number of citations asks: “Among papers with 

exactly 21 citations received, are university papers closer to the patent-paper boundary 

than firm papers?”  And similarly for the number of references made, and similarly for 

the patent regressions.  The fixed effects thus neutralize the average effect of any specific 

number of references on the  of that paper, and thus allow estimation of the institutional 

differences regarding distance from the patent-paper boundary while accounting for any 

differences in citations made or received across institutional types. 

 

A second application of citation count fixed effects concerns the ordering of fields in 

terms of the distance to the patent-paper boundary (Fig. 2).  The analyses in the main text 

categorize fields by their distance from the patent-paper boundary without controlling for 

potential differences in citation counts across fields.  Again, to the extent that being more 

highly cited substantively affords more pathways toward future patents, fields that are 

close to the boundary in part due to their importance to downstream work in general is 

potentially an important part of the story for that field and should not be parsed out.  

Showing the raw data in the main text also emphasizes transparency.  However, adjusting 

the question slightly, one may still be interested in whether fields are in fact closer or 

further from the patent-paper boundary due to their differential tendencies to be 

references in future work.  This question can also be analyzed using citation count fixed 

effects; it turns out that accounting for citations has little effect on the ordering of fields 

vis-à-vis distance to the boundary. 

 

Fig. S1 presents this finding, showing all science and engineering WOS fields.  The 

x-axis ranks fields over [0,1], ordered by the raw-data  for each field. The y-axis 

presents the ranking after parsing out the effect of citation counts to each paper in each 

field.   

 

The field ranking that controls for citation counts is determined as follows.  In the 

first step, we run a paper-level regression to predict  as a function of a full set of 

citation count fixed effects.  We then take the residual distance measure for each paper 

from this regression.  That is, for all papers with exactly  citations, the regression takes 

out the average distance among such papers ( , and each paper is given the residual 

 

  

 

The residual tells us, for each paper, whether it has unusually high or low distance 

given the number of pathways it has to future work.  In the second step, we then average 

 for each field.  This residual mean tells us whether a field is typically closer or further 

from the patent-paper boundary given the number of citations papers in that field receive. 

 

The y-axis in Fig. S1 presents the rank ordering of fields in their distance from the 

frontier, using this residual mean.  We can see that the rank ordering of fields is very 

similar whether we account for citation differences across fields (y-axis) or rank fields 

based on their raw .  Thus, for example, mathematics is the farthest field from the 

frontier either way – its distance from the frontier is not due to fewer citation counts.   
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The main text also focuses on citation impact itself (Fig. 3).  In this case, for papers, 

those papers that receive higher citations can be expected to achieve lower distance, per 

the above discussion, when .  Here we of course cannot use fixed effects or other 

regression methods to control for citations received because citations received is the 

outcome variable of interest.  The main analysis of impact thus focuses on the distinctive 

impact of  papers.  In this case, there is no innate relationship between citation 

impact and distance, because being linked directly to the other domain is not a construct 

of referencing within one’s own domain. 

 

Note that the impact regressions for patents do not raise this issue, because here the 

 of a specific patent is determined by the references the patent makes, not the number of 

citations it receives.  In any case, for consistency with the paper presentation, we 

emphasize the  patent case in the text.  For completeness, Fig. S3 shows the home 

run probability at each integer .  With patents we further examine patent fee renewal 

payments, rather than citation impact, as an alternative impact measure.   

 

Null Model 

 

Finally, we further explore the relationship between citations and distance using a 

null model.  In this model, we compare the observed  versus an expected  given the 

number of citations.  We build a null model as follows. 

 

Take a focal paper, , with observed distance .  We ask what would happen to  

if we replaced the citations to the focal paper with randomly selected citing material.  

This allows us to calculate the expected distance from the frontier for a paper, given a 

specific number of citations to that paper. 

 

The randomly selected citing entities are drawn from the union of future WOS 

papers and  patents.  Call this set of potential citing entities , and let there be  

citing entities to the focal paper.  In a new random draw of  citing entities from the set 

, we have a set of distance measures among these citing entities (the  of each 

randomly drawn citing paper, or  for any patent drawn).  The distance assigned to 

paper  will then be the minimum distance in the citing set plus 1.  Define this distance 

assigned to paper  as   Then the expected  for the focal paper, , will be the 

expected minimum  across all possible random draws. 

 

The expected minimum distance can be determined analytically for any number of 

citing entities, , using the empirical distribution of  among the papers that might be 

randomly drawn.  Namely, the probability that any particular randomly drawn citing 
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entity has assigned distance metric  is
6 

 
 

Now, we define  as the probability that with  draws (which represents the 

number of citations received by an article), the minimum degree is equal to .  To 

simplify notation, we drop here the subscript , but keep in mind that these probabilities 

depend on the publication year of the paper, which determines the set of future citing 

entities that may cite paper . 

 

Across  random draws of new citing entities, the probability that the minimum 

distance for the focal paper will be 1 is 

 

 
 

And the probability for other minimum distances will be 

 

 

 
et cetera.  The expected minimum distance for the focal paper is then 

 

 
where d is the set of positive integers.

7
  

 

Fig. S8 compares the observed distance versus the expected distance for all WOS 

papers published in 1990.  The observed distance is presented as the arithmetic mean of 

 for all papers receiving a given number, , citations. The expected distance is as 

above. 

 

The figure illustrates two things.  First, we see that papers with more citations are 

closer to the patent-paper boundary, both in the observed data and in the null model.  This 

finding follows naturally as discussed above, and is substantive to the extent that being 

more highly cited among other papers meaningfully increases the chance that a paper can 

find a pathway to a patentable application.  Second, we see that observed distances are 

systematically larger than expected distances at all number of citations.  This finding 

illustrates that the random citation network has lower distance between nodes than the 

actual citation network.  Papers in the observed network thus appear to exist in structured 

knowledge communities that are more weakly connected to other knowledge 

neighborhoods than random linkages would allow, which acts to extend the lengths of 

pathways to the patent-paper frontier. 

                                                 
6
 Note that this probability is also defined for “disconnected” citing entities for which D is missing and 

which account for an observable percentage of citing entities in . 
7
 If the randomly-drawn citing entity is not connected at any distance to that patent-paper frontier (i.e., it is 

‘disconnected’ and has no defined D), then this entity will not affect the expected minimum distance. 
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Fig. S1.  Field ranks.  This figure ranks the mean distance for each field (x-axis) versus the 

residual mean distance when we account for citation differences across fields (y-axis).  See SM 

text for methods. 
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Fig. S2.  Time.  This figure presents (A) time delays by citation distance, averaging across all 

papers (left) and patents (right).  The mean time delay for the field as a whole (x-axis) and 

average time delay for the field conditional on  (y-axis) are presented for different science 

fields (left) and different patent classes (right) (B). 

 

A 

B 

D D 

Tmean 

Tmean Tmean 

Tmean | D = 1 
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Fig. S3.  Impact and Distance at Each Degree, .  This figure presents, for each degree, the mean 

number of citations received for patents and papers.  (A) We see that a patent’s forward citation 

impact is greater the more closely its backward citations interact with science.  (B) For papers, we 

also see a smooth decay in impact with , but see further discussion in Section 4 of SM to 

carefully interpret this finding for papers.   

A 

B 
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Fig. S4. Regression results show that the impact findings are robust to fixed effects for each year, 

field/class, institutional setting, number of authors/inventors, and number of references made.  

The home run definition is being in the upper 5% of citations received in that field and year, for a 

patent or a research paper.  See Tables S3-S4 for the underlying regression results. 
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Fig. S5.  Timing and paper impact.  (A) The upper panel shows the home run probability for 

 papers (y-axis) when grouped by the number of years between patent application and the 

paper publication (x-axis).  The paper’s home run probability is three times the background rate 

of 5% even when a patent cites a paper immediately in the year the paper was published. This 

finding indicates that  patents do not simply cite already popular, established papers. (B) 

The average citation path over time for  papers, grouping papers by the noted number of 

years between patent citation and paper publication.  The top row of panel B confirms that 

citations within science largely come after the patent citation for short delay linkages.  The lower 

rows of panel B further indicate that the shape of the citation trajectory within science appears 

unaffected by the patent citation per se, which appears to rule out a substantial marketing or 

notoriety effect on scientific papers when cited by a patent. 

A 
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Fig. S6.  Institutional pathways to frontier for  patents.  (A) For  patents from firms, 

this figure examines the percentage that cite  patents of each institutional type.  Percentages 

(y-axis) add up to more than 100% because a  patent might have multiple pathways to the 

frontier.  Panel (B) repeats this analysis for  university patents and (C) repeats analysis for 

 government laboratory patents. We see that all patents tend to go through  firm 

patents, which follows because most patents are from firms.  At the same time, we also see that, 

along pathways to the frontier, institutions tend to weight upwards their own institutional type in 

the  patents they cite.   

A 

B 
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Fig. S7.  Impact and Individuals.  This figure shows the home run probability for  papers 

and patents, isolating cases where the same individual is the inventor and the author of the linked 

patent and paper.  These individuals are hitting home-runs at high rates in both domains.  The 

home run is also especially high on the paper side compared to other  papers, while on the 

patent side the home run rate is very similar to other  patents. 
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Fig. S8.  Null model.  This figure presents the observed mean D for each number of citations 

received (blue) and the expected mean D for each number of citations received assuming 

randomized citation links (orange).  See SM text for methods.   
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Fig. S9.  Applicant-Added Patent References.  For post-2001 patents, the database allows one to 

distinguish patent citations added by patent examiners from those added by applicants.  In this 

figure, we compare the findings for the patent citation network using all references versus a 

network that only uses applicant-added references.  (A) Shows some flattening of the peak in the 

D distribution but the shape is otherwise similar.  (B) For each patent technology class, the x-axis 

presents  using the network built from all references in each patent while the y-axis 

presents  using the network built from only the applicant-added citations. We see that the 

technology class ranks are broadly similarly with and without examiner-added citations.   

A 
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Table S1 – A New Typology for Technology Classes:  Mean, mode, and standard deviation of 

the distance metric and percentage connectivity for all U.S. patent technology classes. 

nClass Dmean DVariance Dmode Connectivity Class Name 

800 1.175114 0.221021 1 0.818992 

Multicellular Living Organisms and Unmodified Parts Thereof and Related 

Processes 

530 1.297301 0.392269 1 0.794603 

Chemistry:  Natural Resins or Derivatives; Peptides or Proteins; Lignins or 

Reaction Products Thereof 

435 1.322216 0.428349 1 0.860975 Chemistry: Molecular Biology and Microbiology 

505 1.348943 0.383274 1 0.934588 Superconductor Technology:  Apparatus, Material, Process 

536 1.393703 0.621094 1 0.737323 Organic Compounds -- Part of the Class 532-570 Series 

706 1.54019 0.446349 1 0.965108 Data Processing: Artificial Intelligence 

514 1.562451 0.812036 1 0.595509 Drug, Bio-Affecting and Body Treating Compositions 

552 1.605769 0.746505 1 0.316109 Organic Compounds -- Part of the Class 532-570 Series 

546 1.720372 1.031033 1 0.433491 Organic Compounds -- Part of the Class 532-570 Series 

372 1.735488 0.586659 1 0.893339 Coherent Light Generators 

117 1.741905 0.786892 1 0.832723 

Single-Crystal, Oriented-Crystal, and Epitaxy Growth Processes; Non-Coating 

Apparatus Therefor 

424 1.760048 0.907552 1 0.806923 Drug, Bio-Affecting and Body Treating Compositions 

436 1.766014 0.759711 1 0.796225 Chemistry: Analytical and Immunological Testing 

260 1.780488 1.439619 1 0.488095 Chemistry of Carbon Compounds 

549 1.796017 1.11349 1 0.404196 Organic Compounds -- Part of the Class 532-570 Series 

548 1.846395 1.363866 1 0.382082 Organic Compounds -- Part of the Class 532-570 Series 

707 1.854065 0.385663 2 0.985639 

Data Processing:  Database and File Management, Data Structures, or Document 

Processing 

540 1.866458 1.39479 1 0.35369 Organic Compounds -- Part of the Class 532-570 Series 

544 1.87828 1.328479 1 0.392954 Organic Compounds -- Part of the Class 532-570 Series 

554 1.894432 1.198832 1 0.386028 Organic Compounds -- Part of the Class 532-570 Series 

704 1.901753 0.511639 2 0.936287 

Data Processing: Speech Signal Processing, Linguistics, Language Translation, 

and Audio Compression/Decompression 

712 1.948629 0.577034 2 0.940221 

Electrical Computers and Digital Processing Systems:  Processing Architectures 

and Instruction Processing (e.g., Processors) 

564 1.951075 1.363404 1 0.374102 Organic Compounds -- Part of the Class 532-570 Series 

709 1.968096 0.391028 2 0.988196 

Electrical Computers and Digital Processing Systems:  Multiple Computer or 

Process Coordinating 

570 2.002865 1.143258 1 0.352882 Organic Compounds -- Part of the Class 532-570 Series 

607 2.014299 0.73059 2 0.874205 Surgery: Light, Thermal, and Electrical Application 

382 2.020667 0.67071 2 0.957274 Image Analysis 

560 2.02649 1.482742 1 0.332188 Organic Compounds -- Part of the Class 532-570 Series 

562 2.03675 1.49188 1 0.33014 Organic Compounds -- Part of the Class 532-570 Series 

600 2.04591 0.78718 2 0.861807 Surgery 

385 2.06043 0.756556 2 0.943234 Optical Waveguides 

708 2.070423 0.738771 2 0.816664 Electrical Computers:  Arithmetic Processing and Calculating 

438 2.071271 0.591287 2 0.958071 Semiconductor Device Manufacturing: Process 

623 2.07854 0.670164 2 0.892124 

Prosthesis (i.e., Artificial Body Members), Parts Thereof, or Aids and Accessories 

Therefor 

558 2.079504 1.677851 1 0.294522 Organic Compounds -- Part of the Class 532-570 Series 

370 2.106992 0.559557 2 0.938243 Multiplex Communications 



 

 

25 

 

nClass 
Dmean 

DVariance Dmode Connectivity Class Name 

714 2.137949 0.599837 2 0.9326 Error Detection/Correction and Fault Detection/Recovery 

375 2.139796 0.731083 2 0.915033 Pulse or Digital Communications 

556 2.140344 1.437301 1 0.543908 Organic Compounds -- Part of the Class 532-570 Series 

127 2.157593 1.296081 2 0.43462 Sugar, Starch, and Carbohydrates 

356 2.171978 1.0256 2 0.763407 Optics:  Measuring and Testing 

568 2.178053 1.678927 1 0.361082 Organic Compounds -- Part of the Class 532-570 Series 

423 2.195493 1.15998 2 0.480954 Chemistry of Inorganic Compounds 

518 2.195506 1.208969 2 0.489549 

Chemistry:  Fischer-Tropsch Processes; or Purification or Recovery of Products 

Thereof 

711 2.195665 0.551217 2 0.947604 Electrical Computers and Digital Processing Systems: Memory 

257 2.206684 0.827155 2 0.92005 Active Solid-State Devices (e.g., Transistors, Solid-State Diodes) 

512 2.210169 1.650744 1 0.327778 Perfume Compositions 

216 2.220155 1.17946 2 0.807442 Etching a Substrate:  Processes 

702 2.230358 0.923237 2 0.916401 Data Processing: Measuring, Calibrating, or Testing 

705 2.237093 0.682755 2 0.933495 

Data Processing: Financial, Business Practice, Management, or Cost/Price 

Determination 

136 2.241316 1.164801 2 0.777817 Batteries:  Thermoelectric and Photoelectric 

380 2.260653 0.872029 2 0.883242 Cryptography 

204 2.27239 1.380588 2 0.644018 Chemistry:  Electrical and Wave Energy 

341 2.274997 0.95966 2 0.8229 Coded Data Generation or Conversion 

326 2.280042 0.716282 2 0.924535 Electronic Digital Logic Circuitry 

713 2.28436 0.567348 2 0.972782 Electrical Computers and Digital Processing Systems:  Support 

606 2.294965 0.912996 2 0.85179 Surgery 

252 2.295794 1.29058 2 0.64531 Compositions 

330 2.297147 0.955432 2 0.684265 Amplifiers 

367 2.306974 1.232666 2 0.574187 Communications, Electrical: Acoustic Wave Systems and Devices 

585 2.3103 1.257605 2 0.464387 Chemistry of Hydrocarbon Compounds 

378 2.312279 1.141794 2 0.702416 X-Ray or Gamma Ray Systems or Devices 

504 2.312295 1.463947 2 0.337997 Plant Protecting and Regulating Compositions 

333 2.323264 1.068898 2 0.694242 Wave Transmission Lines and Networks 

250 2.333152 1.238335 2 0.741571 Radiant Energy 

342 2.341514 0.915302 2 0.675589 

Communications:  Directive Radio Wave Systems and Devices (e.g., Radar, Radio 

Navigation) 

710 2.342099 0.496668 2 0.942519 Electrical Computers and Digital Data Processing Systems:  Input/Output 

349 2.343737 0.748129 2 0.938112 Liquid Crystal Cells, Elements and Systems 

345 2.355601 0.736356 2 0.929229 

Computer Graphics Processing, Operator Interface Processing, and Selective 

Visual Display Systems 

374 2.35859 1.194347 2 0.67047 Thermal Measuring and Testing 

588 2.360444 0.89411 2 0.712311 Hazardous or Toxic Waste Destruction or Containment 

502 2.367155 1.414365 2 0.508629 Catalyst, Solid Sorbent, or Support Therefor:  Product or Process of Making 

365 2.377032 0.853496 2 0.902705 Static Information Storage and Retrieval 

501 2.388352 1.047848 2 0.711548 Compositions: Ceramic 

426 2.396419 1.572398 2 0.548394 Food or Edible Material:  Processes, Compositions, and Products 

205 2.399323 1.623254 2 0.484653 

Electrolysis:  Processes, Compositions Used Therein, and Methods of Preparing 

the Compositions 

Table S1 - Continued 
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nClass 
Dmean 

DVariance Dmode Connectivity Class Name 

420 2.407789 1.327408 2 0.311786 Alloys or Metallic Compositions 

148 2.420596 1.65962 2 0.464031 Metal Treatment 

324 2.424928 1.100078 2 0.774617 Electricity:  Measuring and Testing 

455 2.434308 0.656267 2 0.895207 Telecommunications 

526 2.435057 1.835474 2 0.533704 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

527 2.436975 1.960314 1 0.477912 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

379 2.437166 0.833557 2 0.799147 Telephonic Communications 

507 2.438017 1.070538 2 0.528384 Earth Boring, Well Treating, and Oil Field Chemistry 

700 2.462103 0.938924 2 0.877077 Data Processing:  Generic Control Systems or Specific Applications 

327 2.464759 0.873309 2 0.817436 Miscellaneous Active Electrical Nonlinear Devices, Circuits, and Systems 

95 2.471297 1.329417 2 0.650371 Gas Separation:  Processes 

NA 2.471429 1.761565 2 0.804598 

 
427 2.484185 1.607108 2 0.602675 Coating Processes 

359 2.498096 1.758606 2 0.752874 Optics:  Systems (Including Communication) and Elements 

343 2.512425 1.084135 2 0.700268 Communications:  Radio Wave Antennas 

71 2.512871 1.90528 2 0.381997 Chemistry: Fertilizers 

522 2.515225 1.42151 2 0.677113 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

386 2.526687 0.705254 2 0.853147 Television Signal Processing for Dynamic Recording or Reproducing 

331 2.531557 1.420241 2 0.681113 Oscillators 

51 2.534729 1.177433 2 0.685137 Abrasive Tool Making Process, Material, or Composition 

348 2.535461 0.885106 2 0.819967 Television 

534 2.547408 2.283151 1 0.297592 Organic Compounds -- Part of the Class 532-570 Series 

128 2.553712 1.509109 2 0.708701 Surgery 

445 2.558483 1.87897 2 0.646179 Electric Lamp or Space Discharge Component or Device Manufacturing 

332 2.565385 1.295725 2 0.625 Modulators 

323 2.585055 0.971473 2 0.769739 Electricity:  Power Supply or Regulation Systems 

65 2.590652 1.508407 2 0.502285 Glass Manufacturing 

516 2.591973 1.659601 2 0.550645 Colloid Systems and Wetting Agents; Subcombinations Thereof; Processes Of 

422 2.597975 1.496437 2 0.636879 

Chemical Apparatus and Process Disinfecting, Deodorizing, Preserving, or 

Sterilizing 

334 2.607143 0.73852 2 0.191781 Tuners 

196 2.608696 1.10775 2 0.176923 Mineral Oils: Apparatus 

419 2.615445 1.299075 2 0.634339 Powder Metallurgy Processes 

291 2.625 1.734375 3 0.242424 Track Sanders 

510 2.625794 1.061209 2 0.695186 

Cleaning Compositions for Solid Surfaces, Auxiliary Compositions Therefor, or 

Processes of Preparing the Compositions 

75 2.632 1.701667 2 0.406564 

Specialized Metallurgical Processes, Compositions for Use Therein, Consolidated 

Metal Powder Compositions, and Loose Metal Particulate Mixtures 

162 2.656138 1.723561 2 0.547436 Paper Making and Fiber Liberation 

381 2.662545 1.210124 2 0.723589 Electrical Audio Signal Processing Systems and Devices 

604 2.665856 1.271812 2 0.754056 Surgery 

23 2.666667 2.188889 2 0.337079 Chemistry: Physical Processes 

429 2.682677 1.690645 2 0.660034 Chemistry:  Electrical Current Producing Apparatus, Product, and Process 

Table S1 - Continued 
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nClass 
Dmean 

DVariance Dmode Connectivity Class Name 

528 2.685146 2.212824 2 0.468968 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

210 2.697241 1.650995 2 0.556124 Liquid Purification or Separation 

159 2.709924 1.427306 2 0.253385 Concentrating Evaporators 

149 2.717252 1.199607 2 0.380085 Explosive and Thermic Compositions or Charges 

1 2.722222 1.533951 2 0.9 ** Classification Undetermined ** 

363 2.743364 1.033804 3 0.717674 Electric Power Conversion Systems 

208 2.743845 1.387797 2 0.428495 Mineral Oils: Processes and Products 

203 2.744741 1.51689 2 0.362297 Distillation: Processes, Separatory 

376 2.745477 1.724448 2 0.411459 Induced Nuclear Reactions:  Processes, Systems, and Elements 

360 2.754017 1.404029 2 0.705424 Dynamic Magnetic Information Storage or Retrieval 

329 2.755556 1.703883 2 0.531686 Demodulators 

73 2.761501 1.614618 2 0.599299 Measuring and Testing 

525 2.767359 2.010653 2 0.488415 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

48 2.770925 1.590697 2 0.325448 Gas: Heating and Illuminating 

351 2.771874 1.926704 2 0.527368 Optics:  Eye Examining, Vision Testing and Correcting 

118 2.774626 1.731499 2 0.592752 Coating Apparatus 

369 2.781043 1.001925 3 0.865226 Dynamic Information Storage or Retrieval 

494 2.800745 1.455642 2 0.39083 Imperforate Bowl:  Centrifugal Separators 

433 2.801966 1.50142 2 0.541688 Dentistry 

235 2.823529 0.928585 3 0.789479 Registers 

175 2.832048 1.389394 2 0.483472 Boring or Penetrating the Earth 

463 2.832151 0.829983 3 0.826172 Amusement Devices: Games 

338 2.832182 1.548495 2 0.515302 Electrical Resistors 

166 2.843605 1.735715 2 0.530373 Wells 

353 2.843943 0.8302 3 0.728502 Optics:  Image Projectors 

313 2.848886 1.923822 2 0.602686 Electric Lamp and Discharge Devices 

508 2.860978 1.672907 2 0.417869 

Solid Anti-Friction Devices, Materials Therefor, Lubricant or Separate 

Compositions for Moving Solid Surfaces, and Miscellaneous Mineral Oil 

Compositions 

106 2.867481 1.70914 2 0.511152 Compositions:  Coating or Plastic 

523 2.876069 1.828561 2 0.497999 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

377 2.878268 1.147763 3 0.534731 

Electrical Pulse Counters, Pulse Dividers, or Shift Registers:  Circuits and 

Systems 

428 2.879076 1.941092 2 0.626129 Stock Material or Miscellaneous Articles 

352 2.881633 1.467622 3 0.255208 Optics:  Motion Pictures 

8 2.8921 2.010708 2 0.400463 

Bleaching and Dyeing; Fluid Treatment and Chemical Modification of Textiles 

and Fibers 

434 2.90827 1.889431 2 0.523178 Education and Demonstration 

315 2.918019 1.420227 3 0.605802 Electric Lamp and Discharge Devices:  Systems 

201 2.931034 1.20214 3 0.121339 Distillation: Processes, Thermolytic 

358 2.931576 1.013178 3 0.898132 Facsimile and Static Presentation Processing 

131 2.949398 2.072138 2 0.243759 Tobacco 

318 2.961104 1.3377 3 0.651396 Electricity:  Motive Power Systems 

178 2.967177 1.611614 3 0.499454 Telegraphy 
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228 2.975948 1.348964 3 0.581661 Metal Fusion Bonding 

701 2.977181 1.2299 3 0.917627 Data Processing: Vehicles, Navigation, and Relative Location 

430 2.980777 1.784392 3 0.694869 Radiation Imagery Chemistry: Process, Composition, or Product Thereof 

521 2.987399 1.930374 3 0.448616 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

44 2.998458 1.807245 3 0.410703 Fuel and Related Compositions 

524 3.015944 1.998646 3 0.474148 Synthetic Resins or Natural Rubbers -- Part of the Class 520 Series 

96 3.021657 1.662769 3 0.494247 Gas Separation:  Apparatus 

340 3.022138 1.233827 3 0.718952 Communications:  Electrical 

134 3.045502 1.979315 2 0.588844 Cleaning and Liquid Contact with Solids 

355 3.046447 1.702665 3 0.595616 Photocopying 

322 3.048227 1.543773 3 0.571313 Electricity:  Single Generator Systems 

388 3.060127 1.214739 3 0.392547 Electricity:  Motor Control Systems 

264 3.070119 2.056779 2 0.543079 Plastic and Nonmetallic Article Shaping or Treating: Processes 

601 3.102228 2.619956 2 0.556731 Surgery: Kinesitherapy 

219 3.135265 1.687445 3 0.592233 Electric Heating 

290 3.135843 1.832611 3 0.550947 Prime-Mover Dynamo Plants 

442 3.140203 1.993012 3 0.547388 Web or Sheet Containing Structurally Defined Element or Component (428/221) 

86 3.151786 2.003747 3 0.23382 Ammunition and Explosive-Charge Making 

451 3.15623 1.986992 3 0.527662 Abrading 

244 3.178449 2.223915 2 0.416152 Aeronautics 

347 3.184677 1.346314 3 0.817894 Incremental Printing of Symbolic Information 

361 3.191165 1.454121 3 0.701816 Electricity:  Electrical Systems and Devices 

346 3.191589 2.042733 3 0.308802 Recorders 

310 3.19559 2.138665 3 0.637064 Electrical Generator or Motor Structure 

602 3.214477 1.740416 3 0.57473 Surgery: Splint, Brace, or Bandage 

89 3.247972 2.047432 3 0.236763 Ordnance 

202 3.261708 1.8406 3 0.282271 Distillation: Apparatus 

320 3.27776 1.380081 3 0.750642 Electricity:  Battery or Capacitor Charging or Discharging 

307 3.282966 1.524086 3 0.669529 Electrical Transmission or Interconnection Systems 

336 3.295356 2.192155 3 0.497832 Inductor Devices 

156 3.325683 1.947308 3 0.490886 Adhesive Bonding and Miscellaneous Chemical Manufacture 

234 3.333333 0.622222 3 0.294118 Selective Cutting (e.g., Punching) 

76 3.335404 1.899927 3 0.199504 Metal Tools and Implements, Making 

164 3.349802 2.765978 2 0.296774 Metal Founding 

29 3.360501 2.266597 3 0.455759 Metal Working 

209 3.386613 2.375006 3 0.341813 Classifying, Separating, and Assorting Solids 

246 3.389058 1.410944 3 0.408696 Railway Switches and Signals 

47 3.40702 2.779532 4 0.390478 Plant Husbandry 

102 3.407632 1.59701 3 0.310105 Ammunition and Explosives 

181 3.407903 2.166138 3 0.429392 Acoustics 

392 3.41771 2.209239 3 0.492728 Electric Resistance Heating Devices 

295 3.421053 2.875346 2 0.223529 Railway Wheels and Axles 
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174 3.435782 1.840733 3 0.632111 Electricity:  Conductors and Insulators 

266 3.45302 2.522961 3 0.174985 Metallurgical Apparatus 

373 3.473529 3.178711 3 0.226516 Industrial Electric Heating Furnaces 

110 3.47528 2.323219 3 0.475102 Furnaces 

34 3.481234 2.630799 3 0.405068 Drying and Gas or Vapor Contact with Solids 

492 3.488722 1.447868 3 0.472189 Roll or Roller 

335 3.49595 3.197101 3 0.393661 Electricity:  Magnetically Operated Switches, Magnets, and Electromagnets 

177 3.525389 1.905314 3 0.372731 Weighing Scales 

60 3.56543 2.423047 3 0.483332 Power Plants 

165 3.56544 1.955417 3 0.437646 Heat Exchange 

432 3.569154 2.32283 3 0.305936 Heating 

405 3.570769 2.681915 3 0.341817 Hydraulic and Earth Engineering 

368 3.609868 1.885297 3 0.328791 Horology: Time Measuring Systems or Devices 

366 3.611167 2.34227 3 0.367128 Agitating 

261 3.633663 2.638075 3 0.343246 Gas and Liquid Contact Apparatus 

111 3.635036 2.728116 3 0.41673 Planting 

87 3.638298 2.784065 3 0.370079 Textiles: Braiding, Netting, and Lace Making 

62 3.649486 2.589288 3 0.508508 Refrigeration 

283 3.679245 1.678248 3 0.558483 Printed Matter 

299 3.68254 3.664298 3 0.135019 Mining or In Situ Disintegration of Hard Material 

416 3.693938 2.239002 3 0.417662 Fluid Reaction Surfaces (i.e., Impellers) 

225 3.701031 3.130549 3 0.287549 Severing by Tearing or Breaking 

186 3.701613 0.999675 3 0.504065 Merchandising 

169 3.70229 2.875745 3 0.274059 Fire Extinguishers 

194 3.725962 1.692531 3 0.386378 Check-Actuated Control Mechanisms 

84 3.737492 2.734284 3 0.40365 Music 

227 3.744898 3.464608 2 0.375087 Elongated-Member-Driving Apparatus 

415 3.816134 2.422589 4 0.427462 Rotary Kinetic Fluid Motors or Pumps 

55 3.817762 1.790319 4 0.49557 Gas Separation 

417 3.838311 2.458512 3 0.41172 Pumps 

171 3.842105 3.711911 3 0.075099 Unearthing Plants or Buried Objects 

33 3.845835 2.457242 3 0.342929 Geometrical Instruments 

503 3.852399 2.676861 3 0.296283 

Record Receiver Having Plural Interactive Leaves or a Colorless Color Former, 

Method of Use, or Developer Therefor 

14 3.865217 2.525312 3 0.244941 Bridges 

122 3.866292 2.275381 3 0.364008 Liquid Heaters and Vaporizers 

452 3.868644 3.177661 3 0.179878 Butchering 

168 3.869565 1.374291 3 0.2 Farriery 

413 3.869565 2.374291 3 0.142415 Sheet Metal Container Making 

140 3.869565 3.591682 4 0.094553 Wireworking 

407 3.874539 2.570975 3 0.341956 Cutters, for Shaping 

400 3.897408 1.842534 4 0.505674 Typewriting Machines 
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119 3.898658 2.567582 4 0.375268 Animal Husbandry 

289 3.90625 2.084961 4 0.166667 Knots and Knot Tying 

218 3.907186 3.790787 3 0.190966 High-Voltage Switches with Arc Preventing or Extinguishing Devices 

104 3.910331 2.413012 3 0.207861 Railways 

425 3.916791 2.604909 4 0.38135 Plastic Article or Earthenware Shaping or Treating: Apparatus 

138 3.933559 1.837928 4 0.438952 Pipes and Tubular Conduits 

236 3.942641 2.131991 4 0.393862 Automatic Temperature and Humidity Regulation 

460 3.953125 3.034261 4 0.225352 Crop Threshing or Separating 

404 3.955642 1.723324 4 0.381079 Road Structure, Process, or Apparatus 

431 3.965164 2.898377 4 0.377855 Combustion 

19 3.972851 1.795643 4 0.25286 Textiles:  Fiber Preparation 

249 3.984756 2.685743 4 0.191142 Static Molds 

43 3.988145 3.123748 3 0.241518 Fishing, Trapping, and Vermin Destroying 

241 3.991228 3.167939 3 0.237805 Solid Material Comminution or Disintegration 

28 4.002237 3.648765 3 0.315678 Textiles:  Manufacturing 

384 4.024414 2.411563 4 0.294267 Bearings 

273 4.028936 1.858737 4 0.296268 Amusement Devices:  Games 

68 4.040964 3.085069 4 0.215696 Textiles:  Fluid Treating Apparatus 

187 4.051038 2.648779 4 0.394809 Elevator, Industrial Lift Truck, or Stationary Lift for Vehicle 

239 4.057437 2.700087 4 0.379041 Fluid Sprinkling, Spraying, and Diffusing 

12 4.060241 4.080708 2 0.163708 Boot and Shoe Making 

125 4.065934 2.501147 3 0.353398 Stone Working 

277 4.078769 2.402125 4 0.361538 Seal for a Joint or Juncture 

477 4.086399 1.434388 4 0.757968 Interrelated Power Delivery Controls, Including Engine Control 

362 4.104522 2.331652 3 0.584903 Illumination 

482 4.107482 1.750752 4 0.553168 Exercise Devices 

191 4.117117 3.238536 4 0.226069 Electricity:  Transmission To Vehicles 

116 4.119545 2.276032 4 0.267921 Signals and Indicators 

126 4.121341 3.214266 3 0.277661 Stoves and Furnaces 

414 4.132334 2.802338 3 0.286997 Material or Article Handling 

82 4.132653 2.841587 4 0.238675 Turning 

399 4.136417 1.613027 4 0.70389 Electrophotography 

251 4.136624 2.46701 4 0.313484 Valves and Valve Actuation 

409 4.143406 2.68366 3 0.300616 Gear Cutting, Milling, or Planing 

5 4.144492 2.9023 3 0.387804 Beds 

212 4.159091 2.870145 4 0.195382 Traversing Hoists 

101 4.166075 2.495035 3 0.457125 Printing 

472 4.175793 3.23999 3 0.305996 Amusement Devices 

72 4.177816 3.030099 4 0.201671 Metal Deforming 

293 4.180451 2.177964 4 0.39662 Vehicle Fenders 

473 4.189194 2.002561 4 0.417732 Games Using Tangible Projectile 

406 4.19375 2.518711 4 0.189237 Conveyors:  Fluid Current 
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446 4.200978 2.384547 4 0.326886 Amusement Devices:  Toys 

141 4.215061 2.633959 4 0.460558 Fluent Material Handling, with Receiver or Receiver Coacting Means 

439 4.222651 2.029756 4 0.608336 Electrical Connectors 

337 4.225473 3.806305 3 0.258222 Electricity:  Electrothermally or Thermally Actuated Switches 

139 4.229465 2.510579 3 0.221484 Textiles:  Weaving 

137 4.233786 2.787005 4 0.296376 Fluid Handling 

152 4.243519 2.15908 4 0.303384 Resilient Tires and Wheels 

462 4.245283 2.562478 3 0.24537 Books, Strips, and Leaves for Manifolding 

470 4.245614 3.799323 3 0.156164 Threaded, Headed Fastener, or Washer Making: Process and Apparatus 

57 4.259972 2.530764 4 0.170218 Textiles:  Spinning, Twisting, and Twining 

453 4.269841 2.435122 4 0.208955 Coin Handling 

408 4.287902 3.071783 3 0.205669 Cutting by Use of Rotating Axially Moving Tool 

100 4.291492 3.690486 4 0.226397 Presses 

83 4.300875 2.442297 4 0.22742 Cutting 

294 4.314534 2.79044 4 0.185327 Handling:  Hand and Hoist-Line Implements 

396 4.31553 2.522401 4 0.453856 Photography 

180 4.317217 2.732882 4 0.420527 Motor Vehicles 

188 4.32801 3.105759 4 0.312716 Brakes 

222 4.336061 2.198392 4 0.388952 Dispensing 

269 4.337646 2.588453 4 0.267289 Work Holders 

26 4.361446 1.91755 4 0.166333 Textiles: Cloth Finishing 

2 4.395052 2.859896 4 0.407568 Apparel 

450 4.395918 1.831004 4 0.382813 Foundation Garments 

105 4.397119 2.40814 4 0.223243 Railway Rolling Stock 

109 4.398374 1.703087 4 0.242604 Safes, Bank Protection, or a Related Device 

493 4.420569 2.210633 4 0.298356 

Manufacturing Container or Tube From Paper; or Other Manufacturing From a 

Sheet or Web 

66 4.422062 2.689969 4 0.157418 Textiles:  Knitting 

221 4.424157 2.468967 4 0.314766 Article Dispensing 

226 4.456233 2.794504 4 0.224271 Advancing Material of Indeterminate Length 

132 4.457143 3.089433 4 0.345205 Toilet 

114 4.459477 3.925448 3 0.199136 Ships 

15 4.460214 2.424097 4 0.257427 Brushing, Scrubbing, and General Cleaning 

285 4.466914 2.125485 4 0.346649 Pipe Joints or Couplings 

215 4.467074 1.7832 4 0.349135 Bottles and Jars 

59 4.467742 1.700572 5 0.093514 Chain, Staple, and Horseshoe Making 

237 4.470588 2.366782 5 0.307034 Heating Systems 

383 4.471944 2.243201 4 0.447734 Flexible Bags 

123 4.472974 2.1713 4 0.552693 Internal-Combustion Engines 

42 4.477352 2.586305 4 0.244394 Firearms 

184 4.484375 2.531006 4 0.313725 Lubrication 

27 4.484848 1.934619 4 0.419847 Undertaking 
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52 4.485391 2.708108 4 0.321736 Static Structures (e.g., Buildings) 

173 4.490625 2.890537 4 0.270042 Tool Driving or Impacting 

267 4.49113 2.931527 4 0.297005 Spring Devices 

254 4.494828 3.198249 4 0.162784 Implements or Apparatus for Applying Pushing or Pulling Force 

172 4.51046 3.053238 3 0.20515 Earth Working 

53 4.526302 2.850718 4 0.355744 Package Making 

99 4.526316 2.5384 4 0.387354 Foods and Beverages: Apparatus 

441 4.527964 2.866668 5 0.211848 Buoys, Rafts, and Aquatic Devices 

305 4.533333 2.064274 4 0.237805 Wheel Substitutes for Land Vehicles 

483 4.534296 2.718138 4 0.33134 Tool Changing 

454 4.543614 2.726291 4 0.352844 Ventilation 

37 4.545337 2.763489 4 0.279913 Excavating 

157 4.566667 2.445556 5 0.073892 Wheelwright Machines 

401 4.568273 2.873853 4 0.261417 Coating Implements with Material Supply 

40 4.569264 2.430267 4 0.309548 Card, Picture, or Sign Exhibiting 

303 4.59027 2.449377 4 0.500095 Fluid-Pressure and Analogous Brake Systems 

144 4.610338 2.245778 4 0.155487 Woodworking 

63 4.624309 2.52184 5 0.190928 Jewelry 

412 4.630303 2.729991 4 0.317919 Bookbinding: Process and Apparatus 

56 4.643212 2.828828 4 0.213465 Harvesters 

92 4.664444 2.367402 4 0.291262 Expansible Chamber Devices 

206 4.673001 2.706532 4 0.379576 Special Receptacle or Package 

7 4.674699 1.701408 4 0.211735 Compound Tools 

476 4.681992 3.971668 3 0.504836 Friction Gear Transmission Systems or Components 

280 4.708079 2.35531 4 0.396586 Land Vehicles 

124 4.710497 2.210111 4 0.379137 Mechanical Guns and Projectors 

200 4.717956 3.394904 4 0.359052 Electricity:  Circuit Makers and Breakers 

301 4.730878 2.089047 5 0.361866 Land Vehicles:  Wheels and Axles 

160 4.731463 1.971976 4 0.376699 Flexible or Portable Closure, Partition, or Panel 

16 4.747026 2.485568 5 0.265418 Miscellaneous Hardware 

185 4.772727 1.448347 5 0.177419 Motors:  Spring, Weight, or Animal Powered 

30 4.785998 3.108539 4 0.17231 Cutlery 

193 4.793478 2.816044 5 0.155932 Conveyors, Chutes, Skids, Guides, and Ways 

296 4.795501 2.133913 5 0.475618 Land Vehicles:  Bodies and Tops 

464 4.811494 3.649523 4 0.282927 Rotary Shafts, Gudgeons, Housings, and Flexible Couplings for Rotary Shafts 

403 4.811881 2.978589 5 0.271505 Joints and Connections 

242 4.816553 2.675699 4 0.234382 Winding, Tensioning, or Guiding 

135 4.820513 2.382089 5 0.311606 Tent, Canopy, Umbrella, or Cane 

248 4.826147 2.733422 4 0.335323 Supports 

418 4.836791 3.83505 5 0.167944 Rotary Expansible Chamber Devices 

220 4.837478 2.617311 4 0.328364 Receptacles 

256 4.846868 2.988151 4 0.315058 Fences 
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198 4.875163 2.567422 5 0.28294 Conveyors:  Power-Driven 

270 4.885246 2.012167 5 0.438849 Sheet-Material Associating 

411 4.887841 3.156183 4 0.198957 

Expanded, Threaded, Driven, Headed, Tool-Deformed, or Locked-Threaded 

Fastener 

474 4.9017 2.882429 4 0.319707 Endless Belt Power Transmission Systems or Components 

24 4.905827 2.797488 4 0.24684 Buckles, Buttons, Clasps, Etc. 

112 4.909315 2.03681 5 0.311551 Sewing 

440 4.910472 3.071121 4 0.318645 Marine Propulsion 

49 4.921875 2.447021 5 0.276942 Movable or Removable Closures 

74 4.925116 2.93886 5 0.344843 Machine Element or Mechanism 

312 4.937207 2.399226 4 0.323647 Supports:  Cabinet Structure 

38 4.960474 2.662469 4 0.305187 Textiles:  Ironing or Smoothing 

211 4.966134 2.714751 4 0.341252 Supports:  Racks 

232 4.982759 1.959473 5 0.243017 Deposit and Collection Receptacles 

54 4.982759 2.620392 4 0.216418 Harness 

91 5.010574 3.974208 4 0.184555 Motors: Expansible Chamber Type 

297 5.018194 2.242481 5 0.40425 Chairs and Seats 

271 5.021898 2.575499 4 0.41299 Sheet Feeding or Delivering 

108 5.028382 2.173272 5 0.316942 Horizontally Supported Planar Surfaces 

238 5.033333 1.598889 6 0.078227 Railways:  Surface Track 

4 5.039892 2.738031 5 0.261231 Baths, Closets, Sinks, and Spittoons 

190 5.043046 1.676955 5 0.367844 Trunks and Hand-Carried Luggage 

475 5.073192 2.677623 5 0.485594 Planetary Gear Transmission Systems or Components 

70 5.111992 2.556338 5 0.317345 Locks 

182 5.124845 2.084537 5 0.207862 Fire Escape, Ladder, or Scaffold 

142 5.142857 2.408163 6 0.116667 Wood Turning 
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Table S2 – A New Typology for Scientific Fields:  Mean, mode, and standard deviation of the 

distance metric and percentage connectivity for all science and engineering WOS fields. 

FieldCode Dmean DVariance DMode Connectivity Field Name 

'QE' 2.000455373 0.806668483 2 0.895838999 MATERIALS SCIENCE, BIOMATERIALS 

'ES' 2.052515944 1.514040464 1 0.61741211 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE 

'ZE' 2.160138496 0.887671778 2 0.811426427 VIROLOGY 

'YE' 2.163071314 1.573954645 1 0.619344606 TELECOMMUNICATIONS 

'DX' 2.166021029 1.159640447 2 0.763447916 CHEMISTRY, CLINICAL & MEDICINAL 

'RB' 2.187304426 1.274259922 2 0.444820044 ROBOTICS 

'EW' 2.220658463 1.723829235 1 0.592035782 COMPUTER SCIENCE, SOFTWARE ENGINEERING 

'IG' 2.229331439 1.073210106 2 0.755923766 ENGINEERING, BIOMEDICAL 

'EP' 2.238099561 1.33062892 2 0.540551593 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 

'DR' 2.245792206 0.835648793 2 0.805939991 CELL BIOLOGY 

'IQ' 2.246137132 1.531844372 2 0.664126678 ENGINEERING, ELECTRICAL & ELECTRONIC 

'CQ' 2.254216773 0.799867238 2 0.833541259 BIOCHEMISTRY & MOLECULAR BIOLOGY 

'NS' 2.258480208 1.198891536 2 0.96369104 NANOSCIENCE & NANOTECHNOLOGY 

'YR' 2.265170407 1.627939019 1 0.298548207 TRANSPORTATION SCIENCE & TECHNOLOGY 

'DB' 2.269017888 1.072221477 2 0.781278071 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 

'NI' 2.286904228 0.908191204 2 0.791996116 IMMUNOLOGY 

'MA' 2.310863154 0.867490998 2 0.638326162 HEMATOLOGY 

'CO' 2.317118557 1.064288758 2 0.762187289 BIOCHEMICAL RESEARCH METHODS 

'DM' 2.357995621 0.896881859 2 0.785348848 ONCOLOGY 

'DA' 2.359498136 0.739319422 2 0.826025086 BIOPHYSICS 

'QU' 2.380705006 0.959156679 2 0.772255125 MICROBIOLOGY 

'HQ' 2.384467829 1.017946848 2 0.819529285 ELECTROCHEMISTRY 

'HY' 2.395286626 0.886467535 2 0.835591454 DEVELOPMENTAL BIOLOGY 

'EE' 2.421917479 1.009018292 2 0.797615178 CHEMISTRY, ORGANIC 

'QG' 2.432983193 1.129038159 2 0.743471198 MATERIALS SCIENCE, COATINGS & FILMS 

'ZD' 2.457285654 1.025186866 2 0.630565881 PERIPHERAL VASCULAR DISEASE 

'ET' 2.470588235 2.000632122 2 0.562881986 COMPUTER SCIENCE, INFORMATION SYSTEMS 

'NN' 2.482106477 1.12244251 2 0.694167155 INFECTIOUS DISEASES 

'QA' 2.489552493 1.047878997 2 0.714372115 MEDICINE, RESEARCH & EXPERIMENTAL 

'EX' 2.492561634 1.915165282 2 0.456393664 COMPUTER SCIENCE, THEORY & METHODS 

'IA' 2.498671521 0.831824298 2 0.76168954 ENDOCRINOLOGY & METABOLISM 

'TU' 2.503186339 1.039774471 2 0.733145597 PHARMACOLOGY & PHARMACY 

'UY' 2.504428246 1.065325203 2 0.788328086 POLYMER SCIENCE 

'KM' 2.533144064 1.142282813 2 0.762421975 GENETICS & HEREDITY 

'RU' 2.538575241 0.88800968 2 0.768934144 NEUROSCIENCES 

'IK' 2.542159596 1.527101327 2 0.421904308 ENGINEERING, MANUFACTURING 

'DS' 2.542421746 1.172888557 2 0.533475627 CRITICAL CARE MEDICINE 

'WH' 2.544892389 1.077763171 2 0.578190249 RHEUMATOLOGY 

'UB' 2.552574878 1.532896109 2 0.744703692 PHYSICS, APPLIED 
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FieldCode Dmean DVariance DMode Connectivity Field Name 

'PW' 2.552738199 0.99828973 2 0.637875603 MEDICAL LABORATORY TECHNOLOGY 

'SY' 2.578029585 1.70677133 2 0.723990611 OPTICS 

'DW' 2.599112377 1.230688733 2 0.69495076 CHEMISTRY, APPLIED 

'ER' 2.60223719 1.65330748 2 0.58405339 COMPUTER SCIENCE, CYBERNETICS 

'AQ' 2.630367727 1.034383232 2 0.622702621 ALLERGY 

'UM' 2.64715362 0.839832768 2 0.777795452 PHYSIOLOGY 

'DQ' 2.650212198 1.130483361 2 0.64738696 CARDIAC & CARDIOVASCULAR SYSTEMS 

'WF' 2.653299372 1.044056464 2 0.731614301 REPRODUCTIVE BIOLOGY 

'DY' 2.658871651 1.224748458 2 0.71431889 CHEMISTRY 

'PK' 2.686910467 1.308532321 2 0.644788838 MATERIALS SCIENCE, CERAMICS 

'WE' 2.688599161 1.085259143 2 0.649015164 RESPIRATORY SYSTEM 

'OI' 2.707674944 1.42959497 2 0.426508344 INTEGRATIVE & COMPLEMENTARY MEDICINE 

'KI' 2.712802855 1.113091668 2 0.547032657 GASTROENTEROLOGY & HEPATOLOGY 

'YP' 2.718964313 1.09653419 3 0.685113169 TRANSPLANTATION 

'MC' 2.724137931 1.295283393 3 0.939664804 MATHEMATICAL & COMPUTATIONAL BIOLOGY 

'RO' 2.736249038 1.825403492 2 0.659792824 MULTIDISCIPLINARY SCIENCES 

'JY' 2.740697828 1.250923136 3 0.717134501 FOOD SCIENCE & TECHNOLOGY 

'SU' 2.743488889 1.166304537 2 0.66994619 OPHTHALMOLOGY 

'RT' 2.746485338 1.117390192 3 0.618586666 CLINICAL NEUROLOGY 

'TM' 2.748943517 1.069972585 3 0.715021032 PATHOLOGY 

'EA' 2.752290251 1.287565739 3 0.714480464 CHEMISTRY, ANALYTICAL 

'II' 2.770698448 1.361841161 2 0.649307074 ENGINEERING, CHEMICAL 

'EI' 2.777184388 1.18233288 3 0.773629456 CHEMISTRY, PHYSICAL 

'SA' 2.777351401 1.183871008 3 0.724844623 NUTRITION & DIETETICS 

'AA' 2.777882593 1.526160585 2 0.622163259 ACOUSTICS 

'TC' 2.783639515 1.313867516 2 0.702165151 ORTHOPEDICS 

'RX' 2.787536015 1.167643176 3 0.656462347 NEUROIMAGING 

'GA' 2.791005838 1.282172553 3 0.560909881 DERMATOLOGY 

'XW' 2.792349271 1.097937585 3 0.637940675 SPORT SCIENCES 

'PM' 2.79539511 1.520616949 2 0.692062033 MATERIALS SCIENCE 

'RA' 2.813261824 1.115191154 3 0.716381418 MICROSCOPY 

'AE' 2.813704994 1.756699513 2 0.53010713 AGRICULTURAL ENGINEERING 

'AZ' 2.814777498 1.005994892 3 0.759372609 ANDROLOGY 

'AC' 2.823231094 1.759039998 2 0.491995688 AUTOMATION & CONTROL SYSTEMS 

'ZA' 2.827878268 1.287366561 3 0.64333433 UROLOGY & NEPHROLOGY 

'UE' 2.833733014 1.815520757 3 0.6502079 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY 

'OA' 2.837660851 1.669107831 3 0.693409797 INSTRUMENTS & INSTRUMENTATION 

'VY' 2.844080131 1.37279136 3 0.662555289 RADIOLOGY & NUCLEAR MEDICINE 

'ID' 2.850692958 1.672591695 3 0.641989137 ENERGY & FUELS 

'BA' 2.854042061 1.234436199 3 0.555049851 ANESTHESIOLOGY 

'AH' 2.883350104 1.873148743 2 0.503841504 AGRICULTURE, MULTIDISCIPLINARY 

'YO' 2.88610166 1.088541528 3 0.746718631 TOXICOLOGY 
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FieldCode Dmean DVariance DMode Connectivity Field Name 

'FF' 2.897294589 1.375795715 3 0.602618016 CRITICAL CARE 

'PT' 2.905431272 1.797792011 3 0.658785514 MEDICAL INFORMATICS 

'IP' 2.931407233 2.024776164 3 0.522301494 ENGINEERING, PETROLEUM 

'EC' 2.936963046 1.228712323 3 0.728637023 CHEMISTRY, INORGANIC & NUCLEAR 

'EV' 2.947590967 1.86971959 3 0.587870073 
COMPUTER SCIENCE, INTERDISCIPLINARY 

APPLICATIONS 

'FQ' 2.94922835 1.111990214 3 0.800645364 CYTOLOGY & HISTOLOGY 

'AY' 2.957326704 0.99136887 3 0.671284547 ANATOMY & MORPHOLOGY 

'YA' 2.961602875 1.284787603 3 0.679734879 SURGERY 

'DE' 2.964523994 1.400225748 3 0.727387685 PLANT SCIENCES 

'IH' 2.972563077 1.535135813 3 0.62832441 ENGINEERING, ENVIRONMENTAL 

'CU' 2.980614199 1.42057425 3 0.570669162 BIOLOGY 

'QH' 2.98740993 1.348879419 3 0.525376487 MATERIALS SCIENCE, COMPOSITES 

'SD' 2.99151309 1.216292759 3 0.687575458 OBSTETRICS & GYNECOLOGY 

'SR' 2.998209223 1.681238399 3 0.684683764 REMOTE SENSING 

'FY' 3.010897544 1.328972634 3 0.643507876 DENTISTRY, ORAL SURGERY & MEDICINE 

'FI' 3.01364222 1.408117222 3 0.671993462 CRYSTALLOGRAPHY 

'QJ' 3.013841567 1.652704493 3 0.579145341 MATERIALS SCIENCE, TEXTILES 

'XQ' 3.017056183 1.451073684 3 0.701829979 SPECTROSCOPY 

'QF' 3.041162608 1.799719622 3 0.47358631 MATERIALS SCIENCE, CHARACTERIZATION & TESTING 

'PJ' 3.048099484 1.841891038 3 0.637665981 MATERIALS SCIENCE, PAPER & WOOD 

'UH' 3.099336432 1.125456617 3 0.75673313 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 

'PE' 3.112900438 1.772947199 3 0.519741866 OPERATIONS RESEARCH & MANAGEMENT SCIENCE 

'PY' 3.126473867 1.48725224 3 0.500184167 MEDICINE, GENERAL & INTERNAL 

'IF' 3.127803179 1.98571294 3 0.593257556 ENGINEERING 

'UK' 3.131614517 1.564238525 3 0.699758767 PHYSICS, CONDENSED MATTER 

'CX' 3.135644632 1.258484549 3 0.737305966 BIOLOGY, MISCELLANEOUS 

'TD' 3.138106711 1.314560275 3 0.665544593 OTORHINOLARYNGOLOGY 

'IU' 3.14595263 1.844639272 3 0.508427261 ENGINEERING, MECHANICAL 

'TQ' 3.151048542 1.264168719 3 0.577259247 PEDIATRICS 

'IJ' 3.161330475 1.796460549 3 0.419439046 ENGINEERING, INDUSTRIAL 

'JI' 3.170657299 1.604970567 3 0.641615754 ERGONOMICS 

'LI' 3.170760516 1.511712232 3 0.689577934 GERIATRICS & GERONTOLOGY 

'EY' 3.173393461 1.688311258 2 0.617258177 COMPUTER APPLICATIONS & CYBERNETICS 

'ZC' 3.181605051 1.659014304 3 0.595904779 VETERINARY SCIENCES 

'IO' 3.182297155 2.130097568 3 0.356901091 ENGINEERING, OCEAN 

'TI' 3.183465784 1.600578717 3 0.708565351 PARASITOLOGY 

'CN' 3.198730773 1.230208615 3 0.708936398 BEHAVIORAL SCIENCES 

'IE' 3.208333333 1.081597222 3 1.043478261 *ENGINEERING & TECHNOLOGY 

'DT' 3.21080245 1.666213143 3 0.526152864 THERMODYNAMICS 

'BV' 3.215109859 1.166362454 3 0.708378291 PSYCHOLOGY, BIOLOGICAL 

'YU' 3.221126992 1.24678217 3 0.69260178 TROPICAL MEDICINE 
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FieldCode Dmean DVariance DMode Connectivity Field Name 

'PZ' 3.224847978 1.743789045 3 0.561281765 METALLURGY & METALLURGICAL ENGINEERING 

'UF' 3.225013679 1.401995144 3 0.685860818 PHYSICS, FLUIDS & PLASMAS 

'AD' 3.241166449 1.503276851 3 0.63711656 AGRICULTURE, DAIRY & ANIMAL SCIENCE 

'QM' 3.248434985 1.27224536 3 0.765848447 METALLURGY & MINING 

'AI' 3.250647788 2.055859751 3 0.472527713 AEROSPACE ENGINEERING & TECHNOLOGY 

'JA' 3.281493464 1.542458927 3 0.666528701 ENVIRONMENTAL SCIENCES 

'RQ' 3.283547973 1.520760161 3 0.651259894 MYCOLOGY 

'PU' 3.288005342 1.63562281 3 0.579782228 MECHANICS 

'NE' 3.342865912 1.45110147 3 0.640182803 PUBLIC HEALTH 

'ZR' 3.357453299 1.686850005 3 0.6106582 WATER RESOURCES 

'IL' 3.360163383 1.946928181 3 0.600230747 ENGINEERING, MARINE 

'FA' 3.36234502 2.054189295 3 0.435586552 CONSTRUCTION & BUILDING TECHNOLOGY 

'IX' 3.364720395 1.936469165 3 0.230521327 ENGINEERING, GEOLOGICAL 

'GC' 3.365216217 1.595969243 3 0.665093786 GEOCHEMISTRY & GEOPHYSICS 

'QQ' 3.366254571 1.451860928 3 0.737950659 METEOROLOGY & ATMOSPHERIC SCIENCES 

'GM' 3.377040089 1.363624324 3 0.657669862 SUBSTANCE ABUSE 

'RY' 3.382648589 1.916142152 3 0.624800691 NUCLEAR SCIENCE & TECHNOLOGY 

'YQ' 3.390052833 2.504626869 3 0.545030285 TRANSPORTATION 

'LJ' 3.400032965 1.694102521 3 0.417406261 GERONTOLOGY 

'OU' 3.407975742 1.47244213 3 0.673098927 LIMNOLOGY 

'ZQ' 3.409793046 1.576150294 3 0.608094875 MINING & MINERAL PROCESSING 

'XY' 3.431073209 1.845658148 3 0.566643557 STATISTICS & PROBABILITY 

'IM' 3.43504973 1.869205234 3 0.500790705 ENGINEERING, CIVIL 

'RE' 3.480622747 1.586673532 3 0.665718455 MINERALOGY 

'SI' 3.489465639 1.520819864 3 0.682039487 OCEANOGRAPHY 

'XE' 3.496908409 1.353429089 3 0.699939968 AGRICULTURE, SOIL SCIENCE 

'HT' 3.52486106 1.630634243 3 0.572501273 EVOLUTIONARY BIOLOGY 

'IY' 3.530509878 1.693825204 3 0.70478471 ENTOMOLOGY 

'PO' 3.534453205 1.817033751 3 0.563780441 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 

'PC' 3.603909142 1.948244742 3 0.514769295 MANAGEMENT 

'OP' 3.606965899 2.198773977 3 0.59270136 MEDICINE, LEGAL 

'LE' 3.61926219 1.604044105 3 0.627690397 GEOSCIENCES, INTERDISCIPLINARY 

'QB' 3.620943953 1.766935982 3 0.640468543 MEDICINE, MISCELLANEOUS 

'UI' 3.625404929 1.818091923 3 0.647920952 PHYSICS 

'PI' 3.626846826 1.462690223 3 0.69587568 MARINE & FRESHWATER BIOLOGY 

'HL' 3.715426825 2.097874814 3 0.412108201 HEALTH CARE SCIENCES & SERVICES 

'UR' 3.762748455 2.04934708 3 0.616860454 PHYSICS, MATHEMATICAL 

'PN' 3.768383547 2.473276646 3 0.453640155 MATHEMATICS, APPLIED 

'KY' 3.86020054 1.564605745 4 0.614222096 GEOLOGY 

'PS' 3.889082735 1.825917853 4 0.549075234 SOCIAL SCIENCES, MATHEMATICAL METHODS 

'VS' 3.913568851 1.594946372 4 0.724261578 PSYCHOLOGY, MATHEMATICAL 

'LQ' 3.922052935 1.865537796 3 0.542757959 HEALTH POLICY & SERVICES 

Table S2 - Continued 



 

 

38 

 

FieldCode Dmean DVariance DMode Connectivity Field Name 

'BU' 3.942043558 1.424864062 4 0.721928768 ASTRONOMY & ASTROPHYSICS 

'UN' 3.955609085 1.594027278 4 0.685529241 PHYSICS, NUCLEAR 

'OY' 4.063573523 2.224487942 3 0.489904821 LANGUAGE & LINGUISTICS 

'WV' 4.084229246 1.465704723 4 0.548287019 SOCIAL SCIENCES, BIOMEDICAL 

'AK' 4.106824926 1.644374785 4 0.846733668 AGRICULTURAL EXPERIMENT STATION REPORTS 

'OO' 4.117370892 1.969009676 4 0.193519079 MEDICAL ETHICS 

'UP' 4.132496735 1.925878701 4 0.673321896 PHYSICS, PARTICLES & FIELDS 

'NU' 4.141747868 3.43072971 4 0.37384738 INFORMATION SCIENCE & LIBRARY SCIENCE 

'ZI' 4.146067416 2.326978917 3 0.74789916 WELDING TECHNOLOGY 

'BD' 4.241275996 2.159445393 4 0.369304869 BIODIVERSITY CONSERVATION 

'KV' 4.29750361 2.644728656 4 0.364902507 GEOGRAPHY, PHYSICAL 

'RZ' 4.332382636 2.043591716 4 0.451352952 NURSING 

'NQ' 4.430458289 2.023893222 4 0.56823852 PSYCHOLOGY, APPLIED 

'KU' 4.596694694 2.324249247 4 0.525188437 GEOGRAPHY 

'EU' 4.609385113 2.134636839 4 0.451160753 COMMUNICATION 

'AF' 4.707584393 2.270038926 4 0.457343358 AGRICULTURAL ECONOMICS & POLICY 

'JB' 4.726622381 2.032060794 4 0.428755306 ENVIRONMENTAL STUDIES 

'PQ' 4.916812289 2.991413612 4 0.375614875 MATHEMATICS 

 

 

 

Table S2 - Continued 



 

 

39 

 

 

Table S3A – Patent Home Run Regressions 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES Home Run Home Run Home Run Home Run Home Run Home Run Home Run 

                

D = 1 0.0255*** 0.0313*** 0.0249*** 0.0210*** 0.0235*** 0.0236*** 0.0180*** 

 

(0.000517) (0.000562) (0.000517) (0.000516) (0.000519) (0.000523) (0.000738) 

Disconnected -0.0107*** -0.0174*** -0.0229*** -0.00186*** -0.00851*** -0.0112*** -0.0196*** 

 

(0.000279) (0.000317) (0.000343) (0.000336) (0.000281) (0.000279) (0.000545) 

Constant 0.0546*** 0.0562*** 0.0587*** 0.0521*** 0.0541*** 0.0549*** 0.0584*** 

 

(0.000182) (0.000192) (0.000201) (0.000190) (0.000181) (0.000183) (0.000249) 

        Class No Yes No No No No Yes 

Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Inventors No No No No Yes No Yes 

Institution No No No No No Yes Yes 

Observations 2,813,208 2,813,196 2,813,208 2,813,208 2,813,208 2,813,208 2,813,196 

R-squared 0.002 0.204 0.044 0.082 0.003 0.041 0.445 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table S3B – Patent Impact Regressions using Alternative Impact Measures (log citations) 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES lognCite8 lognCite8 lognCite8 lognCite8 lognCite8 lognCite8 lognCite8 

                

D = 1 0.0813*** 0.146*** 0.0216*** 0.0690*** 0.0769*** 0.0536*** 0.100*** 

 

(0.00224) (0.00235) (0.00185) (0.00202) (0.00225) (0.00222) (0.00265) 

Disconnected -0.00973*** 0.144*** -0.402*** -0.222*** -0.00434*** -0.0202*** -0.143*** 

 

(0.00121) (0.00129) (0.00137) (0.00140) (0.00123) (0.00121) (0.00216) 

Constant 1.233*** 1.174*** 1.371*** 1.306*** 1.232*** 1.240*** 1.276*** 

 

(0.000850) (0.000833) (0.000761) (0.000807) (0.000850) (0.000832) (0.000943) 

        Class No Yes No No No No Yes 

Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Inventors No No No No Yes No Yes 

Institution No No No No No Yes Yes 

Observations 2,813,208 2,813,196 2,813,208 2,813,208 2,813,208 2,813,208 2,813,196 

R-squared 0.001 0.046 0.288 0.187 0.001 0.032 0.606 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table S3C – Patent Impact Regressions using Alternative Impact Measures (Home Run at 1% 

threshold) 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

                

D = 1 0.00963*** 0.0105*** 0.00938*** 0.00775*** 0.00909*** 0.00939*** 0.00650*** 

 

(0.000270) (0.000302) (0.000270) (0.000267) (0.000271) (0.000275) (0.000376) 

Disconnected -0.00734*** -0.00136*** -0.0122*** -0.00560*** -0.00675*** -0.00753*** -0.00249*** 

 

(0.000107) (0.000115) (0.000147) (0.000130) (0.000108) (0.000108) (0.000190) 

Constant 0.0114*** 0.00929*** 0.0131*** 0.0110*** 0.0113*** 0.0115*** 0.0101*** 

 

(8.51e-05) (7.86e-05) (9.75e-05) (8.80e-05) (8.45e-05) (8.56e-05) (9.78e-05) 

        Class No Yes No No No No Yes 

Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Inventors No No No No Yes No Yes 

Institution No No No No No Yes Yes 

Observations 2,813,208 2,813,196 2,813,208 2,813,208 2,813,208 2,813,208 2,813,196 

R-squared 0.003 0.121 0.041 0.077 0.003 0.045 0.488 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table S4A – Paper Home Run Regressions 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES Home Run Home Run Home Run Home Run Home Run Home Run Home Run 

                

D = 1 0.131*** 0.137*** 0.129*** 0.126*** 0.127*** 0.131*** 0.1238*** 

 

(0.000353) (0.000356) (0.000355) (0.000350) (0.000352) (0.000353) (0.000370) 

Disconnected -0.0262*** -0.0300*** -0.0509*** -0.0326*** -0.0287*** -0.0257*** -0.0454*** 

 

(8.53e-05) (9.09e-05) (0.000111) (8.58e-05) (8.55e-05) (8.47e-05) (0.000103) 

Constant 0.0568*** 0.0580*** 0.0673*** 0.0597*** 0.0581*** 0.0565*** 0.0531*** 

 

(6.56e-05) (6.76e-05) (7.79e-05) (6.70e-05) (6.63e-05) (6.53e-05) (5.35e-05) 

        Field No Yes No No No No Yes 

Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Authors No No No No Yes No Yes 

Institution No No No No No Yes Yes 

Observations 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 

R-squared 0.024 0.026 0.028 0.040 0.029 0.024 0.366 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table S4B – Paper Impact Regressions using Alternative Impact Measures (log citations) 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES lognCite8 lognCite8 lognCite8 lognCite8 lognCite8 lognCite8 lognCite8 

                

D = 1 0.726*** 0.698*** 0.593*** 0.641*** 0.624*** 0.707*** 0.503*** 

 

(0.00110) (0.00104) (0.00111) (0.00102) (0.00107) (0.00110) (0.00117) 

Disconnected -0.674*** -0.580*** -1.024*** -0.749*** -0.717*** -0.634*** -0.742*** 

 

(0.000393) (0.000395) (0.000462) (0.000367) (0.000383) (0.000394) (0.000592) 

Constant 2.348*** 2.309*** 2.502*** 2.384*** 2.371*** 2.332*** 2.388*** 

 

(0.000279) (0.000268) (0.000294) (0.000259) (0.000272) (0.000277) (0.000316) 

        Field No Yes No No No No Yes 

Year No No Yes No No No Yes 

 No. of Refs No No No Yes No No Yes 

No. of Authors No No No No Yes No Yes 

Institution No No No No No Yes Yes 

Observations 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 

R-squared 0.150 0.216 0.239 0.265 0.201 0.169 0.552 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table S4C – Paper Impact Regressions using Alternative Impact Measures (Home Run at 1% 

threshold) 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

Home Run 

(1%) 

                

D = 1 0.0390*** 0.0390*** 0.0396*** 0.0380*** 0.0378*** 0.0391*** 0.0390*** 

 

(0.000193) (0.000193) (0.000196) (0.000193) (0.000193) (0.000194) (0.000193) 

Disconnected -0.00409*** -0.00258*** -0.00620*** -0.00522*** -0.00481*** -0.00413*** -0.00409*** 

 

(3.69e-05) (3.85e-05) (5.52e-05) (3.79e-05) (3.70e-05) (3.70e-05) (3.69e-05) 

Constant 0.00986*** 0.00922*** 0.0107*** 0.0104*** 0.0102*** 0.00987*** 0.00986*** 

 

(2.80e-05) (2.77e-05) (3.47e-05) (2.89e-05) (2.85e-05) (2.80e-05) (2.80e-05) 

        Field No Yes No No No No Yes 

Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Authors No No No No Yes No Yes 

Institution No No No No No Yes Yes 

Observations 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 23,690,144 

R-squared 0.009 0.016 0.009 0.012 0.012 0.009 0.344 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 



 

 

43 

 

 

Table S5 – Patent Maintenance Fee Regressions 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 
No. of Times 

Maintenance 

Fee Paid 

No. of Times 

Maintenance 

Fee Paid 

No. of Times 

Maintenance 

Fee Paid 

No. of Times 

Maintenance 

Fee Paid 

No. of Times 

Maintenance 

Fee Paid 

No. of Times 

Maintenance 

Fee Paid 

              

D = 1 0.0570*** 0.0807*** 0.0874*** 0.0374*** 0.0323*** 0.0412*** 

 
(0.00221) (0.00235) (0.00177) (0.00211) (0.00221) (0.00280) 

 
      

Disconnected -1.027*** -0.955*** -0.219*** -0.673*** -1.000*** -0.0482*** 

 
(0.00132) (0.00146) (0.00129) (0.00158) (0.00134) (0.00218) 

 
      

Constant  1.464*** 1.440*** 1.225*** 1.363*** 1.459*** 1.181*** 

 
(0.000913) (0.000920) (0.000704) (0.000913) (0.000911) (0.000912) 

 
  

    Class No Yes No No No Yes 

Year No No Yes No No Yes 

No. of Refs. No No No Yes No Yes 

No. of Inventors No No No No Yes Yes 

Observations 2,615,177 2,615,171 2,615,177 2,615,177 2,615,177 2,615,171 

R-squared 0.167 0.195 0.470 0.249 0.172 0.679 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes:  The dependent variable is the number of times the patent maintenance fees are paid (with renewal fees due in the 

4th, 8th, and 12th year after the patent was granted for U.S. patents).   
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Table S6 – Patent Impact Regressions with Individual Inventor Fixed Effects 

  (1) (2) (3) (4) 

VARIABLES 

Home Run 

(5%) 

Home Run 

(5%) 

Home Run 

(5%) 

Home Run 

(5%) 

          

D = 1 0.0183*** 0.0171*** 0.0191*** 0.0163*** 

 

(0.000689) (0.000928) (0.00104) (0.00154) 

Constant 0.0786*** 0.0791*** 0.0783*** 0.0794*** 

 

(0.000377) (0.000440) (0.000476) (0.000641) 

     Individual Yes Yes Yes Yes 

Field No Yes No Yes 

Year No No Yes Yes 

Observations 963,905 963,904 963,905 963,904 

R-squared 0.284 0.601 0.664 0.858 
Notes:  Regression sample considers connected patents, with individual fixed 

effects for the individual inventor. Observations are at the individual by patent 

level.  Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table S7 – Paper Impact Regressions with Individual Author Fixed Effects 

  (1) (2) (3) (4) 

VARIABLES 

Home Run 

(5%) 

Home Run 

(5%) 

Home Run 

(5%) 

Home Run 

(5%) 

          

D = 1 0.139*** 0.146*** 0.141*** 0.148*** 

 

(0.000141) (0.000163) (0.000155) (0.000219) 

Constant 0.0624*** 0.0615*** 0.0622*** 0.0614*** 

 

(4.72e-05) (4.75e-05) (4.78e-05) (5.09e-05) 

     Individual Yes Yes Yes Yes 

Field No Yes No Yes 

Year No No Yes Yes 

Observations 35,502,198 35,502,198 35,502,198 35,502,198 

R-squared 0.108 0.313 0.250 0.638 
Notes:  Regression sample considers connected papers, with individual fixed effects 

for the individual authors. Observations are at the individual by paper level.  Robust 

standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table S8 – Institutional Type and Distance:  Papers 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES D D D D D D D 

                

Univ 0.358*** 0.229*** 0.348*** 0.415*** 0.297*** 0.396*** 0.113*** 

 

(0.00173) (0.00157) (0.00171) (0.00172) (0.00170) (0.00158) (0.00286) 

Gov 0.430*** 0.134*** 0.430*** 0.482*** 0.400*** 0.526*** 0.101*** 

 

(0.00334) (0.00308) (0.00332) (0.00333) (0.00331) (0.00308) (0.00487) 

Constant 2.527*** 2.652*** 2.537*** 2.474*** 2.584*** 2.491*** 2.760*** 

 

(0.00168) (0.00152) (0.00165) (0.00167) (0.00165) (0.00152) (0.00269) 

        Field No Yes No No No No Yes 

Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Authors No No No No Yes No Yes 

No. of Citations No No No No No Yes Yes 

Observations 9,354,919 9,354,919 9,354,919 9,354,919 9,354,919 9,354,919 9,354,919 

R-squared 0.005 0.242 0.023 0.028 0.069 0.198 0.866 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table S9 – Institutional Type and Distance:  Patents 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES D D D D D D D 

                

Univ -0.847*** -0.468*** -0.846*** -0.866*** -0.838*** -0.861*** -0.442*** 

 

(0.00480) (0.00481) (0.00481) (0.00483) (0.00481) (0.00485) (0.0231) 

Gov -0.411*** -0.271*** -0.397*** -0.472*** -0.422*** -0.447*** -0.360*** 

 

(0.0100) (0.00912) (0.0100) (0.0100) (0.00996) (0.0100) (0.0472) 

Constant 2.583*** 2.536*** 2.582*** 2.586*** 2.582*** 2.585*** 2.535*** 

 

(0.00199) (0.00170) (0.00198) (0.00198) (0.00199) (0.00199) (0.00352) 

        Class No Yes No No No No Yes 

Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Inventors No No No No Yes No Yes 

No. of Citations No No No No No Yes Yes 

Observations 1500,943 1500,942 1500,943 1500,943 1500,943 1500,943 1500,942 

R-squared 0.044 0.298 0.053 0.066 0.047 0.052 0.933 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table S10A – Home Run Rate for  Same Author-Inventor Paper vs. other  Papers 

 

Table S10B – Home Run Rate for  Same Author-Inventor Patent vs. other  Patents 

 

 

 
(1) (2) (3) (4) (5) (6) (7) 

VARIABLES homerun homerun homerun homerun homerun homerun homerun 

Same Individual 0.0531*** 0.0555*** 0.0560*** 0.0572*** 0.0518*** 0.0535*** 0.0581*** 

 
(0.00134) (0.00134) (0.00135) (0.00132) (0.00133) (0.00134) (0.00271) 

Constant 0.184*** 0.183*** 0.183*** 0.183*** 0.184*** 0.184*** 0.183*** 

 
(0.000359) (0.000357) (0.000359) (0.000355) (0.000357) (0.000359) (0.000387) 

        
Field No Yes No No No No Yes 

Pub Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Authors No No No No Yes No Yes 

Institution No No No No No Yes Yes 

Observations 1,269,687 1,269,687 1,269,687 1,269,687 1,269,687 1,269,687 1,269,687 

R-squared 0.001 0.013 0.004 0.024 0.013 0.002 0.674 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 
(1) (2) (3) (4) (5) (6) (7) 

VARIABLES homerun homerun homerun homerun homerun homerun homerun 

Same Individual 0.00225** 0.0101*** 0.00241** 0.00432** 0.000624 0.00273** -0.00124 

 
(0.00114) (0.00120) (0.00114) (0.00113) (0.00115) (0.00118) (0.00242) 

Constant 0.0794*** 0.0775*** 0.0794*** 0.0789*** 0.0798*** 0.0793*** 0.0803*** 

 
(0.000554) (0.000551) (0.000554) (0.000548) (0.000556) (0.000557) (0.000712) 

 
       

Field No Yes No No No No Yes 

Pub Year No No Yes No No No Yes 

No. of Refs No No No Yes No No Yes 

No. of Authors No No No No Yes No Yes 

Institution 
No No No No No Yes Yes 

Observations 313,921 313,921 313,921 313,921 313,921 313,921 313,921 

R-squared 0.001 0.008 0.001 0.019 0.001 0.002 0.764 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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