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Nobel Prize Data 

One advantage of studying Nobel Prize winners is the wealth of information 

available. The Nobel Foundation’s website, nobelprize.org, is a particularly rich source of 

data. We collected data on dates of birth, the highest earned degree, the year or range of 

years in which each laureate’s prize-winning work was performed, and whether the work 

contained an important theoretical component. We were able to obtain dates of birth for 

526 of the 528 Nobel Prize winners (99.4%), and the period of key research for all but 1. 

People who received more than one prize were included for their first prize. In cases 

where the Nobel Foundation’s web-site did not accurately identify the year or period of 

key research, other sources were consulted, including:  (1) Schlessinger, B. and 

Schlessinger, J. The Who’s Who of Nobel Prize Winners, 1901-1995. Oryx Press, Phoenix 

AZ 1996; (2) Daintith, J. and Gjertsen, D. The Grolier Library of Science Biographies. 

Vols. 1-10. Grolier Educational, Danbury CT 1996; (3) Debus, A.G. ed. World Who’s 

Who in Science: A Biographical Dictionary of Notable Scientists from Antiquity to the 

Present. Marquis Who’s Who Inc., Chicago 1968; (4) Kragh, H. Quantum Generations: 

a History of Physics in the Twentieth Century. Princeton: Princeton UP, 1999. (5) 

McMurray, E.J., Kosek, J.K., and Valade, R.M. Notable Twentieth-Century Scientists. 

Vols. 1-4. Gale Research, Detroit 1995; (6) Williams, T.I. ed. Biographical Dictionary of 

Scientists. John Wiley and Sons, New York 1974. 

If, after analyzing these sources, additional information was required, individual 

biographies were consulted. When a range of years was identified as being the most 

important period, we consulted the Science Citation Index to identify the year in which 
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the single most important contribution was made. Where a single year could not be 

identified, the estimates use the middle year of the research period to define the age at 

great achievement. The three measures are closely related, with the correlation between 

our middle years and early years being .998 and the correlation between our middle years 

and late years being .997. 

Kragh [1999] also identifies the years (or range of years) in which physicists do 

their prize-winning work. The correlation between our work year and year he identifies 

(or the midpoint if he specifies a range) is .995. Stephan and Levin (1993) have collected 

data on the year in which Nobel laureates in all three fields began and stopped working 

on the broad research agenda for which they received the Nobel Prize. The correlation 

between our work years on the one hand and their beginning and ending years on the 

other, are 0.969 and 0.974 despite the difference in constructs (we focus on when people 

did the specific work for which they received the Nobel Prize, whereas Stephan and 

Levin focus on when the broad research agenda begins and ends). 

To assess the extent to which each laureate’s prize-winning work was deductive 

versus inductive, we determine whether the work had an important theoretical 

component. This classification was done using the biographical sources (discussed 

above). Kraugh [1999] also classifies the physics laureates, and we reconciled individual 

cases against his classification. In classifying research, we identified whether their 

primary contribution was empirical, theoretical, or both empirical and theoretical.  Works 

were classified as having an important theoretic component if their primary contribution 

was theoretical or if it combined theoretical and empirical work, (only 21 of the 525 
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laureates in our sample are classified as having received the prize for a combination of 

theoretical and empirical work). 

 

Century of Science and Web of Science Data 

We use Thomson Reuters’ Institute for Scientific Information (ISI) Web of 

Science and Century of Science databases providing coverage from 1900 to the present.  

The Web of Science database, which we use from 1955 to the present, indexes 20 million 

articles.  The Century of Science database indexes a smaller sample of articles, indexing 

the journals from the early 20th century that contained preeminent scientific 

contributions. 

To analyze citation age, we consider the top 100 papers in each year over the 20th 

century in each of the three Nobel fields and in an “other” category comprising all other 

fields of science and engineering.  For each paper, we calculate the mean duration 

between the paper’s publication year and the publication years of all the papers the given 

paper cites.  In analyzing the dynamics, we calculate these citation ages for four fields: 

(i) Physics, defined as the those papers which ISI assigns to field categories “physics, 

applied”, “physics, condensed matter”, and “physics, multidisciplinary” 

(ii) Chemistry, defined as ISI field categories “chemistry, analytical”, “chemistry, 

applied”, “chemistry, inorganic”, “chemistry, medicinal”, “chemistry, 

multidisciplinary”, “chemistry, organic”, “chemistry, physical” 

(iii) Medicine, defined as ISI field categories “anatomy and morphology”,   
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“biochemistry and molecular biology”, “cardiac and cardiovascular system”, 

“cell biology”, “clinical neurology”, “dermatology”, “endocrinology”, 

“genetics”, “immunology”, “medical laboratory technology”, “medicine 

general and internal”, “medicine research”, “neurosciences”, “nutrition”, 

“obstetrics and gynecology”, “ophthalmology”, “orthopedics”, 

“otorhinolaryngology”, “pathology”, “pediatrics”, “pharmacology”, 

“psychology”, “radiology”, “surgery”, “urology”, “psychiatry”, “psychology, 

experimental”, “psychology, multidisciplinary”  (Note that the medicine 

category, like the Nobel Prize in that discipline, encompasses a wide variety 

of areas.) 

(iv)  Other, which is the other 133 ISI field categories within Science and 

Engineering. 

The analysis considers the deviation between a paper’s mean citation age and the 

mean citation age for the “Other” category in that publication year, divided by the 

standard deviation of the mean citation age for the “Other” category in the publication 

year.  This method purges the citation age dynamics from the background trends in 

citations over the 20th century and puts the deviations on a common scale. Formally, our 

measure for the age of citations in field f at time t is 

CiteAge
Ot

CiteAge
Oti ift

ft
ft

CiteAge
N

CiteAge





1

, 
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where iftCiteAge  gives the mean age of the citations in paper i in field f at time t; Nft 

denotes the number of top papers (100 in our analysis) from field f at time t; and CiteAge
Ot  

and CiteAge
Ot  give the mean and standard deviation of citation ages of the papers in the 

other field category in year t. 

Although related, our measure differs from a citation half-life insofar as half-lives 

measure durability using forward citations, whereas our measure captures reliance on 

previous work using backward citations. Our measure is also distinct from conventional 

citation metrics for research performance in that it measures the amount of foundational 

knowledge in a field at a point in time as opposed to identifying important papers or 

researchers (e.g., the H-index). 

The regressions in Supporting Table 4 show the dynamics in citation age with and 

without author fixed effects in the regression.  To construct author identifiers, we employ 

the author name information employed in the Century of Science and Web of Science 

databases.  We create individual author identifiers as a unique name (last name and first 

initial) in the given field (physics, chemistry, medicine, and other) for the top papers in 

each field and year.  The regressions in Supporting Table 4 include only those authors 

that appear at least twice in the sample – i.e. produce at least two of the mostly highly 

cited papers.  Inclusion of name fixed effects eliminates systematic differences between 

individuals, to focus the citation dynamics within scientists’ careers. Thus, these 

estimates identify whether individuals themselves are shifting their behavior (i.e. the field 

is changing) as opposed to citation dynamics driven by a shifting set of individuals in the 

field.  
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Population Data 

We estimate the age distribution for subsets of the US population, using data from 

the Census IPUMS (Steven Ruggles and Matthew Sobek et. al.  Integrated Public Use 

Microdata Series: Version 2.0 Minneapolis: Historical Census Projects,  University of 

Minnesota, 1997). We use the 1% samples for 1870, 1880, and 1900-2000 (no samples 

are available for 1890; for 1970, we use the Form 1 State Sample). Person weights are 

used with the 1940 and 1950 samples, which are weighted samples (the samples for the 

other years are unweighted / flat samples). We interpolate population shares linearly 

between the census years. (For year t, between census years t0 and t1, we estimate 

     
1

01

0
0

01

1ˆ tAge
tt

tt
tAge

tt

tt
tAge 








 , where  tAge  denotes the share of the 

population at time t that is Age years old.) We have one observation in 2001 and linearly 

extrapolate using data for 1990 and 2000 according to 

     19901.20001.12001ˆ AgeAgeAge   . 

Our population subsets are: (1) the entire population; (2) the employed population 

(labforce=2); (3) people employed in professional and technical occupations (labforce=2 

and occ1950 between 0 and 100); (4) people employed as natural scientists, engineers, or 

physicians (labforce=2 and occ1950 equal to 007, 012-026, 401, 49, 61-69, or 75); and 

(5) people employed as natural scientists or engineers (labforce=2 and occ1950 equal to 

007, 012-026, 401, 49, or 61-69). 
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Supporting Table 1: Summary Statistics for the Nobel Laureates 

This table presents summary statistics for the Nobel laureates.  Standard deviations are 

given in parentheses. 

 All Chemistry Medicine Physics 
Mean Age of Prize-Winning 

Research 
39.0 (8.54) 40.2 (8.24) 39.9 (7.86) 37.2 (9.20) 

Mean Age of Highest Degree 26.1 (3.42) 25.5 (3.22) 26.5 (3.56) 26.2 (3.37) 
Frequency of Prize-Winning 

Work with Important 
Theoretical Component 

.185 (.388) .190 (.393) .074 (.262) .297 (.458) 

Frequency of Prize-Winning 
Research by Age 30 

.124 (.330) .092 (.289) .079 (.270) .178 (.399) 

Frequency of Prize-Winning 
Research by Age 40 

.564 (.496) .490 (.502) .537 (.500) .654 (.477) 

Frequency of Highest Degree 
by Age 25 

.350 (.478) .399 (.491) .305 (.462) .357 (.480) 

Mean Year of Prize-Winning 
Work 

1947 (28.2) 1948 (29.2) 1947 (27.3) 1947 (28.5) 

Observations 525 153 190 182 
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Supporting Figure 1: Underlying Data and Additional Estimates of Dynamics 

 This section presents our underlying data and further examines dynamics in the 

age at great achievement, in theoretical work, and in foundational knowledge. We also 

reproduce our estimates using kernel regressions as a further robustness check. The 

fractional polynomial regressions used in the text are a global estimator where the 

functional form that is chosen to match the data is determined by all observations. Kernel 

regressions are a local estimator, providing estimates at a given point in time based only 

on the data in a neighborhood around that time. In the case of the age of great 

achievement, for a time t and a bandwidth h, the predicted age at t is a weighted average 

of the ages within a radius h of t. Formally,  
 
 i

N

i h

ii

N

i h

h
ttK

AgettK
tgeA













1

1ˆ , where it  

denotes the time at which laureate i made his or her prize winning contribution; iAge  is a 

measure of laureate i’s age (e.g. below 30 or 40 or age measured continuously) at the 

time of his or her prize-winning contribution; and  ih ttK   denotes the weight applied 

to observations that are a distance itt   from t. The numerator gives a weighted sum of 

observations and the denominator gives the sum of the weights, so the estimator is a 

weighted average, with the weights declining from the point in question according to the 

kernel. We use the standard Epanechnikov kernel, defined as 
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and a bandwidth of 15 years. Analogous procedures are used for the other variables. 
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Estimates of the probability that work is done before ages 30 and 40 (and 95% 

confidence intervals) are shown in Supporting Figure 1A. The figure also shows the 

underlying binary indicator for whether each laureate was at least age 30 or 40 at the time 

of his or her prize-winning contribution (1 = above the age threshold). In the case that 

multiple laureates do prize-winning work above or below the age threshold in the same 

year, the circles are scaled in proportion to the number of people they represent. The 

dynamics using this non-parametric approach show the same core features as the 

fractional polynomial method. Physics shows hump-shaped patterns similar to the 

fractional polynomial estimates. For chemistry, the under 30 propensity declines steadily 

to zero, while the under 40 propensity fluctuates before declining for most of the period. 

For medicine the under 30 pattern has a small initial increase and then declines to zero, 

while the under 40 pattern is flatter, showing some convexity. 



11 
 

Supporting Figure 1A. Kernel Estimates of Trends in Age at Great Achievement by 

Ages 30 and 40. 
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 To further examine the age dynamics and enable the reader to see our underlying 

data, Supporting Figure 1B reports kernel estimates (and 95% confidence intervals) 

treating age as a continuous variable. The underlying data is also shown (with circles 

scaled in proportion to the number of observations they represent). As discussed in the 

text, most of the variation in the age at which people do their Prize-winning work is 

idiosyncratic at the level of the individual (i.e. within a field at a given point in time), but 

there are strong trends in ages within each field and these are quite consistent with the 

other estimation approaches. Ages are hump shaped in Physics, with a global minimum 

in the 1920s. Chemistry shows a steady increase in ages, while medicine is quite flat.  See 

also Jones (2010) for non-parametric mean age analysis. 

Supporting Figure 1B. Kernel Estimates of Trends in Mean Age at Great 

Achievement. 
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 Supporting Figure 1C reports kernel estimates of the frequency of theoretical 

work (top panel) and the age at high degree (bottom panel) and 95% confidence intervals. 

The procedures follow those described above. The estimates are again quite similar to 

those reported in the text. For the frequency of theoretical work, physics shows a hump 

shape; chemistry is flat initially and then declines; and medicine is quite low, with a 

slight hump. For the age at high degree, following the analysis in Jones (2010), physics 

shows a U-shape; and both chemistry and medicine decline. The underlying data clearly 

show the reduction in high degrees before age 25 by the end of the period, especially in 

physics and chemistry. 

Supporting Figure 1C. Kernel Estimates of Frequency of Theoretical Work and Age 

at High Degree. 
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 Supporting Figure 1D reports kernel estimates of backward citation ages and 95% 

confidence intervals. The procedures follow those described above, but there are 100 

observations per year in each field. The volume of data increases the precision of the 

estimates. To summarize the data, the figure plots the mean for each year (dashed line) 

and the 25th and 75th percentiles of the backward citation ages in each year (dotted lines), 

which give a sense of the dispersion in the data. Here too, the estimates are similar to 

those reported in the text (and, as in the text, we have inverted the axis.) Backward 

citation ages decrease in physics and then increase. Both chemistry and medicine show 

smaller increases in backward citation ages that are consistent with those reported in the 

text. 

Supporting Figure 1D. Kernel Estimates of Trends in Backward Citation Ages. 
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Supporting Analysis: Controlling for the Age Distribution of the Population 

Our main results examine the probability that prize-winning work is done by 

people beneath ages 30 and 40. In general, shifts in the age at great achievement can be 

due to productivity shifts across the life-cycle and/or demographic shifts in the 

underlying age distribution (10). This section shows that demographic shifts are too small 

to explain the dynamics in the share of young scientists doing Nobel Prize winning work.  

We outline our framework for the age 30 threshold (the age 40 case is directly 

analogous), building from (10). The probability that a prize winning contribution is made 

by someone under 30 is 

     
   dAgetAgetAgeonContributi

dAgetAgetAgeonContributi
tonContributiAge

Pr,Pr

Pr,Pr
,30Pr

0

30

0



 . 

Changes in the share of prize-winning contributions made by people under 30 may be due 

to changes in the probability that contributions are made by people of different ages, 

which we refer to as changes in the age-productivity relationship.  These changes are 

represented by the function  tAgeonContributi ,Pr  shifting over time. Alternatively, 

shifts in shares of prize-winning contributions done before age 30 may be due to changes 

in the age distribution of the population, which we refer to as changes in the age 

distribution. These shifts are represented by the function  tAgePr . 

Supporting Figure 2 presents the share of scientists and engineers and the 

workforce under ages 30 and 40 from 1870 to 2000 in the United States. The data show a 

general decline in the share of scientists (and all workers) under 30 and 40. Notably the 
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share of young scientists and engineers rises between 1880 and 1910 as US universities 

expand. The share of young workers also increases as the baby boom enters the labor 

market during the 1970s. 

Supporting Figure 2: The Age Distribution of Scientists and Engineers and the 

Workforce in the United States 
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Supporting Figure 3 shows the share of Nobel laureates doing their prize winning 

work beneath ages 30 and 40 across all fields. Separate estimates are shown for people 

doing their prize winning work in the United States. The dynamics are quite similar, 

although only 4 of the 71 contributions made in or before 1910 were made in the United 

States, limiting the precision of the early age trends in the United States. 

Supporting Figure 3:  Age Dynamics for All Fields, World and USA. 
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Examining these figure together, we see that the share of scientists and engineers 

under age 30 falls to 17.4% (Supporting Figure 2) whereas the share of people doing 

Nobel Prize winning work by age 30 falls to nearly zero across the three fields 

(Supporting Figure 3).  Similarly, the share of the scientists and engineers under age 40 

remains at 45.2% in 2000, also above the declining share of Nobel Prize winning 

achievements in that age range.  The share of young scientists and engineers also 

increases in the 1970s following the post-war baby boom, yet great achievements by 

younger scholars become increasingly rare during this period, further suggesting that the 

aging phenomenon is not driven by such demographic shifts. 

To formally estimate the extent to which trends in the age of great achievement 

are due to changes in the age-productivity relationship as opposed to changes in the age 

distribution of scientists, we parametrize the probability that contributions are made by 

people of different ages,  tAgeonContributi ,Pr  flexibly. We assume that, 

    2
210exp,Pr AgeAgeYearYearAgetAgeonContributi   . 

Here α1 and α2 govern the shape of the age-productivity curve in the mean year of great 

achievement (Year ), which is 1957.  The parameter α2 is expected to be negative so that 

the age-productivity profile peaks at 
 

2

01

2
 YearYear

Age


 .  The parameter α0 

governs shifts in the peak of the age-productivity curve over time, where the peak 

increases by 
2

0

2


  per year. This simple formulation was chosen to minimize the 
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number of parameters while still allowing for hump-shaped age-producitivy profiles and 

can be viewed as a simple approximation to an arbitrary function. 

We estimate this model using maximum likelihood, searching over values of 0 , 

1 , and 2 . The likelihood for observation i is 

    
     






90

0

2
210

2
210

exp

exp

Age ii

iiiiiii

YearAgeAgeAgeYearYearAge

YearAgeAgeAgeYearYearAge
L




, 

where Agei denotes the age at which laureate i did his or her prize winning work; Yeari 

denotes the year of the laureate’s prize winning work; and  
i

YearAge  gives the 

observed share of the population that is Age years old in Yeari.  The log likelihood 

function is 

    
    

















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I

i

Age ii

iiiiii

YearAgeAgeAgeYearYearAge

YearAgeAgeAgeYearYearAge
1 90

0

2
210

2
210

exp

exp
ln




 

where I gives the number of observations. 

To implement this framework, we use population data for the United States from 

the Census IPUMS (described above) and data on people who did their Prize-winning 

work in the United States. We present 5 sets of estimates measuring the population in 

different ways. The population measures are (1) the entire population; (2) the employed 

population; (3) people employed in professional and technical occupations; (4) people 

employed as natural scientists, engineers, or physicians; and (5) people employed as 

natural scientists or engineers. Supporting Table 2 reports the results. The first column 

reports the implied annual change in the age at which the age-productivity profiles peak 
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2

0

2


  (with the standard error of these estimates constructed using the delta method). 

The estimates indicate that the peak of the age-productivity profile increases by roughly 1 

year per decade (.0971-.1362 years of age per calendar year).  These estimates are quite 

precise and robust to the population measure.  Thus, there is clear evidence that the 

probability that any given young person will do Nobel Prize winning work has declined 

over time and that the trends shown in the text are not due to changes in the age 

distribution of the population. 

The previous estimates minimize the number of parameters that need to be 

estimated, but impose symmetry on the age-productivity profiles. To allow for an 

asymetric age-productivity profile, we have estimated models including a cubic in age,  

    3
3

2
210exp,Pr AgeAgeAgeYearYearAgetAgeonContributi   . 

In addition to adding another parameter, including a cubic term implies that the rate of 

change in the peak of the age-productivity profiles changes over time, but the imputed 

trend is similar to those from the quadratic specification. When the science and 

engineering workforce is used as the population measure the peak of the age-productivity 

profile is imputed to increase, for example, by .0707 years per year that passes in 1957 

(by .0660 years per year in 1937 and by .0767 years per year in 1977) compared to .1088 

(S.E.=.0413) for the comparable quadratic specification. 
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Supporting Table 2. Maximum Likelihood Career Productivity Patterns. 

 Implied Trend 0  
1  2  

Population 
Estimate .0971 .0015 .610 -.0077 
Std. Err. (.0311) (.0006) (.059) (.0007) 

Employed 
Estimate .1015 .0014 .566 -.0071 
Std. Err. (.0332) (.0006) (.0593) (.0007) 

Professional Technical Occupations 
Estimate .1087 .0015 .547 -.0067 
Std. Err. (.0350) (.0006) (.059) (.0007) 

Natural Scientists, Engineers, Physicians 
Estimate .1362 .0015 .446 -.0055 
Std. Err. (.0411) (.0006) (.059) (.0007) 

Natural Scientists, Engineers 
Estimate .1088 .0012 .462 -.0057 
Std. Err. (.0413) (.0006) (.060) (.0007) 
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Supporting Figure 4:  Age Dynamics for Physicists, Using Alternative Sources 
 
Given the remarkable and unusual age dynamics in physics, we further explored the age 

pattern using alternative data sources to the Nobel Prize.  To gather an alternative dataset, 

we considered numerous sources, described below, which collectively produced 160 

famous physicists who did not win the Nobel Prize.  Each graph below presents the 

evolution of the probability of great achievement by age 35.  The leftmost graph uses the 

Nobelist data, as in the text. The middle graph uses the achievements defined by the 

alternative data sources, which include non-Nobelists and Nobelists.  The rightmost 

graph uses only the 160 physicists who did not win the Nobel.  We see that the dynamics 

are robust across data sources. 
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Alternative Data Sources for Physicists 
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Supporting Figure 5: Age of Achievement over Time Controlling for Region of Birth 

This figure shows how the mean age of great achievement in physics varies over time 

controlling for 8 regions of birth (the United Kingdom, Germany, Russia, other Eastern 

Europe, the rest of Europe, the United States, European offshoots, Japan, and the rest of 

the world) using country / region fixed effects (FEs). Time is captured using a fractional 

polynomial regression. The figure plots the implied curves with and without dummy 

variables for region of birth, showing that the dynamics are similar. 
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Supporting Figure 6: Age of Achievement in Physics for Theorists vs Empiricists 

over Time 

This figure shows how the mean age of great achievement varies with whether a physics 

laureate’s great achievement had an important theoretical component, while controlling 

flexibly for time using a fractional polynomial regression. Nobel laureates who received 

the prize for works with an important theoretical component did their work 3.13 years 

(standard error +/-1.37 years) younger than Nobel laureates who received the prize for 

empirical work. The figure plots the implied curves for theorists and empiricists. The 

regression predictions show that the age gap between theorists and empiricists is large, 

but that a sizeable U-shape in time remains. 
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Supporting Table 3: Predictors of Age of Great Achievement 

The following panels report regressions predicting the age of great achievement 

based on (i) the theoretical nature of the work and (ii) the age at Ph.D.  Panel A uses 

probit models to predict great achievement by age 35.  Here we use Theoreticali, a binary 

indicator equal to 1 if laureate i’s contribution had an important theoretical component; 

and PhD by Age 25i, a binary indicator equal to 1 if laureate i’s Ph.D. was received 

before age 25 to predict the probability that laureate i’s great achievement wage made by 

age 35, where iAge  denotes the age at which laureate i made his or her contribution. We 

also flexibly control for the field and time when achievement i was made with dummy 

variables for the field, quadratics in time, and interactions between the two (captured by 

FTi). Formally, we use the Probit model, 

   iiii AgebyPhDlTheoreticaAge θFT 210 2535Pr  , 

where Φ denotes the cumulative density function of a normal distribution. 

The table reports the marginal effects of a discrete change in Theoreticali and PhD by 

Age 25i from 0 to 1 on the mean probability that the laureates’ great achievements will be 

made by age 35. In the case of Theoreticali (PhD by Age 25i is directly analogous) the 

reported estimate is, 

 
    



i iiii

i

byPhDbyPhD
I

Age

θFTθFT 210210 250251
1

35Pr


 

where I denotes the number of laureates in the data. 

Panel B use ordinary least squares regressions to predict the mean age at great 

achievement.  Here the model is 
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iiiii AgePhDlTheoreticaAge   θFT210  

where PhD Agei is the age at which laureate i received his or her Ph.D.  In panel B, the 

coefficients give the relationship between each variable and the mean age of great 

achievement. 

In both panels, column (1) considers theory alone, column (2) considers training 

alone, and column (3) considers both together.  Column (4) further includes field fixed 

effects for each of physics, chemistry, and medicine.  Column (5) further includes time 

controls, which are field-specific quadratics in the calendar year of the achievement.   

Depending on the specification, the probit models for the probability of great 

achievement by 35 reported in Panel A, show that receiving a Ph.D. by age 25 is 

associated with a 13-15 percentage point increase in great achievement by age 35 (a 38-

45 percent increase in the baseline rate). Independently, a theoretical contribution is 

associated with a 17-24 percentage point increase in great achievement by age 35 (a 51-

73 percent increase in the baseline rate). The linear models reported in Panel B show that 

both theoretical research and Ph.D. age have substantial explanatory power for the 

achievement age. People whose contributions were theoretical were 2.930 to 4.546 years 

younger at the time of their great achievement and the age of great achievement increases 

by .223 to .326 years with every year of age at Ph.D. Robust standard errors are given in 

parentheses. ** indicates significance at 5%; *** indicates significance at 1%. 
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Panel A:  Models to Predict Probability of Great Achievement by Age 35 

 (1) (2) (3) (4) (5) 

Theoretical 
0.245***  0.231*** 0.201*** 0.174*** 
(0.055)  (0.055) (0.057) (0.058) 

PhD by Age 25 
 0.151*** 0.135*** 0.141*** 0.125*** 
 (0.044) (0.044) (0.044) (0.046) 

Field 
Fixed Effects 

No No No Yes Yes 

Time 
Controls 

No No No No Yes 

No. of Observations 525 525 525 525 525 
Mean of Dependent 

Variable 
0.33 0.33 0.33 0.33 0.33 

Regression Chi2 20.47 12.21 29.72 40.32 47.98 
 

 

Panel B:  Models to Predict Mean Age of Great Achievement 

 (1) (2) (3) (4) (5) 

Theoretical 
-4.546***  -4.434*** -3.999*** -2.930*** 

(0.925)  (0.907) (0.932) (0.921) 

Age at PhD 
 0.325*** 0.304*** 0.326*** 0.223** 
 (0.094) (0.094) (0.094) (0.094) 

Field 
Fixed Effects 

No No No Yes Yes 

Time 
Controls 

No No No No Yes 

No. of Observations 525 525 525 525 525 
Mean of Dependent 

Variable 
39.04 39.04 39.04 39.04 39.04 

Regression F-statistic 24.15 12.08 16.96 12.62 11.20 
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Supporting Table 4:  Citation Age Dynamics in Physics 

This table reports regressions that estimate the citation age dynamics in physics.  

Observations are at the paper level (see discussion of ISI data above for details).  Citation 

age is the mean duration between the paper’s publication year and the publication years 

of the papers it cites.  The dependent variable in the regression is the normalized citation 

age for a given paper, defined formally above and calculated as the deviation from the 

mean citation age of all other papers published that year and divided by the standard 

deviation in citation age among other papers in that year.  Other papers are defined as the 

100 most cited articles annually in the Century of Science and Web of Science databases 

outside the fields of physics, chemistry, and medicine.  The first column considers the 

citation age dynamics for all individuals who write at least 2 papers in physics.  To assess 

the extent to which our estimates indicate general changes in the knowledge space itself, 

not simply changes in which physicists were active, the second column repeats this 

regression but includes researcher fixed effects, thus netting out any fixed individual 

tendency to cite old or new work.  In order to implement the fixed effect model, we 

employ quadratic polynomials as time controls.  The estimates imply that the tendency to 

cite recent papers peaks in 1920 in physics.  The citation data cover the period 1900-

2000.  Robust standard errors are in parentheses, clustered by researcher name. *** 

indicates significant at 1% 
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 (1) (2) 
Year -1.56*** -0.74 

 (0.19) (0.54) 
Year ^ 2 0.0197*** 0.0184*** 

 (0.0017) (0.0044) 
Individual Fixed 

Effects 
No Yes 

Observations 17440 17440 
R-squared 0.04 0.54 

Year of Minimum 1939.71 1920.15 
 (1.81) (10.32) 

 


