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Abstract

Great achievements in knowledge are produced by older innovators today than they were

a century ago. Nobel Prize winners and great inventors have become especially unproductive

at younger ages. Meanwhile, the early life-cycle decline is not o¤set by increased productivity

beyond middle age. The early life-cycle dynamics are closely related to Ph.D. age, and I discuss a

theory where knowledge accumulation across generations leads innovators to seek more education

over time. More generally, the narrowing innovative life cycle reduces, other things equal,

aggregate creative output. This productivity drop is particularly acute if innovators�raw ability

is greatest when young.
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Age is, of course, a fever chill

that every physicist must fear.

He�s better dead than living still

when once he�s past his thirtieth year.

�Paul Dirac, 1933 Nobel Laureate in Physics

1 Introduction

It is widely perceived that great innovations are the provenance of the young. The sentiments of

Dirac expressed above have been shared by Einstein, von Neumann and many other eminent scien-

tists and mathematicians (Zuckerman & Merton, 1973; Simonton, 1988). Empirical investigations

of this view tend to support the idea that innovative activity is greater at younger ages, although

great achievement before the age of 30 is not typical. Rather, a researcher�s output tends to rise

steeply in the 20�s and 30�s, peak in the late 30�s or early 40�s, and then trail o¤ slowly through

later years (Lehman, 1953; Simonton, 1991).

While many great insights do occur at younger ages, it is also clear that innovators spend a

large number of their early years undertaking education.1 Indeed, human capital investments

dominate the early part of the innovator�s life-cycle. Learning a subset of the skills, theories, and

facts developed by prior generations seems a necessary ingredient to innovative activity. Newton

acknowledged as much in his famous letter to Hooke, "If I have seen further it is by standing on ye

sholders of Giants". Dirac and Einstein, who produced major contributions at the age of 26, �rst

went through signi�cant educational periods and then built directly on existing work.2 Certainly,

innovation would be a very di¢ cult enterprise if every generation had to reinvent the wheel.
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These two observations suggest an intriguing tradeo¤. If innovators are especially productive

when young, but education is an important preliminary input to innovation, then the opportunity

cost of the time spent in education may be signi�cant. Moreover, how innovators approach this

tradeo¤ may change as the economy evolves. For example, accumulations of knowledge across

generations may create increasing educational demands, so that expanding time costs of education

delay the onset of active innovative careers. This possibility poses a problem for innovation as it

reduces, ceteris paribus, the lifetime output of individual innovators, especially if their potential is

greatest when young.

In this paper, I show that the great achievements in knowledge of the 20th Century occurred

at later and later ages. The mean age at great achievement for both Nobel Prize winners and

great technological inventors rose by about 6 years over the course of the 20th Century. This

aging phenomenon appears to be substantially driven by declining innovative output in the early

life-cycle. Moreover, the early life-cycle e¤ects appear to be substantially explained by increases

in training.

Section 2 presents the main fact: a substantial increase in the age at great invention. Several

hypotheses for the trend are then introduced. In one type of hypothesis, the life-cycle productivity

of innovators may have shifted. For example, increasing educational attainment may delay the

onset of active innovative careers. Alternatively, innovator productivity may increase at more

advanced ages due to improved health, e¤ort or an increased role for experience. In another type

of hypothesis, the upward age trend in the data could simply re�ect underlying demographic shifts.

Since the population has become substantially older with time, we are more likely to draw older

innovators today than we were at the beginning of the 20th century. Put another way, if people

lived shorter lives in the past, then innovators in the past will also appear younger.
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Section 3 tests between these competing explanations and locates any speci�c shifts in life-cycle

productivity. I �nd substantial shifts in life-cycle productivity beyond any demographic e¤ect.

Speci�cally, there has been a large upward trend in the age at which innovators begin their active

careers. The estimates suggest that, on average, the great minds of the 20th Century typically

became research active at age 23 at the start of the 20th Century, but only at age 31 at the end -

an upward trend of 8 years. Meanwhile, there has been no compensating shift in the productivity

of innovators beyond middle age.

Section 4 presents additional analysis to further understand the delayed start to the career. I

�rst show that Ph.D. age increases substantially over the 20th Century. I next harness World

Wars I and II as natural experiments, testing the idea that training is a prerequisite for innovation

and showing that interruptions to training must be "made up" after the war. Next, I investigate

cross-�eld, cross-time variation and show that variations in Ph.D. age typically predict variations

in the age-invention relationship. Collectively, these analyses suggest that training plays a key role

in explaining the age-invention patterns.

Section 5 clari�es interpretations of the empirical patterns and considers their implications. I

present a simple theory to explore the relationship between human capital investments and life-

cycle productivity and show how accumulations of knowledge within �elds can explain the set of

facts. Further evidence from "ordinary" inventions underscores this perspective and also shows

that the aging phenomenon extends broadly across the innovator population. Section 5 closes by

detailing implications of the empirical patterns for core issues in economic growth and the history

of science. I show speci�cally how contractions in the life-cycle of innovation can help explain the

decline in innovative output per researcher seen over the 20th Century. Section 6 concludes.
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2 Age and Great Achievement

This section presents benchmark facts about the age of individuals at the time of their great

achievements in knowledge. Two types of data were collected. The �rst set considers research that

leads to Nobel Prizes in Physics, Chemistry, Medicine, and Economics. The second set considers

great technological achievements as presented in almanacs of the history of technology. Nobel Prizes

are determined by committees of experts and are given in principle for a distinct advance. The

technological almanacs compile key advances in technology, by year, in several di¤erent categories

such as electronics, energy, food & agriculture, materials, and tools & devices. The year (and

therefore age) of great achievement is the year in which the key research was performed. For the

technological almanacs, this is simply the year in which the achievement is listed. For Nobel Prizes,

which are retrospective, the year of achievement was determined by consulting various biographical

resources. The Data Appendix describes the data collection and sources in further detail.

As a �rst look at the data, Figure 1 presents ages at great innovation, considering all 20th

Century observations together. Three features are of immediate note. First, there is a large

variance in age. The largest mass of great innovations in knowledge came in the 30�s (42%), but

a substantial amount also came in the 40�s (30%), and some 14% came beyond the age of 50.

Second, there are no observations of great achievers before the age of 19. Dirac and Einstein prove

quite unusual, as only 7% of the sample produced a great achievement at or before the age of 26.

Third, the age distribution for the Nobel Prize winners and the great inventors, which come from

independent sources, are extremely similar over the entire distributions. Only 7% of individuals

in the data appear in both the Nobel Prize and great inventors data sets.

The most surprising aspect of these data, however, becomes apparent when we consider shifts
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in this age distribution over time. To start, I run the following regression:

ai = �+ �ti + Xf + "i (1)

where ai is the age of individual i at the time of the great achievement, ti is the year of the

great achievement, and Xf are �xed e¤ects for the �eld of the achievement and the country of the

individual�s birth. Results of this regression are presented in Table 1. We see that the mean age

at great achievement is trending upwards by 5 or 6 years per century. These trends are highly

signi�cant and are robust to �eld and country of birth controls. Indeed, the controls cause the time

trend to strengthen, rising to about 8 years over the course of the 20th century. The strengthening

e¤ect of the controls on the trend suggests a compositional shift in great innovation towards �elds

and countries that favor the young.

These trends can be seen in greater distributional detail in Figure 2, which presents the raw data

again but divides the 20th Century into three chronological periods: from 1900-1935, 1935-1960,

and 1960 to the present. This �gure combines all unique individuals in the Nobel Prize and great

inventors data sets. We observe a general shift of the age distribution, with a distinct drop in the

presence of those in their 20�s and an increased presence of those in later middle age.

One obvious hypothesis for this outward age shift is a shift in the life-cycle productivity of great

minds. Given that the early part of an innovator�s career is dominated by education, one natural

reason for a decline in early innovative potential may be an increase in the time spent in training.

More generally, there may be relative increases in the productivity of older innovators directly; for

example, due to improved health or an increased role for experience.

But we must be careful in how we interpret the distributional shifts we see. An alternative
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hypothesis for the outward age shift is a simple demographic e¤ect. If the underlying population

of innovators is getting older, then older innovators will be more likely to produce substantial

innovations, even if the relationship between age and innovative potential is �xed. The greater the

ratio of 50-year-old innovators to 25-year-old innovators, the more likely the Nobel Prize winning

invention or greatest technological insight to come from one of the 50-year-olds. Such demographic

e¤ects may be important: certainly, life-expectancy and the average age of the population have

risen substantially over the 20th century.

The following section develops a formal econometric model to identify speci�c shifts in innova-

tion potential, controlling for demographic e¤ects. We ask two questions explicitly. First, is the

upward trend in the age of great achievement simply a demographic e¤ect, or is it driven by shifts

in innovator�s life-cycle productivity? Second, if life-cycle productivity is shifting over time, is this

due to e¤ects at the beginning of the life-cycle, the end of the life-cycle, or both?

3 Life-Cycle Productivity

This section presents an econometric model to de�ne the probability that witnessed innovations

are produced by innovators at particular ages. Empirical analysis follows, using this model to

determine sources of the upward trend in the age of great achievement.

Given a great innovation, the probability that this innovation was produced by an individual

of age a will depend on two things. First, it will depend on the relative innovation potential of

innovators in di¤erent cohorts. For example, according to Dirac, a physicist below the age of 30

has more innovative potential on average than one who is older. Second, it will depend on the

density of innovators of various ages. If a population is full of 50-year-old researchers but has very
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few 20-year-old researchers, then the likelihood a particular innovation came from a 20-year-old is

low, even if young innovators have good ideas.

Formally, consider a population N(t) at time t. Given a witnessed innovation, the probability

the innovation was produced by an individual i at time t is de�ned by:

Pr(i; t) =
xi(t)P

fi2N(t)g xi(t)

where xi(t) represents the innovation potential of person i at time t. Innovation potential measures

the relative innovative strength of an individual.3

For estimation, consider the model in terms of cohorts of equally-aged individuals. De�ne the

set of cohorts as A(t), where a � A(t) represents a cohort with age a. Let the set of individuals in

this cohort be Na(t) � N(t), and let the number of individuals in such a set be de�ned as jNa(t)j.

The probability a witnessed innovation is produced by an individual of age a is,

Pr(a; t) =

P
fi2Na(t)g xi(t)P
fi2N(t)g xi(t)

=
jNa(t)j �xa(t)P

fa2A(t)g jNa(t)j �xa(t)

where �xa(t) is the average innovation potential of individuals in the cohort with age a. Dividing top

and bottom by the size of the entire population, jN(t)j, and de�ning the population age distribution

as pa(t) = jNa(t)j = jN(t)j, we rewrite this expression as,

Pr(a; t) =
pa(t)�xa(t)P

fa2A(t)g pa(t)�xa(t)
(2)

Intuitively, the probability an innovation comes from a person of age a is just the relative innovation

potential across cohorts weighted by the population age density, or, equivalently, the population
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age density weighted by the innovation potential. Shifts in the age distribution of great innovation,

as seen in Figure 2, are thus seen to be driven either by shifts in the population age distribution,

pa(t), or by shifts in the average innovation potential of various age groups, �xa(t).4

Equation (2) is the central vehicle for the maximum likelihood estimation to follow. Given data

for the population distribution, pa(t), and a series of year-age observations for great achievements,

we can use (2) to test hypotheses about the shape of innovation potential, �xa(t). Before continuing

to the estimation, it remains to develop an explicit model of �xa(t) and how it may shift over time.

This sub-model is presented in the next section.

3.1 A Model of Life-Cycle Productivity

In choosing an appropriate modeling strategy for life-cycle innovation potential, it is helpful to �rst

consider the existing empirical literature on creative careers, which suggests the following pattern

(e.g., Lehman 1953, Bloom 1985, Simonton 1991, Stephan and Levin 1993). First, the life-cycle

begins with a period of full-time training in which there is no substantive creative output. Second,

there is a rapid rise in output, following an S-curve, to a peak in the late 30�s or early 40�s. Finally,

innovative output declines slowly through later years, following a declining S-curve.5

Given this pattern, consider a simple model

�xa = L1(a)L2(a) (3)

where L1(a) captures early life-cycle e¤ects and L2(a) captures late life-cycle e¤ects. This model

can be given a speci�c basis that draws naturally on the life-cycle considerations above. In

particular, let an innovator i start life with a stochastic duration of education, ei, during which
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she does not innovate. Additionally, de�ne g(ai; zi) as the individual�s innovation potential if

fully educated, where zi is some stochastic measure of talent, e¤ort, health, or other factor that

in�uences innovative ability. The innovation potential of individual i as a function of her age is

then xi = I(ai � ei)g(ai; zi), where I(ai � ei) is an indicator function equal to 1 if ai � ei and 0

otherwise.

Employing a law of large numbers, we can write the cohort average innovation potential as

�xa
p! E[I(ai � ei)g(ai; zi)]. Assuming additionally that ei and zi are independent, this expectation

simpli�es to �xa
p! L1(a)L2(a) where L1(a) = Pr(ai � ei) captures the average year in which the

career starts and L2(a) = E[g(ai; zi)] captures the path of life-cycle productivity once educated.

To estimate L1(a), we will assume �rst that ei is distributed logistically within cohorts,

L1(a) =
1

1 + e�(a��)=!
(4)

where � = E[ei] is the average age at which the career begins and ! is a variance parameter.

A logistic speci�cation seems reasonable as it is parametrically simple, �exible, and captures the

"S" shape one sees in early life-cycle output. Figure 3 presents a graph to clarify this logistic

speci�cation and the meaning of the parameters.

To estimate L2(a) we assume a second logistic curve with parameters � and �,

L2(a) = 1�
1

1 + e�(a��)=�
(5)

With equation (3) and its sub-components (4) and (5), we now have a model for innovation

potential over the life-cycle. We can estimate this model to determine how the propensity to
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produce great achievements in knowledge changes with age. Moreover, by articulating speci�c

underlying models for both the "front end" of the life-cycle, (4), and the "back end" of the life-

cycle, (5), we can ask not only whether innovation potential has been shifting over time but, more

speci�cally, whether any shifts are coming from the early years of life, the late years of life, or both.

A motivational question in this paper is whether �, the mean age at which the active career

begins, is changing over time. Shifts in this mean over time can be generally modeled by a

polynomial expansion,

�(t) = �0 + �1t+ �2t
2 + ::: (6)

Shifts in the variance parameter can be modeled similarly. The main estimation below will allow

for a linear trend in �(t) and a �xed variance parameter, !; more general speci�cations will also

be considered as robustness checks.

As with the beginning of the innovative career, we can further allow for shifts in innovation

potential at the end of the career,

�(t) = �0 + �1t+ �2t
2 + ::: (7)

For example, as noted above, shifts that increasingly favor experience over raw ability may increase

later life innovation potential. Meanwhile, improved health technology may lead to clearer think-

ing and/or increased physical stamina, while, alternatively, rising incomes could encourage earlier

retirement and a decline in average innovation potential among older innovators. In the estimation

I will constrain L2(30) > 0:9 to ensure that (5) and movements in it are describing e¤ects later

in life, which will make the results more transparent to interpret. This strategy will help us to

substantially limit theories for the increased age at great innovation over the 20th Century.
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Taken together, equation (2) and the sub-model of innovation potential given by equations

(3)-(7) integrate demographic e¤ects with life-cycle productivity considerations. The following

subsection discusses the data used to estimate pa(t). We then present the central results.

3.2 Population Data

The great innovators come from many di¤erent countries and are therefore drawn from populations

with di¤ering age distributions. Data on these age distributions are di¢ cult to �nd for many

countries, particularly over the time-frame of the entire 20th century. For this reason, the estimation

will focus on the American subset of great innovators. The American innovators show a similar

trend in mean age at great achievement as the larger group and provide a signi�cant number of

observations on their own.6

The population age densities are calculated from large micro-samples of the U.S. census. With

these micro-samples, one can determine the age distribution for (i) the entire national population,

as well as for subgroups of (ii) active workers and (iii) professional scientists and engineers. The

scientist and engineer data may capture a closer approximation of the relevant age distribution of

innovators. However, the sample sizes are small in early census years, and the occupational codes

in the census change somewhat across time, raising concerns that shifts in the age distribution

for this sub-group may partly be an artifact of shifting classi�cations. The maximum likelihood

model will be estimated using each of these population data sets. As we will see, the estimates

are quite insensitive to the choice of population. See the Data Appendix for further discussion of

these census data and the construction of the science and engineers sub-sample.

12



3.3 Results

Table 2 presents the maximum likelihood estimates for shifts in innovation potential. Columns (1)

through (3) allow for linear trends in the mean parameters, which we take as the main speci�cation.

There are two striking results. First, there has been a large shift in life-cycle innovation

potential, even when controlling for an aging population. Second, the shift in innovation potential

is felt entirely at the beginning of the life cycle. In particular, we see that the mean age at which

innovators begin making active contributions has increased by about 8 years over the course of

the 20th Century, rising from a mean age of about 23 in 1900 to approximately 31 in the year

2000. These results are robust to the choice of population data. Meanwhile, there is little shift in

innovation potential in middle age or beyond. The estimates tend to show most modest and in all

cases highly insigni�cant movements.

Figure 4 compares the estimated life-cycle curves for the year 1900 and the year 2000, using

speci�cation (3). We see that the peak ability to produce great achievements in knowledge came

around age 30 in 1900 but shifted to nearly age 40 by the end of the century. An interesting aspect

of this graph is the suggestion that, other things equal, lifetime innovation potential has declined.

This point will be further discussed in Section 5.

One may also now decompose the trends of Section 2 into demographic and productivity com-

ponents. Holding population distribution �xed using 1950 data, the productivity shift in Table 2

implies an approximately 5 year increase in the mean age of great achievement. Meanwhile, hold-

ing innovation potential �xed at its 1950 estimate, the aging population suggests an approximately

3 year increase in mean age. Hence productivity shifts account for about 60% of the 8-year age

trend seen in Section 2, while the aging population captures 40%.7
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These basic results are robust to a number of alternative speci�cations. The speci�cations in

Table 3 allow for additional linear trends in the variance parameters of the logistic distributions.

We see that the only statistically signi�cant movement in innovation potential continues to come at

the beginning of the life cycle, in the mean age at which the career begins. Columns (4) and (5) of

Table 2 further consider the U.S. Nobel Prize and U.S. great inventor datasets separately, showing

similar results in each case. While the Nobel Prize is in principle given for distinct achievements, we

might be concerned that other criteria a¤ect the selection, and that these criteria have shifted over

time to favor older innovators.8 Possible selection concerns regarding Nobel Prizes are unlikely to

be important here, however, mainly because the great inventor data set, which simply lists the great

technological achievements in each given year, appears more immune to these kinds of selection

biases and yet has produced very similar results.9

4 Inside the Early Life-Cycle

Age at great invention has trended upwards by approximately 6 years over the course of the 20th

Century. This trend is not simply due to an aging population but re�ects a substantial change

in the life-cycle productivity of innovators. Furthermore, the maximum likelihood estimates focus

interpretations on e¤ects limited to the young. Explanations must confront not a general aging

e¤ect but a speci�c, substantial delay at the beginning of the life-cycle.10

A natural and intriguing hypothesis for the rising delay in the early life-cycle is the possibility

that training time has increased. A viewpoint that emphasizes training would build on two claims.

First, that training is an important preliminary input to the innovative career. Second, that

variations in training duration can help explain the age-invention relationship.
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This section focuses on the early life-cycle and the role of training to further open up the black

box of age and invention. I undertake three analyses. The �rst analysis looks directly at evidence

from Ph.D. age and shows that Ph.D. age increases substantially over the 20th Century. The

second analysis harnesses world wars, as exogenous interruptions to the young career, to test the

basic idea that training is an important preliminary input to innovation. I show that, while the

world wars do not explain the 20th century�s age trend, they do indicate the unavoidable nature of

training: lost years of training appear to be "made up" after the war. The �nal analysis explores

cross-�eld, cross-time variation. I show that variations in training duration predict variations

in age at great invention, and I close by discussing a perspective in which shifts in foundational

knowledge explain major training and achievement age patterns within �elds and over time.

4.1 The Age at Highest Degree

Given the increasing delay at the beginning of the life-cycle, an obvious question is whether this

delay is re�ected in longer periods of formal education.11 While the Ph.D. is an institution that only

approximately captures the end of the training phase and the beginning of the primary research

phase, it is also the most obvious delimiter between these phases. I consider here the basic trend.

For 93% of the Nobel Prize winners, it was possible to determine the age and location for the

highest degree. In 96% of these cases, the highest degree was a doctorate. I analyze trends in the

age by running the following regression:

aDi = �+ �t
D
i + Xf + "i (8)

where aDi is the age of individual i at the time of their highest degree, tDi is the year of the
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highest degree, and Xf are �xed e¤ects for the country of the degree and the �eld of the ultimate

achievement.

The results are presented in Table 4. We see that Nobel Prize winners complete their formal

education at substantially older ages today than they did a century ago. There is an upward age

trend of approximately 4 years per century, and the trend is robust across speci�cations. This

result suggests that training duration may be intimately related to the drop in innovative output

in the early life-cycle.12 As we will see below, patterns in the age of highest degree also inform

substantially more detailed variation in the data.

4.2 War Interruptions

World Wars I and II created interruptions in many careers. For certain cohorts, the interruption

of the war was felt largely in the training phase. This provides a natural experiment to investigate

the role of training in the early life-cycle.

In particular, in every year there are people who have completed their undergraduate degree

but not their graduate degree. Every person is at some point between degrees, so by drawing any

year at random we draw a sample of people with similar innate characteristics, on average. We

can then ask whether those individuals who happened to be between degrees at the outset of world

war, in 1914 and 1939, as opposed to being between degrees in other years, experienced unusual

delays in completing their training and in their ensuing innovative careers. For 68% of the Nobel

Prize winners, it was possible to collect the year of the undergraduate degree and hence identify

individuals who are between degrees. I run regressions of the form

yi = �+ 1WW1 + 2WW2 + �ti + Xf + "i (9)
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where yi is the outcome variable of interest: either the age at highest degree, the number of years

between the undergraduate and graduate degree, or the age at great achievement. The variables

WW1 and WW2 are dummies equal to 1 if the individual happened to be between degrees at the

outset of the indicated war. The control ti captures background trends in the dependent variables,

and Xf includes �eld and country �xed e¤ects and dummies for cases where educational data is

not observed.13

The results are presented in Table 5. We see that both world wars resulted in a 2 year increase

in the age at Ph.D. for those individuals who happened to be caught between degrees. Related,

there is 2 to 3 year increase in the number of years between the undergraduate and graduate degree.

These both suggest that interruptions to training must be "made up". These early life cycle delays

can be further associated with increased age at great achievement, by 2-3 years for World War

II although there is little e¤ect for World War I. Given that innovation potential remains high

through middle age, it is not clear that a small number of early life-cycle interruptions will show an

increase in the mean age of great innovation.14 One expects, more precisely, a decline in innovative

potential at younger ages. In fact, one can show that experiencing either war when aged 20-25

implies a substantially reduced probability of producing innovations when aged 25-30, even though

the wars are over.15

In short, great minds do not magically arrive at high innovation potential at a certain age, but

rather their behavior in their early life-cycle informs their ensuing innovative output. Interruptions

during the training phase create delays to their education and their achievements, suggesting that

training is an important preliminary input to the innovative career.16
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4.3 Knowledge Accumulation and Revolution

We can go further in understanding any training-achievement nexus by harnessing additional vari-

ation in the data. Figure 5 plots the evolution of age at great invention separately for the four

Nobel sub-�elds (dark lines, left axis). These are non-parametric regressions so that the patterns

are seen without imposing a functional form. The age at Ph.D. is separately plotted (grey lines,

right axis), as are 95% con�dence intervals.17

We see that Ph.D. and achievement age tend to follow remarkably similar dynamics within

�elds.18 The shared dynamics are most apparent in the hard sciences �physics, chemistry, and

medicine �and less so in economics, although this case is obscured by outliers.19 Most strikingly,

both achievement and Ph.D. age in physics experienced a unique decline in the early 20th century.

This unusual feature, beyond reinforcing the relationship between training and achievement age,

may also inform basic theories for the underlying dynamics and di¤erences across �elds.

An intriguing side-e¤ect of innovation is the possibility that new ideas impose an increasing

educational burden on future innovators. If the set of foundational ideas expands, training time

may expand, making innovators less productive in their early life-cycle. On the other hand,

progress in science need not require expansions in foundational ideas. New ideas sometimes serve

not as extensions or re�nements but rather as revolutions, leading to contractions in the knowledge

space that ease training requirements. Whether scienti�c progress is fundamentally cumulative or

revolutionary in nature is an empirical question - and one much debated by historians of science.

Thomas Kuhn distinguished between periods of "normal" science (accumulation) and periods of

"paradigm" shifts (revolution), with early 20th Century physics as his quintessential example of

the latter (Kuhn, 1962).
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Jones and Weinberg (2008) consider the U-shaped age relationship in physics through the lens of

accumulation and revolution. That analysis details a remarkable coincidence between the quantum

mechanics revolution and the unusual behavior in the age data. Many historians chart the speci�c

period from 1900-1927 as the time when the entire worldview of physics changed (e.g. Kuhn,

1962; Jammer, 1966; Galison et al., 2002).20 From a training point of view, physicists found

themselves in the early 1900s wrestling with a new, limited set of empirical puzzles and the failure

of existing theory, allowing young minds to achieve the research frontier relatively easily. The �rm

establishment of quantum mechanics in the late 1920s then led back towards normal science, a long

period of accumulation and re�nement that has continued since. In the data, the ages among

physicists during the early 20th century reach a minimum in the late 1920s, coincident with the

establishment of quantum mechanics, and have risen thereafter. This age pattern is not seen in

other �elds, which did not experience such revolution.

In sum, training dynamics appear to usefully predict variations in the age-invention relationship.

Digging deeper, the distinction between knowledge accumulation and revolution can provide a useful

lens through which to view major training and age-invention patterns in the data, an interpretation

that is further explored below.

5 Interpretations and Implications

The evidence in this paper points to early life-cycle e¤ects and a particular role for training in

understanding the age-invention relationship. In this section, I explore more formal reasoning for

innovators�training decisions. I clarify the potential explanatory power of several hypotheses and

close by considering implications of the patterns uncovered in this paper.
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Consider the following simple model. An innovator is born with no knowledge but endowed with

time. Innovators can invest in training, but knowledge acquisition delays the active production of

new ideas. Innovators compare the return to active production with the return to further training,

whatever the bene�ts that training brings.

A reasonable speci�cation, especially for highly motivated innovators, is that educational at-

tainment is chosen to maximize one�s lifetime research contribution. In particular, the choice

problem is:21

max
E

Z T

E
f(E)g(a)da

where f(E) represents the value of education to innovative output, and g(a) > 0 represents other

sources of the individual�s innovation potential (natural ability, health, etc.) as a function of age.

Individuals spend some number of years, E, focused on education during which time they do not

innovate, followed by a career of innovation until they die at time T . The amount of education

in�uences their ultimate productivity, where f 0(E) > 0 and f(0) = 0.

The �rst order condition for this problem is:22

f 0(E)

Z T

E
g(a)da = f(E)g(E) (10)

which clari�es the central tradeo¤. Greater education brings a bene�t: the incremental e¤ect on

innovative output, f 0(E), weighted by the innovative ability that remains over your lifetime. But

it also brings an opportunity cost, f(E)g(E), the current innovation potential foregone.

Consider the implications of expansions in foundational knowledge. If knowledge accumulates

across generations, then the training curve, f(E), can shift rightward, causing E� to rise. This is

a natural outcome if (a) there is a set of preliminary skills one must master to reach the frontier in
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a �eld, and (b) the set of these skills expands. For example, imagine that innovators need to know

A, B, C to attack D, the frontier. Following success at D, however, ensuing cohorts may need

to know A, B, C, D to attack the new frontier. In its simplest form, one imagines f(E) as a step

function with a step up after training for a particular number of years, with this number increasing

when knowledge accumulates.

We may also consider the in�uence of increased life expectancy (T ). Longer life expectancy, by

increasing
R T
E g(a)da, can lead endogenously to increased training time by providing a longer period

over which to reap the gains of further training. However, there are several reasons to believe such

a mechanism may not provide an adequate explanation for the empirical patterns. First, mean life

expectancy at age 10 was already above 60 in 1900, while Sections 2 and 3 show that innovation

potential is modest above 60, so that adding years of life beyond this age would have at most

mild e¤ects on the optimization.23 Related, even modest discounting would substantially limit the

e¤ect of gains felt 35+ years beyond the end of training on the marginal training decision. Finally,

common life expectancy changes cannot explain the cross-�eld and cross-time variation explored in

Section 4, such as the unique behavior of physics.

Another set of explanations involve institutional or sociological e¤ects on the training curve,

f(E). A plausible story might involve signaling. If establishing a reputation is a prerequisite

for grant-based research, and research has become more grant-based (expensive) over time, then

extensions of formal training or apprenticeship may serve to signal reputation - a di¤erent inter-

pretation of the educational return. While this force may be operating, it also su¤ers as a general

explanation; for example, Figure 5 shows a substantial age increase at great achievement among

the economists alone, and these prizewinners have had little need for large grants.

Other forces might also be considered within this framework, none of which are mutually ex-
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clusive and many may be operating.24 At the same time, reasoning about shifts in foundational

knowledge can provide a parsimonious explanation for the major patterns in this paper. A di¢ culty

in directly establishing this thesis is the di¢ culty in directly measuring the stock of foundational

knowledge - the "distance to the frontier". But we can go further by considering additional,

indirect evidence. To see this, we further articulate the training decision.

If we imagine that the innovators must reach the frontier to do innovative work, the innovator

still has a decision over the breadth of expertise along the frontier. To �x ideas simply, let

E = bD

whereD measures distance to the frontier and bmeasures the innovator�s breadth along the frontier.

Total training time is then determined in part by the capacity for specialization. For example,

the chemist may choose to come a frontier expert in the synthesis of metal alloys (narrower b),

or both alloys and organics (wider b).25 This specialization margin presents a useful empirical

application. Inferences about knowledge accumulation, D, based only on investigations of training

time, E, may be clouded by other possible forces as discussed above. But we might infer knowledge

accumulation more de�nitively by observing E in combination with some measure of breadth of

expertise, b. That is, D = E=b. If people spend longer in training (more E) and yet come out the

other end more specialized (less b), then the distance to the frontier has increased.

This reasoning is explored in Jones (2005), which studies "ordinary" inventors, looking at all

U.S. patents in the 1975-2000 period. There are two key results. First, the age at �rst patent

is rising at a rate of 6 years/century. Age at �rst patent provides an outcome-based measure

to delimit the training and research phases. Remarkably, this estimate for the extending training
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period is extremely similar to the trends in this paper. Second, proxy measures for specialization

show increased specialization across the full range of technological �elds. One proxy measure is

research collaboration in patenting - measured as team size - which is increasing at over 10% per

decade.26 A more direct measure of specialization considers the probability that an individual

switches technological areas between consecutive patents. Jones (2005) shows that the probability

of switching technological areas is substantially declining with time. These analyses indicate that

training time, E, is rising, while measures of breadth, b, are simultaneously declining. It is then

di¢ cult to escape the conclusion that the distance to the knowledge frontier is rising. This evidence

also acts to con�rm, with "ordinary" invention, the rising age pattern found among the great minds.

5.1 Implications

Shifts in life-cycle research productivity can have diverse implications, from the e¢ cient targeting

of grants to the design of tenure processes and the timing of child rearing. Here I will emphasize

two aggregate implications, for core issues in economic growth and scienti�c progress, that are

suggested by the particular life-cycle shifts identi�ed in this paper.

First, other things equal, the shorter the period that innovators spend innovating, the less their

output as individuals. If innovation is central to technological progress, then forces that reduce the

length of active innovative careers will reduce the rate of technological progress. This e¤ect will be

particularly strong if innovators do their best work when they are young. In fact, aggregate data

patterns, much debated in the growth literature, have noted long-standing declines in the per-capita

output of R&D workers, both in terms of patent counts and productivity growth (Machlup 1962;

Evenson, 1991; Jones 1995a; Kortum, 1997). Simple calculations from aggregate data suggest that

the typical R&D worker contributes approximately 30% as much to aggregate productivity gains
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today as she did at the opening of the 20th Century.27 This paper provides micro-evidence that

can explain part of that trend. Other things equal, the estimates of Section 3 indicate a 30%

drop in the lifetime innovation potential over the century, or nearly half of the overall decline in

individual research productivity.28

Second, the facts in this paper can also inform basic debates about the nature of scienti�c

progress. A core question in the history of science is whether scienti�c progress happens primarily

through accumulation and re�nement of ideas or through radical, "Kuhnian" revolution. These

debates are traditionally enjoined through historical argument, such as Kuhn�s seminal analysis of

physics. The age data in this paper can provide, alternatively, a data-driven test. If the aging

phenomena detailed in this paper suggest, as discussed above, accumulations of knowledge, then

Kuhnian revolutions appear rare.

6 Conclusions

Great minds produce their greatest insights at substantially older ages today than they did a century

ago. This upward age trend is not due simply to an aging population, but comes from a substantial

decline in the innovative output of younger innovators. Meanwhile, there is no compensatory

expansion of innovative output at later ages. Innovators are the engines of technological change

and, other things equal, the less time an innovator spends innovating, the less her lifetime output.

The estimates point to a 30% decline in life-cycle innovation potential over the 20th Century.

This paper further explores the role of training in understanding the early life-cycle dynamics,

investigating evidence from world wars, age at Ph.D., and cross-�eld, cross-time variation in training

and achievement ages. These analyses point towards the training phase as a key explanation for
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the trends we see. Yet the economics literature has focused little on the human capital investments

of innovators. Given that innovators spend some of their youngest and potentially brightest years

undertaking educational investments, understanding the tradeo¤s at the beginning of the life-cycle

may be �rst-order for understanding the ultimate output of these individuals. Certainly, great

innovation is less and less the provenance of the young.
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7 Data Appendix

This appendix describes the data sources used in the paper, providing both reference material and

some underlying details of the methodology used in data collection.

7.1 Data on great innovators

The o¢ cial website of the Nobel Foundation, nobelprize.org, provides written biographies of all

winners and was used to obtain dates and locations of birth, the �eld of the prize, the year and

location of the highest educational degree, and the year(s) in which the prize-winning research was

performed. Altogether, I was able to determine dates of birth for all 547 Nobel Prize winners

between 1901 and 2003, and the period of key research for all but 3 of these. In practice, the data

identi�es a single year of great achievement - i.e. the year of success - for 75% of the cases. For

the remainder, the Nobel citation appears to encompass multiple sub-contributions, in which cases

early and late dates of achievement were collected. In these cases, the estimations in the text use

the middle year to de�ne the age at great achievement, although results using either the �rst or last

year of the key research are extremely similar in general and, in particular, nearly identical in the

size of the trends and their statistical signi�cance. The year or period of key research was usually

straightforward to ascertain through the Nobel Foundations biographies, but in cases where these

did not accurately identify the year or period of key research, other sources were consulted. The

primary printed materials used were:

1. Schlessinger, B. and Schlessinger, J. The Who�s Who of Nobel Prize Winners, 1901-1995.

Oryx Press, Phoenix AZ 1996

2. Daintith, J. and Gjertsen, D. The Grolier Library of Science Biographies. Vols. 1-10. Grolier
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Educational, Danbury CT 1996

3. Debus, A.G. ed. World Who�s Who in Science: A Biographical Dictionary of Notable Scien-

tists from Antiquity to the Present. Marquis Who�s Who Inc., Chicago 1968

4. McMurray, E.J., Kosek, J.K., and Valade, R.M. Notable Twentieth-Century Scientists. Vols.

1-4. Gale Research, Detroit 1995

5. Williams, T.I. ed. Biographical Dictionary of Scientists. John Wiley and Sons, New York

1974.

Data on great inventors were collected from two technological almanacs, which indicate a list

of notable technological advances in each year and typically provide the birth date and birthplace

of the innovator responsible. Together the almanacs provided a set of 286 inventors in the 20th

Century. These inventors include, for example, Reginald Fessenden (�rst audio radio transmission),

Leo Baekeland (Bakelite �a breakthrough plastic), Georges Jean Marie Darrieus (vertical axis wind

turbine), Frank Whittle (jet engine), Virginia Apgar (newborn health rating), and Steve Wozniak

(early personal computer). The almanacs consulted were:

1. Bunch, B. and Hellemans, A. The Timetables of Technology. Simon and Schuster, New York

1993

2. Ochoa, G. and Corey, M. The Timeline Book of Science. Ballantine Books, New York 1995

Fields of research are given in both sources. I condense their categorizations into nine �elds:

Communication, Computers & Electronics, Energy, Food & Agriculture, Materials, Medicine, Tools

& Devices, Transportation, and Other. These categorizations de�ne the �eld �xed e¤ects in the

econometric speci�cation (1), but the results are not sensitive to speci�c categorizations.
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7.2 Data on population age distribution

One and �ve percent micro-samples of the U.S. census are available electronically through IPUMS,

the Integrated Public Use Microdata Series, which is maintained by the University of Minnesota:

Steven Ruggles, Matthew Sobek, Trent Alexander, Catherine A. Fitch, Ronald Goeken, Patricia

Kelly Hall, Miriam King, and Chad Ronnander. Integrated Public Use Microdata Series:

Version 3.0 [Machine-readable database]. Minneapolis, MN: Minnesota Population Center

[producer and distributor], 2004.

The smallest sample used was for the 1900 census, whose micro-sample provided data on approx-

imately 100,000 individuals. The largest sample used was for the 2000 census, whose micro-sample

provided data on approximately 2.8 million individuals. Existing census research available on

the website (www.ipums.umn.edu/usa/chapter3/chapter3.html) indicates that these micro-samples

provide accurate estimates of the population at large with regard to age. Population data for years

in between decennial census years were determined by linear interpolation. Data for the year 1930

are not available, requiring interpolation for years between 1920 and 1940.

The subgroup of active workers is de�ned by having active labor force participation (LAB-

FORCE=1) in the IPUMS data. The IPUMS attempts to recode census data to allow comparisons

over time on a common basis, even if the census questions asked are not entirely consistent. From

1940, LABFORCE=1 for any individual who is actively working or seeking work. In 1900, the

variable requires that individuals report any profession and have worked in the last 12 months. In

1910-1920, it includes those who report any "gainful occupation". This subsample is still large,

with a minimum of 40,000 observations in 1900 and 1.3 million observations in 2000.
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The subgroup of professional scientists and engineers requires further construction. The IPUMS

uses the variable OCC1950 to de�ne occupations across census years according to a common set

of categories. I then take a subsample of these occupation codes that include the following rele-

vant descriptions: professors and instructors in all subjects except social sciences (codes 012-026);

engineers (codes 041-049); and natural scientists (codes 061-069). These data have two potential

di¢ culties: �rst, the samples are substantially smaller, with only 56 observations in 1900 and 353

in 1910, rising to approximately 25,000 in the year 2000; second, the occupation is not de�ned until

it is begun, in which case those still in school are not included. To create reasonable population

estimates I �rst smooth these population data with an Epanechnikov kernel and a bandwidth of 2

years. Second, I impute the number of innovators still in training (those aged 15-29) based on the

number of employed workers ten years later who are ten years older. The results are not sensitive

to particular kernel bandwidths or age imputation schemes. In results not reported, I have also

considered a broader set of all "professional, technical" workers (codes 001-099), which gives similar

results.
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Notes

1Research in the psychology literature suggests that substantial training periods �ten years at

minimum �are a prerequisite to expertise in many �elds, from science to sports, music, medicine,

and chess (see Ericsson and Lehmann 1996 for a review).

2Dirac built on Heisenberg�s uncertainty principle and Hamiltonian mechanics, while Einstein�s

early insights built on the work of Planck and Maxwell.

3One may think of innovators as being drawn, with replacement, from a box of names. A

particular person�s innovation potential then represents the frequency with which his or her name

appears in the box, where we imagine that innovators with higher ability or e¤ort level appear

more often.

4Several other useful points can now be made. First, the stochastic process represented in equa-

tion (2) can produce innovators with a large variance in age, as demonstrated in Figure 1. Second,

any presumption that the innovators�upward age trends are driven mechanically by increasing life

expectancy may be misleading if the innovation potential, �xa(t), of those in their later years is low

�if only because people retire. Finally, it is worth noting that this stochastic model makes few

assumptions. While we will make further assumptions in how we de�ne pa(t) and �xa(t), the model

to this point is quite general.

5While laboratory experiments do suggest that creative thinking becomes more di¢ cult with

age (e.g. Reese et al, 2001), the decline in innovative output at later ages may largely be due to

declining e¤ort, which a range of theories have been proposed to explain (see Simonton 1996 for a

review).

6There are 294 American-born great innovators. The trend in age at great achievement is 8.24
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years/century with a standard error of 2.58 years/century.

7Moreover, much of the demographic e¤ect comes in the �rst 2/3rds of the century; more recently,

the baby-boom signi�cantly attenuated the aging of the working population and even reversed it

in the 1970s and 1980s.

8For example, an increasing bias towards lifetime achievement could have this e¤ect.

9The Nobel Prize and great inventors data sets have extremely similar age distributions (Figure

1) and extremely similar mean trends (Table 1). Table 2 shows that the structural trends are similar

for both groups when they are estimated independently; the coe¢ cients for the great inventors are

the same as for the whole, and the standard errors rise slightly as would be expected given the

smaller sample size. These common patterns suggest common forces rather than idiosyncratic

selection e¤ects. Finally, the results of Tables 2 and 3 show shifts in innovation potential at the

beginning of the life-cycle and not at the end, which is not consistent with selection stories based

on longevity or increasing favoritism for lifetime achievement.

10Theories that focus on productivity in the later life-cycle, such as improved health e¤ects, �nd

little support. Theories that suggest delays in innovation at both young and old ages will also

have trouble explaining the speci�c empirical patterns we see. For example, research on creative

careers in the arts (Galenson & Weinberg 2001; Galenson 2004a; Galenson 2004b) has suggested

a useful distinction between "conceptual" innovation and "experimental" innovation, where the

former favors the young and the latter favors the old �often the very old. However, these important

ideas are not wholly satisfactory here because an increasing experimental bias would presumably

be felt to a large degree at older ages.

11Indeed, several studies have documented upward trends in educational attainment among the

general population of scientists. For example, the age at which individuals complete their doctor-
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ates rose generally across all major �elds in a study of the 1967-1986 period (National Research

Council, 1990). The duration of doctorates as well as the frequency and duration of post-doctorates

has risen across the life-sciences since the 1960s (Tilghman et al, 1998). A study of electrical en-

gineering over the course of the 20th century details a long-standing upward trend in educational

attainment, from an intitial propensity for bachelor degrees as the educational capstone to a world

where Ph.D.�s are common (Terman, 1998).

12Interestingly, while the increase in training age is large, it accounts for only half the shift seen

in the maximum likelihood estimates, although it is within those estimates�con�dence intervals.

Institutional variations in Ph.D. requirements may complicate further interpretations. For example,

the country �xed e¤ects in (8) are jointly signi�cant with a p-value of less than :0001. This suggests

that variations in degree requirements di¤er across countries; institutional variations over time are

then likely as well. The well-known rise of post-doctorates (e.g. Tilghman et al, 1998) and/or

increased �on-the-job training�could suggest further extension of the training phase in ways not

captured by charting ages at Ph.D..

13One can also consider country-speci�c war-entry dates. The major potential change would be

to the US, which enters WW1 only in 1917 and WW2 only in 1941 and encompasses 40% of the

relevant sample of individuals who are between degrees at the outset of war. In practice, such an

adjustment has little e¤ect on the sample and strengthens the results slightly.

14The weak World War I result may re�ect low power; since only 10 individuals are caught

between degrees in 1914 (there are 66 observations in the WW2 case).

15These results are available from the author upon request.

16Note also that the world wars do not drive the overall 20th century trends. While wars

interrupted certain careers, Table 5 shows that the background trends in achievement age and
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Ph.D. age are essentially unchanged.

17These plots are the results of Fan regressions with a quartic kernel, 25% bandwidth, and

bootstrapped standard errors (Fan 1992; Deaton 1997).

18It can also be demonstrated in regression format that age at highest degree is an economi-

cally and statistically sign�cant predictor of acheivement age (results available from author upon

request).

19The movement in mean Ph.D. age for Economics is less predictive, although the con�dence

intervals are wide. There are only 53 observations for economics, which limits the inference, and

the sharp rise to 1960 is driven largely by a few signi�cant outliers (Allais, Coase, and Stone, who

receive their Ph.D.s at ages 38, 41, and 44 respectively, long after their �rst academic appointments

and years of successful research). These outliers mask a continuing decline in the completion of

formal education at young ages. Prior to 1950, 32% of eventual Nobel Prize winners in Economics

completed their highest degree prior to age 25. After 1950, only 7% completed their highest degree

by age 25. Similar, large declines in Ph.D. completion by the very young are also seen in Physics,

Chemistry, and Medicine.

20Starting with Planck�s idea in 1900 that radiation comes in discrete energy packets (quanta),

the work of many others followed, breaking down classical physics and reaching �rm footing only

with the advent of a consistent "quantum mechanics", developed by Schrodinger, Heisenberg and

others in the mid to late 1920s.

21More generally, this objective function captures the maximization of fame or income, so long

as fame and income are monotonic functions of lifetime innovative output. One can incorporate

time discounting in the g(a) function.

22This maximization problem has an interior solution, which is seen by noting that
R T
E f(E)g(a)da =
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0 if E = 0 or E = T , and that
R T
E f(E)g(a)da > 0 if E 2 (0; T ).

23This life expectancy data is for white males in the United States. (Source: Department

of Health and Human Services, National Center for Health Statistics; National Vital Statistics

Reports, vol 53., no. 6, Nov. 10, 2004.) The life-expectancy of innovators, who have several

advantages, would likely be higher still. In fact, the age at death for great innovators in the sample

who were born between 1900 and 1910 averages 80.

24As a �nal example, one may imagine declining educational e¢ ciency, shifting the training curve

rightward. Such a decline in training e¢ ciency would have to be very large to explain the estimated

8 year delay, from age 23 to 31, in achieving high innovation potential, and one might imagine that

educational e¢ ciency increases with technology, rather than decreases, suggesting some skepticism

for this particular point of view. The biographies of Nobel prize winners further suggest a degree

of focus that is not commensurate with slow or undirected training.

25The capacity for specialization will likely be imperfect. For example, the chemist may specialize

more or less on certain types of synthesis but regardless must understand theories of valence and

molecular structure. The knowledge space is thus a mix of common foundational ideas and more

specialized ideas. When the stock of knowledge grows, we might imagine that innovators respond

on both dimensions, partly by increasing their training time and partly by increasing specialization

(though the argument in the text is empirical and does not require this assumption).

26General upward trends in collaboration are also found in journal publications (e.g. Wuchty et

al, 2007).

27Combining Machlup�s data on growth in knowledge producing occupations for 1900-1959 (Machlup

1962, Table X-4) with similar NSF data for 1959-1999 (National Science Foundation, 2005), we see

that the total number of knowledge-producing workers in the United States has increased by a
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factor of approximately 19. Meanwhile, the U.S. per-capita income growth rate, which prox-

ies for productivity growth over the long-run, suggests a 6-fold increase in productivity levels

(based on a steady growth rate of 1.8%; see Jones 1995b). The average rate at which individ-

ual R&D workers contribute to productivity growth is
�
A=LR, or gA=LR , where A is aggregate

productivity, g is the productivity growth rate, and LR is the aggregate number of R&D work-

ers. The average contribution of the individual R&D worker in the year 2000 is then a fraction�
A2000=A1900

�
=(L2000R =L1900R ) = 6=19 (32%) of what it was in 1900.

28This paper estimates the relative innovation potential across age groups, so that forces that

enhance or reduce the impact of all innovators, regardless of age, are not captured. Other in�uences,

on top of delays at the beginning of the life-cycle, may therefore help to explain further portions

of the declining trend in the average contributions of innovators. Suggested mechanisms include

innovation exhaustion or "�shing out" stories (e.g. Evenson, 1991; Kortum, 1997), as well as

narrowing expertise and innovative capacity as an endgenous response to an increased educational

burden. Jones (2005) provides theory and empirical support for this latter mechanism.
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Table 1:  Age Trends among Great Innovators 

 Dependent Variable:  Age at Great Achievement 
 Nobel Prize Winners Great Inventors 
 (1) (2) (3) (4) (5) (6) 

Year of Great 
Achievement  

(in 100’s) 

 
5.83*** 

  (1.37) 

 
6.34*** 

   (1.36) 

 
7.79*** 

   (1.54) 

 
4.86** 
(2.31) 

 
6.60** 
(2.58) 

 
8.18** 
(3.29) 

Field Fixed 
Effects No Yes Yes No Yes Yes 

Country of Birth 
Fixed Effects No No Yes No No Yes 

Number of 
observations 544 544 544 286 286 248 

Time span 1873-
1998 

1873-
1998 

1873-
1998 

1900- 
1991 

1900- 
1991 

1900- 
1988 

Average age 38.6 38.6 38.6 39.0 39.0 38.9 

R2 0.032 0.068 0.189 0.016 0.098 0.173 

Notes:  All specifications consider trends in the age at great achievement.  

Columns (1)-(3) consider Nobel Prize winners and columns (4)-(6) consider great 

inventors listed in technological almanacs, as detailed in the text and appendix.  

Field and country of birth fixed effects are included or excluded as indicated.  The 

coefficient on year of great achievement gives the age trend in years per century.  

Standard errors are given in parentheses. Field fixed effects for Nobel Prizes 

comprise four categories:  Physics, Chemistry, Medicine, and Economics.  Field 

fixed effects for great inventors comprise nine categories:  Communication, 

Electronics and Computers, Energy, Food and Agriculture, Materials, Medicine, 

Tools and Devices, Transportation, and Other.  Results are similar when allowing 

for separate country of birth fixed effects by field, or when using country of 

highest degree fixed effects instead of country of birth. 

**  Indicates significance at a 95% confidence level. 

*** Indicates significance at a 99% confidence level. 

 



Table 2:  Maximum Likelihood Estimation of Life-Cycle Innovation Potential 
   
  (1) (2) (3) (4) (5) (6) 

µ0 

Initial Mean, 
in Years 

24.0 
(2.05) 

23.3 
(2.30) 

23.4 
(1.95) 

22.6 
(2.84) 

22.8 
(2.84) 

25.8 
(1.07) 

µ1 

Trend, in 
Years/Century 

7.76 
(3.22) 
[.016] 

8.29 
(3.49) 
[.018] 

8.32 
(2.71) 
[.002] 

8.91 
(5.23) 
[.088] 

10.29 
(4.56) 
[.024] 

5.32 
(1.97) 
[.007] 

Early Life 
Cycle 

Logistic 
Curve 

ω 
Variance 
Parameter 

2.40 
(0.37) 

2.47 
(0.43) 

2.38 
(0.40) 

2.43 
(0.73) 

2.30 
(0.46) 

2.21 
(0.20) 

        

θ0 

Initial Mean, 
in Years 

45.5 
(2.36) 

46.6 
(2.21) 

50.0 
(3.90) 

53.7 
(8.16) 

43.7 
(3.54) 

46.9 
(3.70) 

θ1 

Trend, in 
Years/Century 

-0.00e-03 
(8.63e-03) 

-0.00e-03 
(6.70e-03) 

0.14e-03 
(6.88e-03) 

-4.61 
(12.1) 

0.00e-03 
(1.28e-03) 

-0.71 
(5.17) 

ρ 
Variance 
Parameter 

7.05 
(1.10) 

7.54 
(0.91) 

9.12 
(1.60) 

6.64 
(2.72) 

6.24 
(0.99) 

7.38 
(7.40) 

Later Life 
Cycle 

Logistic 
Curve 

       

Population U.S. 
Population 

Active 
Workers 

Scientists 
and 

Engineers 

U.S. 
Population 

U.S. 
Population 

U.S. 
Population 

Inventor Type All All All Technology 
Almanacs 

Nobel  
Prize All 

Nationality US Born US  Born US Born US Born US Born All 
Data 

Number of 
Invention 

Observations 
294 294 294 127 181 738 

Log 
Likelihood 

 -1050.9 -1053.0 -1056.7 -463.6 -633.6 -2641.2 

Notes:   This table presents maximum likelihood estimates for the econometric model of life-cycle 

innovation potential, as derived in Section 3 and described visually in Figure 3.  These estimates 

allow for trends in the mean parameters for the early and late life-cycle logistic curves.  Table 3 

additionally allows for trends in the variance parameters. Standard errors are given in parentheses 

and calculated using the inverse of the information matrix.  P-values for the trend in the early life-

cycle mean are given in square brackets.   



 
Table 3:  Maximum Likelihood Estimation:  Further Specifications 

   
  (1) (2) (3) (4) 

µ0 

Initial Mean, in 
Years 

24.8 
(1.94) 

24.6 
(1.84) 

24.5 
(2.36) 

25.5 
(1.19) 

µ1 

Trend, in 
Years/Century 

6.32 
(3.27) 
[.053] 

6.05 
(2.94) 
[.039] 

6.47 
(3.95) 
[.101] 

5.89 
(2.12) 
[.005] 

ω0 
Initial Variance 

Parameter 

2.86 
(0.83) 

3.42 
(1.01) 

3.08 
(1.14) 

2.02 
(4.18) 

Early Life 
Cycle 

Logistic 
Curve 

ω1 
Trend, Variance 
Years/Century 

-0.88 
(1.42) 

-1.74 
(1.60) 

-1.29 
(1.80) 

0.43 
(7.35) 

      

θ0 

Initial Mean, in 
Years 

45.0 
(4.49) 

45.3 
(3.22) 

48.5 
(4.88) 

46.8 
(3.79) 

θ1 

Trend, in 
Years/Century 

0.99 
(4.06) 

2.29 
(3.28) 

2.79 
(6.79) 

-0.93 
(2.53) 

ρ0 
Initial Variance 

Parameter 

6.81 
(2.06) 

6.97 
(1.47) 

8.42 
(2.13) 

7.67 
(0.73) 

Later Life 
Cycle 

Logistic 
Curve 

ρ1 
Trend, Variance 
Years/Century 

0.45 
(1.77) 

1.04 
(1.46) 

1.27 
(3.07) 

-0.42 
(1.09) 

      

Population Entire U.S. 
Population 

All Active 
Workers 

Scientists 
and 

Engineers 

Entire U.S. 
Population 

Nationality U.S. Born U.S. Born U.S. Born All Data 
Number of 
Invention 

Observations 
294 294 294 738 

Log 
Likelihood 

 -1050.8 -1052.6 -1056.4 -2641.1 

Notes:   This table presents maximum likelihood estimates for the econometric 

model of life-cycle innovation potential, as derived in Section 3 and described 

visually in Figure 3.  These estimates allow for trends in mean and variance 

parameters for both the early and late life-cycle logistic curves.  Table 2 allows 



for trends in the mean parameters only, providing a more parsimonious model.  

All estimates are maximum likelihood.  Standard errors are given in 

parentheses and calculated using the inverse of the information matrix.  P-

values for the trend in the early life-cycle mean are given in square brackets. 



 
Table 4:  Age Trends at Highest Degree among Nobel Prize Winners 

 Dependent Variable:  Age at Highest Degree 
 (1) (2) (3) (4) (5) 

Year of Highest 
Degree 

(in 100’s) 

 
4.11*** 
(0.61) 

 
3.85*** 
(0.62) 

 
3.86*** 
(0.62) 

 
4.39*** 
(0.65) 

 
3.22*** 
(1.22) 

 
Field Fixed 

Effects 

 
No 

 
No 

 
Yes 

 
Yes 

 
Yes 

 
Country of 

Degree Fixed 
Effects 

 
No 

 
No 

 
No 

 
Yes 

 
-- 

Data All Doctorate 
Only All All U.S. 

Degree 
Number of 

observations 505 484 505 505 213 

Time span 1858-
1990 

1858-
1990 

1858-
1990 

1858-
1990 

1888-
1990 

Average age 26.5 26.6 26.5 26.5 26.6 

R2 .084 .075 .096 0.283 .060 

Notes:  All specifications consider trends in the age at highest degree 

among Nobel Prize winners.  Columns (1), (3) and (4) consider the 

full sample for whom degree age can be obtained.  Column (2) 

considers the sub-sample for whom the highest degree was a Ph.D. as 

opposed to a master’s or bachelor’s degree.  Column (5) consider 

only those where the highest degree came in the United States.  Field 

and country of degree fixed effects are included or excluded as 

indicated.  The coefficient on year of highest degree gives the age 

trend in years per century.  Standard errors are given in parentheses. 

Field fixed effects for Nobel Prizes comprise four categories:  

Physics, Chemistry, Medicine, and Economics.  Results are similar 

when allowing for separate country of degree effects by field, or 

when using country of birth fixed effects instead of country of degree. 



**  Indicates significance at a 95% confidence level. 

*** Indicates significance at a 99% confidence level. 

 
 



Table 5: War Interruptions 
  
 Ph.D Age Lag between Degrees Achievement Age 
 (1) (2) (3) (4) (5) (6) 

WW2 1.941*** 
(0.558) 

2.034*** 
(0.522) 

2.835*** 
(0.544) 

2.797*** 
(0.517) 

2.286** 
(1.148) 

2.727** 
(1.187) 

WW1 2.339** 
(1.149) 

1.911* 
(1.104) 

2.790** 
(1.125) 

2.194** 
(1.096) 

0.374 
(2.723) 

0.335 
(2.830) 

Year of 
Doctorate 

0.037*** 
(0.006) 

0.042*** 
(0.006) 

0.021*** 
(0.008) 

0.027*** 
(0.008) -- -- 

Year of Great 
Achievement 

-- -- -- -- 0.068*** 
(0.014) 

0.079*** 
(0.016) 

Missing 
Educational 
Observation 

-0.634* 
(0.366) 

-1.098*** 
(0.403) -- -- 2.111** 

(0.834) 
0.452 

(0.985) 

Field Fixed 
Effects 

No Yes No Yes No Yes 

Country of  Birth 
Fixed Effects 

No Yes No Yes No Yes 

Number of 
observations 

508 508 348 348 544 544 

R2 0.12 0.37 0.10 0.36 0.05 0.20 

Notes:  This table examines the effect of world wars on Nobel Prize winners who 

happened to be between degrees at the outset of war, as opposed to those who 

happened to be between degrees in other years.  The tables consider the effect of 

world war on Ph.D. age (columns 1 and 2), the time lag between undergraduate 

and graduate degrees (columns 3 and 4) and the age at great achievement 

(columns 5 and 6).  Results are OLS with standard errors in parentheses.  WW2 

and WW1 are dummies equal to 1 for individuals who happened to be between 

their undergraduate and graduate degrees at the outset of the indicated war (1939 

for WW2 and 1914 for WW1). 

* Indicates significance at a 90% confidence level.  ** Indicates significance at a 

95% confidence level.  *** Indicates significance at a 99% confidence level. 



Figure 1:  The Age Distribution of Great Innovation 
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Note:  The figure presents the age distribution of great invention separately for (a) 

Nobel Prize winners and (b) great inventors drawn from technological almanacs.  Data 

are pooled across time. 

 



Figure 2:   Shifts in the Age Distribution of Great Innovation 
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Note:  The figure presents shifts in the age distribution of great invention, pooling the 

Nobel Prize winner and great inventor data.  The age distributions are presented for three 

chronological periods, as indicated.  



Figure 3:  Model of Innovation Potential over the Life-Cycle 

 

Note:  This figure depicts the model of innovation potential presented in Section 3.1.   
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Figure 4:  Maximum Likelihood Estimates for the Potential to Produce Great Innovations 

as a Function of Age 
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Note:  This figure plots the estimated shift in relative innovation potential (using 

column 1 of Table 2).  See further discussion in Section 5.1. 

 



Figure 5: Ages at Ph.D. and Achievement over Time, by Field 
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Note:  This figure shows, by Nobel field, non-parametric Fan regressions estimating 

shifts over time in the mean age at great invention (dark lines, left axes) and mean age 

at Ph.D. (grey lines, right axes). 


