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9.1 Introduction

This chapter considers the implications of artifi cial intelligence for eco-
nomic growth. Artifi cial intelligence (AI) can be defi ned as “the capability 
of a machine to imitate intelligent human behavior” or “an agent’s ability to 
achieve goals in a wide range of environments.”1 These defi nitions immedi-
ately evoke fundamental economic issues. For example, what happens if  AI 
allows an ever- increasing number of tasks previously performed by human 
labor to become automated? Artifi cial intelligence may be deployed in the 
ordinary production of goods and services, potentially impacting economic 
growth and income shares. But AI may also change the process by which we 
create new ideas and technologies, helping to solve complex problems and 
scaling creative eff ort. In extreme versions, some observers have argued that 
AI can become rapidly self- improving, leading to “singularities” that feature 
unbounded machine intelligence and/or unbounded economic growth in 
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fi nite time (Good 1965; Vinge 1993; Kurzweil 2005). Nordhaus (2015) pro-
vides a detailed overview and discussion of the prospects for a singularity 
from the standpoint of economics.

In this chapter, we speculate on how AI may aff ect the growth process. 
Our primary goal is to help shape an agenda for future research. To do so, 
we focus on the following questions:

•  If  AI increases automation in the production of goods and services, 
how will it impact economic growth?

•  Can we reconcile the advent of  AI with the observed constancy in 
growth rates and capital share over most of  the twentieth century? 
Should we expect such constancy to persist in the twenty- fi rst century?

•  Do these answers change when AI and automation are applied to the 
production of new ideas?

•  Can AI drive massive increases in growth rates, or even a singularity, as 
some observers predict? Under what conditions, and are these condi-
tions plausible?

•  How are the links between AI and economic growth modulated by 
fi rm- level considerations, including market structure and innovation 
incentives? How does AI aff ect the internal organization of fi rms, and 
with what implications?

In thinking about these questions, we develop two main themes. First, 
we model AI as the latest form in a process of automation that has been 
ongoing for at least 200 years. From the spinning jenny to the steam engine 
to electricity to computer chips, the automation of aspects of production 
has been a key feature of economic growth since the Industrial Revolution. 
This perspective is taken explicitly in two key papers that we build upon: 
Zeira (1998) and Acemoglu and Restrepo (2016). We view AI as a new form 
of automation that may allow additional tasks to be automated that previ-
ously were thought to be out of reach from automation. These tasks may 
be nonroutine (to use the language of Autor, Levy, and Murnane [2003]), 
like self- driving cars, or they may involve high levels of skill, such as legal 
services, radiology, and some forms of  scientifi c lab- based research. An 
advantage of this approach is that it allows us to use historical experience 
on economic growth and automation to discipline our modeling of AI.

A second theme that emerges in our chapter is that the growth conse-
quences of automation and AI may be constrained by Baumol’s “cost dis-
ease.” Baumol (1967) observed that sectors with rapid productivity growth, 
such as agriculture and even manufacturing today, often see their share of 
gross domestic product (GDP) decline while those sectors with relatively 
slow productivity growth—perhaps including many services—experience 
increases. As a consequence, economic growth may be constrained not by 
what we do well but rather by what is essential and yet hard to improve. We 
suggest that combining this feature of growth with automation can yield a 
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rich description of the growth process, including consequences for future 
growth and income distribution. When applied to a model in which AI 
automates the production of goods and services, Baumol’s insight gener-
ates suffi  cient conditions under which one can get overall balanced growth 
with a constant capital share that stays well below 100 percent, even with 
near- complete automation. When applied to a model in which AI automates 
the production of ideas, these same considerations can prevent explosive 
growth.2

The chapter proceeds as follows. Section 9.2 begins by studying the role 
of AI in automating the production of goods and services. In section 9.3, 
we extend AI and automation to the production of new ideas. Section 9.4 
then discusses the possibility that AI could lead to superintelligence or even 
a singularity. In section 9.5, we look at AI and fi rms, with particular atten-
tion to market structure, organization, reallocation, and wage inequality. In 
section 9.6, we examine sectoral evidence on the evolution of capital shares 
in tandem with automation. Finally, section 9.7 concludes.

9.2  Artifi cial Intelligence and Automation of Production

One way of looking at the last 150 years of economic progress is that it 
is driven by automation. The Industrial Revolution used steam and then 
electricity to automate many production processes. Relays, transistors, and 
semiconductors continued this trend. Perhaps artifi cial intelligence is the 
next phase of this process rather than a discrete break. It may be a natural 
progression from autopilots, computer- controlled automobile engines, 
and MRI machines to self- driving cars and AI radiology reports. While up 
until recently automation has mainly aff ected routine or low- skilled tasks, 
it appears that AI may increasingly automate nonroutine, cognitive tasks 
performed by high- skill workers.3 An advantage of this perspective is that it 
allows us to use historical experience to inform us about the possible future 
eff ects of AI.

9.2.1 The Zeira (1998) Model of Automation and Growth

A clear and elegant model of automation is provided by Zeira (1998). In 
its simplest form, Zeira considers a production function like

(1) Y = AX1
1X2

2  . . . Xn n  where 
i=1

n

i = 1.

2. In the appendix we show that if  some steps in the innovation process require human R&D, 
AI could possibly slow or even end growth by exacerbating business stealing, which in turn 
discourages human investments in innovation.

3. Autor, Levy, and Murnane (2003) discuss the eff ects of traditional software automating 
routine tasks. Webb et al. (2017) use the text of patent fi lings to study the diff erent tasks that 
AI, software, and robotics are best positioned to automate.
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While Zeira thought of the Xis as intermediate goods, we follow Acemoglu 
and Autor (2011) and refer to these as tasks; both interpretations have merit, 
and we will go back and forth between these interpretations. Tasks that have 
not yet been automated can be produced one- for- one by labor. Once a task 
is automated, one unit of capital can be used instead:

(2) Xi =
Li if not automated
Ki if automated

.

If  the aggregate capital K and labor L are assigned to these tasks optimally, 
the production function can be expressed (up to an unimportant constant) as

(3) Yt = AtKt Lt
1 ,

where it is now understood that the exponent � refl ects the overall share and 
importance of tasks that have been automated. For the moment, we treat 
� as a constant and consider comparative statics that increase the share of 
tasks that get automated.

Next, embed this setup into a standard neoclassical growth model with 
a constant investment rate; in fact, for the remainder of the chapter this is 
how we will close the capital/ investment side of all our models. The share 
of factor payments going to capital is given by � and the long- run growth 
rate of y ≡ Y /L is

(4) gy =
g

1
,

where g is the growth rate of A. An increase in automation will therefore 
increase the capital share � and, because of the multiplier eff ect associated 
with capital accumulation, increase the long- run growth rate.

Zeira emphasizes that automation has been going on at least since the 
Industrial Revolution, and his elegant model helps us to understand that. 
However, its strong predictions that growth rates and capital shares should 
be rising with automation go against the famous Kaldor (1961) stylized 
facts that growth rates and capital shares are relatively stable over time. In 
particular, this stability is a good characterization of the US economy for 
the bulk of the twenieth century, for example, see Jones (2016). The Zeira 
framework, then, needs to be improved so that it is consistent with historical 
evidence.

Acemoglu and Restrepo (2016) provide one approach to solving this prob-
lem. Their rich environment allows for a constant elasticity of substitution 
(CES) production function and endogenizes the number of tasks as well as 
automation. In particular, they suppose that research can take two diff erent 
directions: discovering how to automate an existing task or discovering new 
tasks that can be used in production. In their setting, a refl ects the fraction of  
tasks that have been automated. This leads them to emphasize one possible 
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resolution to the empirical shortcoming of Zeira: perhaps we are inventing 
new tasks just as quickly as we are automating old tasks. The fraction of 
tasks that are automated could be constant, leading to a stable capital share 
and a stable growth rate.

Several other important contributions to this rapidly expanding literature 
should also be noted. Peretto and Seater (2013) explicitly consider a research 
technology that allows fi rms to change the exponent in a Cobb- Douglas 
production function. While they do not emphasize the link to the Zeira 
model, with hindsight the connections to that approach to automation are 
interesting. The model of  Hemous and Olsen (2016) is closely related to 
what follows in the next subsection. They focus on CES production instead 
of Cobb- Douglas, as we do below, but emphasize the implications of their 
framework for wage inequality between high- skill and low- skill workers. 
Agrawal, McHale, and Oettl (2017) incorporate artifi cial intelligence and 
the “recombinant growth” of Weitzman (1998) into an innovation- based 
growth model to show how AI can speed up growth along a transition path.

The next section takes a complementary approach, building on this lit-
erature and using the insights of Zeira and automation to understand the 
structural change associated with Baumol’s cost disease.

9.2.2 Automation and Baumol’s Cost Disease

The share of agriculture in GDP or employment is falling toward zero. 
The same is true for manufacturing in many countries of the world. Maybe 
automation increases the capital share in these sectors and also interacts 
with nonhomotheticities in production or consumption to drive the GDP 
shares toward zero. The aggregate capital share is then a balance of a rising 
capital share in agriculture/ manufacturing/ automated goods with a declin-
ing GDP share of these goods in the economy.

Looking toward the future, 3D printing techniques and nanotechnology 
that allow production to start at the molecular or even atomic level could 
someday automate all manufacturing. Could AI do the same thing in many 
service sectors? What would economic growth look like in such a world?

This section expands on the Zeira (1998) and Acemoglu and Restrepo 
(2016) models to develop a framework that is consistent with the large struc-
tural changes in the economy. Baumol (1967) observed that rapid productiv-
ity growth in some sectors relative to others could result in a “cost disease” 
in which the slow- growing sectors become increasingly important in the 
economy. We explore the possibility that automation is the force behind 
these changes.4

4. The growth literature on this structural transformation emphasizes a range of possible 
mechanisms, see Kongsamut, Rebelo, and Xie (2001), Ngai and Pissarides (2007), Herrendorf, 
Rogerson, and Valentinyi (2014), Boppart (2014), and Comin, Lashkari, and Mestieri (2015). 
The approach we take next has a reduced form that is similar to one of the special cases in 
Alvarez- Cuadrado, Long, and Poschke (2017).
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Model

Gross domestic product is a CES combination of goods with an elasticity 
of substitution less than one:

(5) Yt = At
0

1

Xitdi
1/

 where � > 0,

where At = A0e
gt captures standard technological change, which we take to 

be exogenous for now. Having the elasticity of substitution less than one 
means that tasks are gross complements. Intuitively, this is a “weak link” 
production function, where GDP is in some sense limited by the output of 
the weakest links. Here, these will be the tasks performed by labor, and this 
structure is the source of the Baumol eff ect.

As in Zeira, another part of technical change is the automation of produc-
tion. Goods that have not yet been automated can be produced one- for- one 
by labor. When a good has been automated, one unit of capital can be used 
instead:

(6) Xit =
Lit if not automated
Kit if automated

.

This division is stark to keep the model simple. An alternative would be to 
say that goods are produced with a Cobb- Douglas combination of capital 
and labor, and when a good is automated, it is produced with a higher expo-
nent on capital.5

The remainder of the model is neoclassical:

(7) Yt = Ct + It,

(8) Kt = It Kt,

(9) 
0

1

Kitdi = Kt,

(10) 
0

1

Litdi = L.

We assume a fi xed endowment of labor for simplicity.
Let t be the fraction of goods that that have been automated as of date 

t. Here, and throughout the chapter, we assume that capital and labor are 
allocated symmetrically across tasks. Therefore, Kt /t units of capital are 
used in each automated task and L/ (1 – t) units of labor are used on each 
nonautomated task. The production function can then be written as

(11) Yt = At t
Kt
t

+ 1 t( ) L
1 t

1/

.

5. A technical condition is required, of course, so that tasks that have been automated are 
actually produced with capital instead of labor. We assume this condition holds.




Typo: rho < 0
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Collecting the automation terms simplifi es this to

(12) Yt = At t
1 Kt + (1 t )

1 L( )1/
.

This setup therefore reduces to a particular version of the neoclassical 
growth model, and the allocation of resources can be decentralized in a stan-
dard competitive equilibrium. In this equilibrium, the share of automated 
goods in GDP equals the share of capital in factor payments:

(13) Kt
Yt
Kt

Kt
Yt

= t
1 At

Kt
Yt

.

Similarly, the share of nonautomated goods in GDP equals the labor share 
of factor payments:

(14) Lt
Yt
Lt

Lt
Yt
= t

1 At
Lt
Yt

.

Therefore the ratio of automated to nonautomated output—or the ratio of 
the capital share to the labor share—equals

(15) Kt

Lt

= t

1 t

1
Kt
Lt

.

We specifi ed from the beginning that we are interested in the case in which 
the elasticity of substitution between goods is less than one, so that � < 0. 
From equation (15), there are two basic forces that move the capital share (or, 
equivalently, the share of the economy that is automated). First, an increase 
in the fraction of goods that are automated, t, will increase the share of 
automated goods in GDP and increase the capital share (holding K /L con-
stant). This is intuitive and repeats the logic of the Zeira model. Second, as 
K /L rises, the capital share and the value of the automated sector as a share 
of GDP will decline. Essentially, with an elasticity of substitution less than 
one, the price eff ects dominate. The price of automated goods declines rela-
tive to the price of nonautomated goods because of capital accumulation. 
Because demand is relatively inelastic, the expenditure share of these goods 
declines as well. Automation and Baumol’s cost disease are then intimately 
linked. Perhaps the automation of  agriculture and manufacturing leads 
these sectors to grow rapidly and causes their shares in GDP to decline.6

The bottom line is that there is a race between these two forces. As more 
sectors are automated, t increases, and this tends to increase the share of 
automated goods and capital. But because these automated goods experi-
ence faster growth, their price declines, and the low elasticity of substitution 
means that their shares of GDP also decline.

Following Acemoglu and Restrepo (2016), we could endogenize auto-
mation by specifying a technology in which research eff ort leads goods to 

6. Manuelli and Seshadri (2014) off er a systematic account of the how the tractor gradually 
replaced the horse in American agriculture between 1910 and 1960.
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be automated. But it is relatively clear that depending on exactly how one 
specifi es this technology, t /  (1 –  t) can rise faster or slower than (Kt /Lt)

� 
declines. That is, the result would depend on detailed assumptions related to 
automation, and currently we do not have adequate knowledge on how to 
make these assumptions. This is an important direction for future research. 
For now, however, we treat automation as exogenous and consider what 
happens when t changes in diff erent ways.

Balanced Growth (Asymptotically)

To understand some of  these possibilities, notice that the production 
function in equation (12) is just a special case of a neoclassical production 
function:

(16) Yt = AtF BtKt ,CtLt( )where Bt t
(1 )/ and Ct (1 t )

(1 )/ .

With � < 0, notice that ↑t ⇒ ↓Bt and ↑Ct. That is, automation is equiva-
lent to a combination of labor- augmenting technical change and capital- 
depleting technical change. This is surprising. One might have thought of 
automation as somehow capital augmenting. Instead, it is very diff erent: it 
is labor augmenting and simultaneously dilutes the stock of capital. Notice 
that these conclusions would be reversed if  the elasticity of  substitution 
were greater than one; importantly, they rely on � < 0.

The intuition for this surprising result can be seen by noting that automa-
tion has two basic eff ects. These can be seen most easily by looking back at 
equation (11). First, capital can be applied to a larger number of tasks, which 
is a basic capital- augmenting force. However, this also means that a fi xed 
amount of capital is spread more thinly, a capital- depleting eff ect. When the 
tasks are substitutes (� > 0), the augmenting eff ect dominates and automa-
tion is capital augmenting. However, when tasks are complements (� < 0), 
the depletion eff ect dominates and automation is capital depleting. Notice 
that for labor, the opposite forces are at work: automation concentrates a 
given quantity of labor onto a smaller number of tasks and hence is labor 
augmenting when � < 0.7

This opens up one possibility that we will explore next: what happens if  
the evolution of t is such that Ct grows at a constant exponential rate? This 
can occur if  1 – t falls at a constant exponential rate toward zero, meaning 
that t → 1 in the limit and the economy gets ever closer to full automation 
(but never quite reaches that point). The logic of the neoclassical growth 
model suggests that this could produce a balanced growth path with con-
stant factor shares, at least in the limit. (This requires At to be constant.)

In particular, we want to consider an exogenous time path for the fraction 

7. In order for automation to increase output, we require a technical condition: (K /)� < 
[L / (1 – )]�. For � < 0, this requires K / > L /1 – . That is, the amount of capital that we 
allocate to each task must exceed the amount of labor we allocate to each task. Automation 
raises output by allowing us to use our plentiful capital on more of the tasks performed by 
relatively scarce labor.

Chad Jones

Chad Jones
This condition also applies if rho>0.
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of tasks that are automated, t, such that t → 1 but in a way that Ct grows 
at a constant exponential rate. This turns out to be straightfoward. Let �t ≡ 
1 – t, so that Ct = t

(1 )/ . Because the exponent is negative (� < 0), if  � falls 
at a constant exponential rate, Ct will grow at a constant exponential rate. 
This occurs if  t, = �(1 – t), implying that g� = – �. Intuitively, a constant 
fraction, �, of the tasks that have not yet been automated become automated 
each period.

Figure 9.1 shows that this example can produce steady exponential 
growth. We begin in year 0 with none of the goods being automated, and 
then have a constant fraction of the remainder being automated each year. 
There is obviously enormous structural change underlying—and generat-
ing—the stable exponential growth of GDP in this case. The capital share of 
factor payments begins at zero and then rises gradually over time, eventually 
asymptoting to a value around one- third. Even though an ever- vanishing 
fraction of the economy has not yet been automated, so labor has less and 
less to do. The fact that automated goods are produced with cheap capital 
combined with an elasticity of  substitution less than one means that the 
automated share of GDP remains at one- third and labor still earns around 
two- thirds of GDP asymptotically. This is a consequence of the Baumol 
force: the labor tasks are the “weak links” that are essential and yet expen-
sive, and this keeps the labor share elevated.8

 Along such a path, however, sectors like agriculture and manufacturing 
exhibit a structural transformation. For example, let sectors on the interval 
[0,1/3] denote agriculture and the automated portion of manufacturing as of 
some year, such as 1990. These sectors experience a declining share of GDP 
over time, as their prices fall rapidly. The automated share of the economy 
will be constant only because new goods are becoming automated.

The analysis so far requires At to be constant, so that the only form of 
technical change is automation. This seems too extreme: surely technical 
progress is not only about substituting machines for labor, but also about 
creating better machines. This can be incorporated in the following way. 
Suppose At is capital- augmenting rather than Hicks- neutral, so that the pro-
duction function in equation (16) becomes Yt = F(AtBtKt,CtLt). In this case, 
one could get a balanced growth path (BGP) if  At rises at precisely the rate 
that Bt declines, so that technological change is essentially purely labor- 
augmenting on net: better computers would decrease the capital share at 
precisely the rate that automation raises it, leading to balanced growth. At 
fi rst, this seems like a knife- edge result that would be unlikely in practice. 
However, the logic of  this example is somewhat related to the model in 
Grossman et al. (2017); that paper presents an environment in which it is 
optimal to have something similar to this occur. So perhaps this alternative 

8. The neoclassical outcome here requires that � not be too large (e.g., relative to the exog-
enous investment rate). If  � is suffi  ciently high, the capital share can asymptote to one and the 
model becomes “AK.” We are grateful to Pascual Restrepo for working this out.
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approach could be given good microfoundations. We leave this possibility 
to future research.

Constant Factor Shares

Another interesting case worth considering is under what conditions can 
this model produce factor shares that are constant over time? Taking logs 

Fig. 9.1 Automation and asymptotic balanced growth. A, the growth rate of GDP 
over time; B, automation and the capital share
Note: This simulation assumes ρ < 0 and that a constant fraction of the tasks that have not yet 
been automated become automated each year. Therefore Ct ≡ (1 – β)(1– ρ)/ ρ grows at a constant 
exponential rate (2 percent per year in this example), leading to an asymptotic balanced 
growth path (BGP). The share of tasks that are automated approaches 100 percent in the limit. 
Interestingly, the capital share of factor payments (and the share of automated goods in GDP) 
remains bounded, in this case at a value around one- third. With a constant investment rate of 
s , the limiting value of the capital share is (s / gY + δ)ρ .

A

B
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and derivatives of equation (15), the capital share will be constant if  and 
only if

(17) g t = 1 t( ) 1
gkt ,

where gkt is the growth rate of  k ≡ K /L. This is very much a knife- edge 
condition. It requires the growth rate of t to slow over time at just the right 
rate as more and more goods get automated.

Figure 9.2 shows an example with this feature, in an otherwise neoclassi-
cal model with exogenous growth in At at 2 percent per year. That is, unlike 
the previous section, we allow other forms of technological change to make 
tractors and computers better over time, in addition to allowing automa-
tion. In this simulation, automation proceeds at just the right rate so as to 
keep the capital share constant for the fi rst 150 years. After that time, we 
simply assume that t is constant and automation stops, so as to show what 
happens in that case as well.

 The perhaps surprising result in this example is that the constant factor 
shares occur while the growth rate of GDP rises at an increasing rate. From 
the earlier simulation in fi gure 9.1, one might have inferred that a constant 
capital share would be associated with declining growth. However, this is 
not the case and instead growth rates increase. The key to the explanation is 
to note that with some algebra, we can show that the constant factor share 
case requires

(18) gYt = gA + t gKt .

First, consider the case with gA = 0. We know that a true balanced growth 
path requires gY = gK. This can occur in only two ways if  gA = 0: either t = 1 
or gY = gK = 0 if  t < 1. The fi rst case is the one that we explored in the pre-
vious example back in fi gure 9.1. The second case shows that if  gA = 0, then 
constant factor shares will be associated with zero exponential growth.

Now we can see the reconciliation between fi gures 9.1 and 9.2. In the 
absence of gA > 0, the growth rate of the economy would fall to zero. Intro-
ducing gA > 0 with constant factor shares does increases the growth rate. 
To see why growth has to accelerate, equation (18) is again useful. If  growth 
were balanced, then gY = gK. But then the rise in t would tend to raise gY 
and gK. This is why growth accelerates.

Regime Switching

A fi nal simulation shown in fi gure 9.3 combines aspects of the two pre-
vious simulations to produce results closer in spirit to our observed data, 
albeit in a highly stylized way. We assume that automation alternates between 
two regimes. The fi rst is like fi gure 9.1, in which a constant fraction of the 
remaining tasks are automated each year, tending to raise the capital share 
and produce high growth. In the second, t is constant and no new automa-
tion occurs. In both regimes, At grows at a constant rate of 0.4 percent per 
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year, so that even when the fraction of tasks being automated is stagnant, 
the nature of automation is improving, which tends to depress the capital 
share. Regimes last for thirty years. Period 100 is highlighted with a black 
circle. At this point in time, the capital share is relatively high and growth 
is relatively low.

 By playing with parameter values, including the growth rate of At and 
t, it is possible to get a wide range of outcomes. For example, the fact that 

A

B

Fig. 9.2 Automation with a constant capital share. A, the growth rate of GDP over 
time; B, automation and the capital share
Note: This simulation assumes ρ < 0 and sets βt so that the capital share is constant between 
year 0 and year 150. After year 150, we assume βt stays at its constant value; At is assumed to 
grow at a constant rate of 2 percent per year throughout.
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the capital share in the future is lower than in period 100 instead of higher 
can be reversed.

Summing Up

Automation—an increase in t—can be viewed as a “twist” of the capital- 
and labor- augmenting terms in a neoclassical production function. From 

Fig. 9.3 Intermittent automation to match data? A, the growth rate of GDP over 
time; B, automation and the capital share
Note: This simulation combines aspects of  the two previous simulations to produce results 
closer in spirit to our observed data. We assume that automation alternates between two re-
gimes. In the fi rst, a constant fraction of the remaining tasks are automated each year. In the 
second, βt is constant and no new automation occurs. In both regimes, At grows at a constant 
rate of 0.4 percent per year. Regimes last for thirty years. Period 100 is highlighted with a black 
circle. At this point in time, the capital share is relatively high and growth is relatively low.

A

B
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Uzawa’s famous theorem, since we do not in general have purely labor- 
augmenting technical change, this setting will not lead to balanced growth. 
In this particular application (e.g., with � < 0), either the capital share or the 
growth rate of GDP will tend to increase over time, and sometimes both. 
We showed one special case in which all tasks are ultimately automated that 
produced balanced growth in the limit with a constant capital share less than 
100 percent. A shortcoming of this case is that it requires automation to be 
the only form of technological change. If, instead, the nature of automa-
tion itself  improves over time—consider the plow, then the tractor, then the 
combine- harvester, then GPS tracking—then the model is best thought of 
as featuring both automation and something like improvements in At. In 
this case, one would generally expect growth not to be balanced. However, 
a combination of  periods of  automation followed by periods of  respite, 
like that shown in fi gure 9.3 does seem capable of producing dynamics at 
least superfi cially similar to what we have seen in the United States in recent 
years: a period of a high capital share with relatively slow economic growth.

9.3 Artifi cial Intelligence in the Idea Production Function

In the previous section, we examined the implications of introducing AI in 
the production function for goods and services. But what if  the tasks of the 
innovation process themselves can be automated? How would AI interact 
with the production of new ideas? In this section, we introduce AI in the 
production technology for new ideas and look at how AI can aff ect growth 
through this channel.

A moment of introspection into our own research process reveals many 
ways in which automation can matter for the production of ideas. Research 
tasks that have benefi ted from automation and technological change include 
typing and distributing our papers, obtaining research materials and data 
(e.g., from libraries), ordering supplies, analyzing data, solving math prob-
lems, and computing equilibrium outcomes. Beyond economics, other ex-
amples include carrying out experiments, sequencing genomes, exploring 
various chemical reactions and materials. In other words, applying the same 
task- based model to the idea production function and considering the auto-
mation of research tasks seems relevant.

To keep things simple, suppose the production function for goods and 
services just uses labor and ideas:

(19) Yt = AtLt.

But suppose that various tasks are used to make new ideas according to

(20) At = At
0

1

Xitdi
1/

where < 0.
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Assuming some fraction t of  tasks have been automated—using a similar 
setup to that in section 9.2—the idea production function can be ex-
pressed as

(21) At = At (BtKt ) + (CtSt )( )1/
At F BtKt ,CtSt( ),

where St is the research labor used to make ideas, and Bt and Ct are defi ned 
as before, namely, Bt ≡ t

(1 )  and Ct ≡ (1 t )
(1 )/ .

Several observations then follow from this setup. First, consider the case 
in which t is constant at some value but then increases to a higher value 
(recall that this leads to a one- time decrease in Bt and increase in Ct). The 
idea production function can then be written as

(22) At = At StF
BKt
St

,C

~ At CSt ,

where the “~” notation means “is asymptotically proportional to.” The 
second line follows if  Kt /St is growing over time (i.e., if  there is economic 
growth) and if  the elasticity of substitution in F(·) is less than one, which 
we have assumed. In that case, the CES function is bounded by its scarcest 
argument, in this case researchers. Automation then essentially produces a 
level eff ect but leaves the long- run growth rate of the economy unchanged 
if  � < 1. Alternatively, if  � = 1—the classic endogenous growth case—then 
automation raises long- run growth.

Next, consider this same case of a one- time increase in , but suppose the 
elasticity of substitution in F(·) equals one, so that F(·) is Cobb- Douglas. In 
this case, as in the Zeira model, it is easy to show that a one- time increase in 
automation will raise the long- run growth rate. Essentially, an accumulable 
factor in production (capital) becomes permanently more important, and 
this leads to a multiplier eff ect that raises growth.

Third, suppose now that the elasticity of substitution is greater than one. 
In this case, the argument given before reverses, and now the CES function 
asymptotically looks like the plentiful factor, in this case Kt. The model will 
then deliver explosive growth under fairly general conditions, with incomes 
becoming infi nite in fi nite time.9 But this is true even without any automa-
tion. Essentially, in this case researchers are not a necessary input and so 
standard capital accumulation is enough to generate explosive growth. This 
is one reason why the case of � < 1—that is, an elasticity of substitution 
less than one—is the natural case to consider. We focus on this case for the 
remainder of this section.

9. A closely related case is examined explicitly in the discussion surrounding equation (27) 
below.




rho < 0
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9.3.1  Continuous Automation

We can now consider the special case in which automation is such that the 
newly automated tasks constitute a constant fraction, q, of the tasks that 
have not yet been automated. Recall that this was the case that delivered a 
balanced growth path back in the Balanced Growth section

In This Case, Bt → 1 and (Ct /Ct) → gc = – [(1 – �)/ �]·� > 0 Asymptotically

The same logic that gave us equation (22) now implies that

(23) At = At CtStF
BtKt
CtSt

,1

~ At CtSt ,

where the second line holds as long as BK /CS → ∞, which holds for a large 
class of parameter values.10

This reduces to the Jones (1995) kind of setup, except that now “eff ective” 
research grows faster than the population because of AI. Dividing both sides 
of the last expression by At gives

(24) 
At
At
=
CtSt
At

1 .

In order for the left- hand side to be constant, we require that the numerator 
and denominator on the right side grow at the same rate, which then implies

(25) gA =
gC + gS

1
.

In Jones (1995), the expression was the same except gC = 0. In that case, the 
growth rate of the economy is proportional to the growth rate of research-
ers (and ultimately, the population). Here, automation adds a second term 
and raises the growth rate: we can have exponential growth in research eff ort 
in the idea production function not only because of growth in the actual 
number of people, but also as a result of the automation of research implied 
by AI. Put another way, even with a constant number of researchers, the 
number of researchers per task S/ (1 – t) can grow exponentially: the fi xed 
number of researchers is increasingly concentrated onto an exponentially 
declining number of tasks.11

10. Since B → 1, we just require that gk > gc. This will hold—see below—for example if  � > 0.
11. Substituting in for other solutions, the long- run growth rate of  the economy is gy = 

{– [(1 – �) /�]·� + n}/(1 – � ), where n is the rate of population growth.




theta
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9.4  Singularities

To this point, we have considered the eff ects of gradual automation in 
the goods and idea production functions and shown how that can poten-
tially raise the growth rate of the economy. However, many observers have 
suggested that AI opens the door to something more extreme—a “techno-
logical singularity” where growth rates will explode. John Von Neumann is 
often cited as fi rst suggesting a coming singularity in technology (Danaylov 
2012). I. J. Good and Vernor Vinge have suggested the possibility of a self- 
improving AI that will quickly outpace human thought, leading to an “intel-
ligence explosion” associated with infi nite intelligence in fi nite time (Good 
1965; Vinge 1993). Ray Kurzweil in The Singularity is Near also argues for 
a coming intelligence explosion through nonbiological intelligence (Kurz-
weil 2005) and, based on these ideas, cofounded Singularity University with 
funding from prominent organizations like Google and Genentech.

In this section, we consider singularity scenarios in light of the produc-
tion functions for both goods and ideas. Whereas standard growth theory is 
concerned with matching the Kaldor facts, including constant growth rates, 
here we consider circumstances in which growth rates may increase rapidly 
over time. To do so, and to speak in an organized way to the various ideas 
that borrow the phrase “technological singularity,” we can characterize two 
types of growth regimes that depart from steady- state growth. In particular, 
we can imagine:

•  a “Type I” growth explosion, where growth rates increase without 
bound but remain fi nite at any point in time; and

•  a “Type II” growth explosion, where infi nite output is achieved in fi nite 
time.

Both concepts appear in the singularity community. While it is common 
for writers to predict the singularity date (often just a few decades away), 
writers diff er on whether the proposed date records the transition to the 
new growth regime of Type I or an actual singularity occurring of Type II.12

To proceed, we now consider examples of how the advent of AI could 
drive growth explosions. The basic fi nding is that complete automation of 
tasks by an AI can naturally lead to the growth explosion scenarios above. 
However, interestingly, one can even produce a singularity without relying 
on complete automation, and one can do it without relying on an intelligence 
explosion per se. Further below, we will consider several possible objections 
to these examples.

12. Vinge (1993), for example, appears to be predicting a Type II explosion, a case that has 
been examined mathematically by Solomonoff  (1985), Yudkowsky (2013), and others. Kurzweil 
(2005), by contrast, who argues that the singularity will come around the year 2045, appears 
to be expecting a Type I event.
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9.4.1 Examples of Technological Singularities

We provide four examples. The fi rst two examples take our previous mod-
els to the extreme and consider what happens if  everything can be auto-
mated—that is, if  people can be replaced by AI in all tasks. The third ex-
ample demonstrates a singularity through increased automation but without 
relying on complete automation. The fi nal example looks directly at “super-
intelligence” as a route to a singularity.

Example 1: Automation of Goods Production

The Type I case can emerge with full automation in the production for 
goods. This is the well- known case of an AK model with ongoing techno-
logical progress. In particular, take the model of section 9.2, but assume that 
all tasks are automated as of some date t0. The production function is there-
after Yt = AtKt and growth rates themselves grow exponentially with At. 
Ongoing productivity growth—for example, through the discovery of new 
ideas—would then produce ever- accelerating growth rates over time. Spe-
cifi cally, with a standard capital accumulation specifi cation (Kt = sYt –  	Kt) 
and technological progress proceeding at rate g, the growth rate of output 
becomes

(26) gY = g + sAt ,

which grows exponentially with At.

Example 2: Automation of Ideas Production

An even stronger version of this acceleration occurs if  the automation 
applies to the idea production function instead of (or in addition to) the 
goods production function. In fact, one can show that there is a mathe-
matical singularity: a Type II event where incomes essentially become infi -
nite in a fi nite amount of time.

To see this, consider the model of section 9.3. Once all tasks can be auto-
mated, that is, once AI replaces all people in the idea production function, 
the production of new ideas is given by

(27) At = Kt At .

With � > 0, this diff erential equation is “more than linear.” As we discuss next, 
growth rates will explode so fast that incomes become infi nite in fi nite time.

The basic intuition for this result comes from noting that this model is 
essentially a two- dimensional version of the diff erential equation At = At

1+  
(e.g., replacing the K with an A in equation [27]). This diff erential equation 
can be solved using standard methods to give

(28) At =
1

A0 t

1/

.
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And it is easy to see from this solution that A(t) exceeds any fi nite value 
before date t* = (1/�A0

�). This is a singularity.
For the two dimensional system with capital in equation (27), the argu-

ment is slightly more complicated but follows this same logic. The system of 
diff erential equations is equation (27) together with the capital accumulation 
equation (Kt = sYt – dKt, where Yt = AtL). Writing these in growth rates gives

(29) 
At
At
=
Kt
At

At ,

(30) 
Kt
Kt

= sL At
Kt

.

First, we show that (At / At ) > (Kt /Kt ). To see why, suppose they were equal. 
Then equation (30) implies that (Kt /Kt ) is constant, but equation (29) would 
then imply that (At / At ) is accelerating, which contradicts our original 
assumption that the growth rates were equal. So it must be that 
(At / At ) > (Kt /Kt ).13 Notice that from the capital accumulation equation, this 
means that the growth rate of capital is rising over time, and then the idea 
growth rate equation means that the growth rate of ideas is rising over time 
as well. Both growth rates are rising. The only question is whether they rise 
suffi  ciently fast to deliver a singularity.

To see why the answer is yes, set 	 = 0 and sL = 1 to simplify the algebra. 
Now multiply the two growth rate equations together to get

(31) 
At
At

Kt
Kt

= At .

We have shown that (At / At ) > (Kt /Kt ), so combining this with equation (31) 
yields

(32) 
At
At

2

> At ,

implying that

(33) 
At
At
> At

/2.

That is, the growth rate of A grows at least as fast as At
/2. But we know from 

the analysis of the simple diff erential equation given earlier—see equation 
(28)—that even if  equation (33) held with equality, this would be enough to 
deliver the singularity. Because A grows faster than that, it also exhibits a 
singularity.

Because ideas are nonrival, the overall economy is characterized by 
increasing returns, à la Romer (1990). Once the production of ideas is fully 

13. It is easy to rule out the opposite case of (At/At) < (K t/Kt).


eventually.
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automated, this increasing returns applies to “accumulable factors,” which 
then leads to a Type II growth explosion, that is, a mathematical singu-
larity.

Example 3: Singularities without Complete Automation

The above examples consider complete automation of goods production 
(Example 1) and ideas production (Example 2). With the CES case and an 
elasticity of substitution less than one, we require that all tasks are auto-
mated. If  only a fraction of the tasks are automated, then the scarce factor 
(labor) will dominate, and growth rates do not explode. We show in this 
section that with Cobb- Douglas production, a Type II singularity can occur 
as long as a suffi  cient fraction of the tasks are automated. In this sense, the 
singularity might not even require full automation.

Suppose the production function for goods is Yt = At Kt L
1  (a constant 

population simplifi es the analysis, but exogenous population growth would 
not change things). The capital accumulation equation and the idea produc-
tion function are then specifi ed as

(34) Kt = sLAt Kt Kt,

(35) At = Kt S At ,

where 0 < � < 1 and 0 <  < 1, and where we also take S (research eff ort) to 
be constant. Following the Zeira (1998) model discussed earlier, we interpret 
� as the fraction of goods tasks that have been automated and  as the frac-
tion of tasks in idea production that have been automated.

The standard endogenous growth result requires “constant returns to 
accumulable factors.” To see what this means, it is helpful to defi ne a key 
parameter:

(36) :=
1 1

.

In this setup, the endogenous growth case corresponds to � = 1. Not surpris-
ingly, then, the singularity case occurs if  � > 1. Importantly, notice that this 
can occur with both � and  less than one, that is, when tasks are not fully 
automated. For example, in the case in which � =  = � = 1/2, then � = 
2 · �, so explosive growth and a singularity will occur if  � > 1/2. We show 
that � > 1 delivers a Type II singularity in the remainder of this section. The 
argument builds on the argument given in the previous subsection.

In growth rates, the laws of motion for capital and ideas are

(37) 
Kt
Kt

= sL1 At
Kt

1 ,

(38) 
At
At
= S Kt

At
1 .

Chad Jones
1-alpha exponent on L

Chad Jones
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It is easy to show that these growth rates cannot be constant if  � > 1.14

If  the growth rates are rising over time to infi nity, then eventually either 
gAt > gKt, or the reverse, or the two growth rates are the same. Consider the 
fi rst case, that is, gAt > gKt; the other cases follow the same logic. Once again, 
to simplify the algebra, set 	 = 0, S = 1, and sL1  = 1. Multiplying the growth 
rates together in this case gives

(39) 
At
At

Kt
Kt

=
Kt
At

1

At
Kt

1 .

Since gA > gK, we then have

 
At
At

2

>
Kt
At

1–

At
Kt

1

 >
1
Kt

Kt
At

1–

At
Kt

1–   (since Kt > 1 eventually)

 >
1
Kt

1–

1
At

1–

At
Kt

1   (rewriting)

 >
1
At

1

1
At

1

At
At

1  (since At > Kt eventually)

 > At
1
  (collecting terms).

Therefore,

(40) 
At
At
> At

( 1)/2.

With � > 1, the growth rate grows at least as fast as At raised to a positive 
power. But even if  it grew just this fast we would have a singularity, by the 
same arguments given before. The case with gKt > gAt can be handled in the 
same way, using Ks instead of As. QED.

Example 4: Singularities via Superintelligence

The examples of growth explosions above are based in automation. These 
examples can also be read as creating “superintelligence” as an artifact of 
automation, in the sense that advances of At across all tasks include, implic-
itly, advances across cognitive tasks, and hence a resulting singularity can be 
conceived of as commensurate with an intelligence explosion. It is interest-
ing that automation itself  can provoke the emergence of superintelligence. 
However, in the telling of many futurists, the story runs diff erently, where 

14. If  the growth rate of K is constant, then �gA = (1 – �)gK, so K is proportional to A�/ (1– �). 
Making this substitution in equation (35) and using � > 1 then implies that the growth rate of 
A would explode, and this requires the growth rate of K to explode.

Chad Jones
This last step is wrong. Thanks to Phil Trammell for pointing this out and providing a correct proof.
See philiptrammell.com
“Growth given Cobb-Douglas Automation.”

Chad Jones
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an intelligence explosion occurs fi rst and then, through the insights of this 
superintelligence, a technological singularity may be reached. Typically the 
AI is seen as “self- improving” through a recursive process.

This idea can be modeled using similar ideas to those presented above. To 
do so in a simple manner, divide tasks into two types: physical and cognitive. 
Defi ne a common level of intelligence across the cognitive tasks by a pro-
ductivity term Acognitive, and further defi ne a common productivity at physical 
tasks, Aphysical. Now imagine we have a unit of AI working to improve itself, 
where progress follows

(41) Acognitive = Acognitive
1+ .

We have studied this diff erential equation above, but now we apply it to 
cognition alone. If  � > 0, then the process of self- improvement explodes, 
resulting in an unbounded intelligence in fi nite time.

The next question is how this superintelligence would aff ect the rest of 
the economy. Namely, would such superintelligence also produce an output 
singularity? One route to a singularity could run through the goods produc-
tion function: to the extent that physical tasks are not essential (i.e., � ≥ 0), 
then the intelligence explosion will drive a singularity in output. However, 
it seems noncontroversial to assert that physical tasks are essential to pro-
ducing output, in which case the singularity will have potentially modest 
eff ects directly on the goods production channel.

The second route lies in the idea production function. Here the question is 
how the superintelligence would advance the productivity at physical tasks, 
Aphysical. For example, if  we write

(42) Aphysical = AcognitiveF(K ,L),

where � > 0, then it is clear that Aphysical will also explode with the intelligence 
explosion. That is, we imagine that the superintelligent AI can fi gure out 
ways to vastly increase the rate of innovation at physical tasks. In the above 
specifi cation, the output singularity would then follow directly upon the 
advent of the superintelligence. Of course, the idea production functions 
(41) and (42) are particular, and there are reasons to believe they would not 
be the correct specifi cations, as we will discuss in the next section.

9.4.2 Objections to Singularities

The above examples show ways in which automation may lead to rapid 
accelerations of growth, including ever- increasing growth rates or even a 
singularity. Here we can consider several possible objections to these sce-
narios, which can broadly be characterized as “bottlenecks” that AI cannot 
resolve.

Automation Limits

One kind of bottleneck, which has been discussed above, emerges when 
some essential input(s) to production are not automated. Whether AI can 
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ultimately perform all essential cognitive tasks, or more generally achieve 
human intelligence, is widely debated. If  not, then growth rates may still be 
larger with more automation and capital intensity (sections 9.2 and 9.3), 
but the “labor free” singularities featured above (section 9.4.1) become out 
of reach.

Search Limits

A second kind of bottleneck may occur even with complete automation. 
This type of bottleneck occurs when the creative search process itself  pre-
vents especially rapid producitivy gains. To see this, consider again the idea 
production function. In the second example above, we allow for complete 
automation and show that a true mathematical singularity can ensue. But 
note also that this result depends on the parameter �. In the diff erential 
equation

 At = At
1+

we will have explosive growth only if  � > 0. If  � ≤ 0, then the growth rate 
declines as At advances. Many models of growth and associated evidence 
suggest that, on average, innovation may be becoming harder, which is con-
sistent with low values of � on average.15 Fishing out or burden of knowledge 
processes can point toward � < 0. Interestingly, the burden of knowledge 
mechanism (Jones 2009), which is based on the limits of human cognition, 
may not restrain an AI if  an AI can comprehend a much greater share of the 
knowledge stock than a human can. Fishing- out processes, however, viewed 
as a fundamental feature of the search for new ideas (Kortum 1997), would 
presumably also apply to an AI seeking new ideas. Put another way, AI may 
resolve a problem with the fi shermen, but it would not change what is in the 
pond. Of course, fi shing- out search problems can apply not only to overall 
productivity but also to the emergence of a superintelligence, limiting the 
potential rate of an AI program’s self- improvement (see equation [41]), and 
hence limiting the potential for growth explosions through the superintel-
ligence channel.

Baumol Tasks and Natural Laws

A third kind of bottleneck may occur even with complete automation 
and even with a superintelligence. This type of bottleneck occurs when an 
essential input does not see much productivity growth. That is, we have an-
other form of Baumol’s cost disease.

To see this, generalize slightly the task- based production function (5) of 
section 9.2 as

 Y =
0

1

ait Xit( ) di
1/

, < 0,

15. See, for example, Jones (1995), Kortum (1997), Jones (2009), Gordon (2016), and Bloom 
et al. (2017).
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where we have introduced task- specifi c productivity terms, ait.
In contrast to our prior examples, where we considered a common tech-

nology term, At, that aff ected all of aggregate production, here we imag-
ine that productivity at some tasks may be diff erent than others and may 
proceed at diff erent rates. For example, machine computation speeds have 
increased by a factor of about 1011 since World War II.16 By contrast, power 
plants have seen modest effi  ciency gains and face limited prospects given 
constraints like Carnot’s theorem. This distinction is important, because 
with � < 0, output and growth end up being determined not by what we are 
good at, but by what is essential but hard to improve.

In particular, let’s imagine that some superintelligence somehow does 
emerge, but that it can only drive productivity to (eff ectively) infi nity in a 
share � of  tasks, which we index from i ∈ [0,�]. Output thereafter will be

 Y =
1

aitYit( ) di
1/

.

Clearly, if  these remaining technologies ait cannot be radically improved, 
we no longer have a mathematical singularity (Type II growth explosion) 
and may not even have much future growth. We might still end up with an 
AK model, if  all the remaining tasks can be automated at low cost, and this 
can produce at least accelerating growth if  the ait can be somewhat improved 
but, again, in the end we are still held back by the productivity growth in the 
essential things that we are worst at improving. In fact, Moore’s Law, which 
stands in part behind the rise of artifi cial intelligence, may be a caution-
ary tale along these lines. Computation, in the sense of arithmetic opera-
tions per second, has improved at mind- boggling rates and is now mind- 
bogglingly fast. Yet economic growth has not accelerated, and may even be 
in decline.

Through the lens of  essential tasks, the ultimate constraint on growth 
will then be the capacity for progress at the really hard problems. These 
constraints may in turn be determined less by the limits of cognition (i.e., 
traditionally human intelligence limits, which an AI superintelligence may 
overcome) and more by the limits of natural laws, such as the second law of 
thermodynamics, which constrain critical processes.17

Creative Destruction

Moving away from technological limits per se, the positive eff ect of AI 
(and super AI) on productivity growth may be counteracted by another 

16. This ratio compares Beltchley Park’s Colossus, the 1943 vacuum tube machine that made 
5 × 105 fl oating point operations per second, with the Sunway TaihuLight computer, which in 
2016 peaked at 9 × 1016 operations per second.

17. Returning to example 4 above, note that equation (42) assumes that all physical con-
straints can be overcome by superintelligence. However, one might alternatively specify 
max(Aphysical) = c, representing a fi rm physical constraint.
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eff ect working through creative destruction and its impact on innovation 
incentives. Thus in the appendix we develop a Schumpeterian model in 
which: (a) new innovations displace old innovations; and (b) innovations 
involves two steps, where the fi rst step can be performed by machines but 
the second step requires human inputs to research. In a singularity- like limit 
where successive innovations come with no time in between, the private 
returns to human research and development (R&D) falls down to zero and 
as a result innovation and growth taper off . More generally, the faster the 
fi rst step of each successive innovation as a result of AI, the lower the return 
to human investment in stage- two innovation, which in turn counteracts 
the direct eff ect of AI and super- AIon innovation- led growth pointed out 
above.

9.4.3 Some Additional Thoughts

We conclude this section with additional thoughts on how AI and its 
potential singularity eff ects might aff ect growth and convergence.

A fi rst idea is that new AI technologies might allow imitation/ learning of 
frontier technologies to become automated. That is, machines would fi gure 
out in no time how to imitate frontier technologies. Then a main source 
of  divergence might become credit constraints, to the extent that those 
might prevent poorer countries or regions from acquiring superintelligent 
machines whereas developed economies could aff ord such machines. Thus 
one could imagine a world in which advanced countries concentrate all their 
research eff ort on developing new product lines (i.e., on frontier innovation) 
whereas poorer countries would devote a positive and increasing fraction of 
their research labor on learning about the new frontier technologies as they 
cannot aff ord the corresponding AI devices. Overall, one would expect an 
increasing degree of divergence worldwide.

A second conjecture is that, anticipating the eff ect of AI on the scope and 
speed of imitation, potential innovators may become reluctant to patent 
their inventions, fearing that the disclosure of new knowledge in the patent 
would lead to straight imitation. Trade secrets may then become the norm, 
instead of patenting. Or alternatively innovations would become like what 
fi nancial innovations are today, that is, knowledge creation with huge net-
work eff ects and with very little scope for patenting.

Finally, with imitation and learning being performed mainly by super-
machines in developed economies, then research labor would become 
(almost) entirely devoted to product innovation, increasing product variety 
or inventing new products (new product lines) to replace existing products. 
Then, more than ever, the decreasing returns to digging deeper into an ex-
isting line of  product would be off set by the increased potential for discov-
ering new product lines. Overall, ideas might end up being easier to fi nd, 
if  only because of  the singularity eff ect of  AI on recombinant idea- based 
growth.
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9.5 Artifi cial Intelligence, Firms, and Economic Growth

To this point, we have linked artifi cial intelligence to economic growth 
emphasizing features of the production functions of goods and ideas. How-
ever, the advance of  artifi cial intelligence and its macroeconomic eff ects 
will depend on the potentially rich behavior of fi rms. We have introduced 
one such view already in the prior section, where considerations of crea-
tive destruction provide an incentive- oriented mechanism that may be an 
important obstacle to singularities. In this section, we consider fi rms’ incen-
tives and behavior more generally to further outline the AI research agenda. 
We examine potentially fi rst- order issues that emerge when introducing 
market structure, sectoral diff erences, and organizational considerations 
within fi rms.

9.5.1 Market Structure

Existing work on competition and innovation- led growth points to the 
existence of two counteracting eff ects: on the one hand, more intense prod-
uct market competition (or imitation threat) induces neck- and- neck fi rms 
at the technological frontier to innovate in order to escape competition; on 
the other hand, more intense competition tends to discourage fi rms behind 
the current technology frontier to innovate and thereby catch-up with fron-
tier fi rms. Which of  these two eff ects dominates, in turn, depends upon 
the degree of competition in the economy, and/or upon how advanced the 
economy is. While the escape competition eff ect tends to dominate at low 
initial levels of competition and in more advanced economies, the discour-
agement eff ect may dominate for higher levels of  competition or in less 
advanced economies.18

Can AI aff ect innovation and growth through potential eff ects it might 
have on product market competition? A fi rst potential channel is that AI 
may facilitate the imitation of  existing products and technologies. Here we 
particularly have in mind the idea that AI might facilitate reverse engineer-
ing, and thereby facilitate the imitation of  leading products and technolo-
gies. If  we follow the inverted- U logic of  Aghion et al. (2005), in sectors 
with initially low levels of  imitation, some AI- induced reverse engineering 
might stimulate innovation by virtue of  the escape- competition eff ect. But 
too high (or too immediate) an imitation threat will end up discourag-
ing innovation as potential innovators will face excessive expropriation. 
A related impli cation of  AI is that its introduction may speed up the pro-
cess by which each individual sector becomes congested over time. This in 
turn may translate into faster decreasing returns to innovating within any 
existing sector (see Bloom et al. 2014), but by the same token it may induce 
potential innovators to devote more resources to inventing new lines in 

18. For example, see Aghion and Howitt (1992) and Aghion et al. (2005).



Artifi cial Intelligence and Economic Growth    263

order to escape competition and imitation within current lines. The overall 
eff ect on aggregate growth will in turn depend upon the relative contribu-
tions of  within- sector secondary innovation and fundamental innovation 
aimed at creating new product lines (see Aghion and Howitt 1996) to the 
overall growth process.

Another channel whereby AI and the digital revolution may aff ect inno-
vation and growth through aff ecting the degree of product market compe-
tition is in relation to the development of platforms or networks. A main 
objective of platform owners is to maximize the number of participants to 
the platform on both sides of the corresponding two- sided markets. For ex-
ample, Google enjoys a monopoly position as a search platform, Facebook 
enjoys a similar position as a social network with more than 1.7 billion 
users worldwide each month, and so does Booking .com for hotel reserva-
tions (more than 75 percent of hotel clients resort to this network). And 
the same goes for Uber in the area of individual transportation, Airbnb for 
apartment renting, and so on. The development of networks may in turn 
aff ect competition in at least two ways. First, data access may act as an entry 
barrier for creating new competing networks, although it did not prevent 
Facebook from developing a new network after Google. More important, 
networks can take advantage of their monopoly positions to impose large 
fees on market participants (and they do), which may discourage innovation 
by these participants, whether they are fi rms or self- employed individuals.

In the end, whether escape competition or discouragement eff ects domi-
nate will depend upon the type of sector (frontier/ neck- and- neck or older/ 
lagging), the extent to which AI facilitates reverse engineering and imita-
tion, and upon competition and/or regulatory policies aimed at protecting 
intellectual property rights while lowering entry barriers. Recent empirical 
work (e.g., see Aghion, Howitt, and Prantl 2015) points at patent protection 
and competition policy being complementary in inducing innovation and 
productivity growth. It would be interesting to explore how AI aff ects this 
complementarity between the two policies.

9.5.2  Sectoral Reallocation

A recent paper by Baslandze (2016) argues that the information tech-
nology (IT) revolution has produced a major knowledge diff usion eff ect, 
which in turn has induced a major sectoral reallocation from sectors that 
do not rely much on technological externalities from other fi elds or sectors 
(e.g., textile industries) to sectors that rely more heavily on technological 
externalities from other sectors. Her argument, which we believe applies 
to AI, rests on the following two counteracting eff ects of IT on innovation 
incentives: on the one hand, fi rms can more easily learn from each other and 
therefore benefi t more from knowledge diff usion from other fi rms and sec-
tors; on the other hand, the improved access to knowledge from other fi rms 
and sectors induced by IT (or AI) increases the scope for business stealing. 
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In high- tech sectors where fi rms benefi t more from external knowledge, the 
former eff ect—knowledge diff usion—will dominate whereas in sectors that 
do not rely much on external knowledge the latter eff ect—competition or 
business stealing—will tend to dominate. Indeed in more knowledge depen-
dent sectors fi rms see both their productive and their innovative capabilities 
increase to a larger extent than the capabilities of fi rms in sectors that rely 
less on knowledge from other sectors.

It then immediately follows that the diff usion of  IT—and AI for our 
purpose—should lead to an expansion of sectors that rely more on exter-
nal knowledge (in which the knowledge diff usion eff ect dominates) at the 
expense of the more traditional (and more self- contained) sectors where 
fi rms do not rely as much on external knowledge.

Thus, in addition to its direct eff ects on fi rms’ innovation and production 
capabilities, the introduction of IT and AI involve a knowledge diff usion 
eff ect that is augmented by a sectoral reallocation eff ect at the benefi t of 
high- tech sectors that rely more on knowledge externalities from other fi elds 
and sectors. The positive knowledge diff usion eff ect is partly counteracted by 
the negative business- stealing eff ect (Baslandze shows that the latter eff ect 
has been large in the United States and that without it the IT revolution 
would have yet induced a much higher acceleration in productivity growth 
for the whole US economy).

Based on her analysis, Baslandze (2016) responds to Gordon (2012) with 
the argument that Gordon only took into account the direct eff ect of IT 
and not its indirect knowledge diff usion and sectoral reallocation eff ects on 
aggregate productivity growth.

We believe that the same points can be made with respect to AI instead 
of IT, and one could try and reproduce Baslandze’s calibration exercise to 
assess the relative importance of  the direct and indirect eff ects of  AI, to 
decompose the indirect eff ect of  AI into its positive knowledge diff usion 
eff ect and its potentially negative competition eff ect, and to assess the extent 
to which AI aff ects overall productivity growth through its eff ects on sectoral 
reallocation.

9.5.3  Organization

How should we expect fi rms to adapt their internal organization, the skill 
composition of their workforce and their wage policies to the introduction 
of AI? In his recent book, Economics for the Common Good, Tirole (2017) 
spells out what one may consider to be “common wisdom” expectations 
on fi rms and AI. Namely, introducing AI should: (a) increase the wage gap 
between skilled and unskilled labor, as the latter is presumably more sub-
stitutable to AI than the former; (b) the introduction of AI allows fi rms 
to automate and dispense with middle men performing monitoring tasks 
(in other words, fi rms should become fl atter, that is, with higher spans of 
control); (c) should encourage self- employment by making it easier for indi-
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viduals to build their reputation. Let us revisit these various points in more 
detail. AI, skills, and wage premia: on AI and the increased gap between 
skilled and unskilled wage, the prediction brings us back to Krusell et al. 
(2000) based on an aggregate production function in which physical equip-
ment is more substitutable to unskilled labor than to skilled labor, these 
authors argued that the observed acceleration in the decline of the relative 
price of production equipment goods since the mid- 1970s could account for 
most of the variation in the college premium over the past twenty- fi ve years. 
In other words, the rise in the college premium could largely be attributed 
to an increase in the rate of (capital- embodied) skill- biased technical pro-
gress. And, presumably, AI is an extreme form of capital- embodied, skill- 
biased technical change, as robots substitute for unskilled labor but require 
skilled labor to be installed and exploited. However, recent work by Aghion 
et al. (2017) suggests that while the prediction of a premium to skills may 
hold at the macroeconomic level, it perhaps misses important aspects of 
fi rms’ internal organization and that the organization itself  may evolve as a 
result of introducing AI. More specifi cally, Aghion et al. (2017) use matched 
employer- employee data from the United Kingdom, which they augment 
with information on R&D expenditures, to analyze the relationship between 
innovativeness and average wage income across fi rms.

A fi rst, not surprising, fi nding is that more R&D-intensive fi rms pay 
higher wages on average and employ a higher fraction of high- occupation 
workers than less R&D-intensive fi rms (see fi gure 9.4).

 This, in turn, is perfectly in line with the above prediction (a) but also with 
prediction (b) as it suggests that more innovative (or more “frontier” ) fi rms 
rely more on outsourcing for low- occupation tasks. However, a more sur-
prising fi nding in Aghion et al. (2017) is that lower- skill (lower occupation) 
workers benefi t more from working in more R&D-intensive fi rms (relative 
to working in a fi rm that does no R&D) than higher- skill workers. This fi nd-
ing is summarized by fi gure 9.5. In that fi gure, we fi rst see that higher- skill 
workers earn more than lower- skill workers in any fi rm no matter how R&D 
intensive that fi rm is (the high- skill wage curve always lies strictly above the 
middle- skill curve, which itself  always lies above the lower- skill curve). But, 
more interestingly, the lower- skill curve is steeper than the middle- skill and 
higher- skill curve. But the slope of each of these curves precisely refl ects 
the premium for workers with the corresponding skill level to working in a 
more innovative fi rm.

 Similarly, we should expect more AI- intensive fi rms to: (a) employ a 
higher fraction of (more highly paid) high- skill workers, (b) outsource an 
increasing fraction of low- occupation tasks, and (c) give a higher premium 
to those low- occupation workers they keep within the fi rm (unless we take 
the extreme view that all the functions to be performed by low- occupation 
workers could be performed by robots).

To rationalize the above fi ndings and these latter predictions, let us fol-



Fig. 9.4 Log hourly wage and R&D intensity
Source: Aghion et al. (2017).
Note: This fi gure plots the logarithm of total hourly income against the logarithm of total 
R&D expenditures (intramural + extramural) per employee (R&D intensity).

Fig. 9.5 Log hourly wage and R&D intensity
Source: Aghion et al. (2017).
Note: This fi gure plots the logarithm of total hourly income against the logarithm of total 
R&D expenditures (intramural + extramural) per employee (R&D intensity) for diff erent skill 
groups.
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low Aghion et al. (2017) who propose a model in which more innovative 
fi rms display a higher degree of complementarity between low- skill workers 
and the other production factors (capital and high- skill labor) within the 
fi rm. Another feature of  their model is that high- occupation employees’ 
skills are less fi rm- specifi c than low- skill workers: namely, if  the fi rm was 
to replace a high- skill worker by another high- skill worker, the downside 
risk would be limited by the fact that higher- skill employees are typically 
more educated employees, whose market value is largely determined by their 
education and accumulated reputation, whereas low- occupation em ployees’ 
quality is more fi rm- specifi c. This model is meant to capture the idea that 
low- occupation workers can have a potentially more damaging eff ect on 
the fi rm’s value if the fi rm is more innovative (or more AI intensive for our 
purpose).

In particular, an important diff erence with the common wisdom, is that 
here innovativeness (or AI intensity) impacts on the organizational form of 
the fi rm and in particular on complementarity or substitutability between 
workers with diff erent skill levels within the fi rm, whereas the common wis-
dom view takes this complementarity or substitutability as given. Think 
of a low- occupation employee (e.g., an assistant) who shows outstanding 
ability, initiative, and trustworthiness. That employee performs a set of 
tasks for which it might be diffi  cult or too costly to hire a high- skill worker; 
furthermore, and perhaps more important, the low- occupation employee 
is expected to stay longer in the fi rm than higher- skill employees, which in 
turn encourages the fi rm to invest more in trust- building and fi rm- specifi c 
human capital and knowledge. Overall, such low- occupation employees can 
make a big diff erence to the fi rm’s performance.

This alternative view of AI and fi rms is consistent with the work of theo-
rists of  the fi rm such as Luis Garicano. Thus in Garicano (2000) down-
stream, low- occupation employees are consistently facing new problems; 
among these new problems they sort out are those they can solve them-
selves (the easier problems) and the more diffi  cult questions they pass on 
to upstream—higher- skill—employees in the fi rm’s hierarchy. Presum-
ably, the more innovative or more AI- intensive the fi rm is, the harder it 
is to solve the more diffi  cult questions, and therefore the more valuable 
the time of  upstream high- occupation employees becomes; this in turn 
makes it all the more important to employ downstream, low- occupation 
employees with higher ability to make sure that less problems will be passed 
on to the upstream, high- occupation employees within the fi rm so that 
these high- occupation employees will have more free time to concentrate 
on solving the most diffi  cult tasks. Another interpretation of  the higher 
complementarity between low- occupation and high- occupation employees 
in more innovative (or more AI- intensive) fi rms, is that the potential loss 
from unreliable low- occupation employees is bigger in such fi rms: hence 
the need to select out those low- occupation employees that are not reliable. 
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This higher complementarity between low- occupation workers and other 
production factors in more innovative (or more AI- intensive) fi rms in turn 
increases the bargaining power of low- occupation workers within the fi rm 
(it increases their Shapley Value if  we follow Stole and Zwiebel [1996]). 
This in turn explains the higher payoff  for low- occupation workers. It also 
predicts that job turnover should be lower (tenure should be higher) among 
low- occupation workers who work for more innovative (more AI- intensive) 
fi rms than for low- occupation workers who work for less innovative fi rms, 
whereas the turnover diff erence should be less between high- occupation 
workers employed by these two types of fi rms. This additional prediction is 
also confronted to the data in Aghion et al. (2017).

Note that so far R&D investment has been used as the measure of the 
fi rm’s innovativeness or frontierness. We would like to test the same predic-
tions, but using explicit measures of AI intensity as the RHS variable in the 
regressions (investment in robots, reliance on digital platforms). Artifi cial 
intelligence and fi rm organizational form: recent empirical studies (e.g., see 
Bloom et al. 2014) have shown that the IT revolution has led fi rms to elimi-
nate middle- range jobs and move toward fl atter organizational structure. 
The development of  AI should reinforce that trend, while perhaps also 
reducing the ratio to low- occupation to high- occupation jobs within fi rms 
as we argued above.

A potentially helpful framework to think about fi rms’ organizational 
forms is Aghion and Tirole (1997). There, a principal can decide whether or 
not to delegate authority to a downstream agent. She can delegate author-
ity in two ways: (a) by formally allocating control rights to the agent (in 
that case we say that the principal delegates formal authority to the agent); 
or (b) informally through the design of the organization, for example, by 
increasing the span of control or by engaging in multiple activities: these 
devices enable the principal to commit to leave initiative to the agent (in 
that case we say that the principal delegates real authority to the agent). 
And agents’ initiative particularly matters if  the fi rm needs to be innova-
tive, which is particularly the case for more frontier fi rms in their sectors. 
Whether she decides to delegate formal or only real authority to her agent, 
the principal faces the following trade- off : more delegation of authority to 
the agent induces the agent to take more initiative; on the other hand, this 
implies that the principal will lose some control over the fi rm, and there-
fore face the possibility that suboptimal decisions (from her viewpoint) be 
taken more often. Which of these two counteracting eff ects of delegation 
dominates, will in turn depend upon the degree of congruence between the 
principal’s and the agent’s preference, but also about the principal’s ability 
to reverse suboptimal decisions.

How should the introduction of AI aff ect this trade- off  between loss of 
control and initiative? To the extent that AI makes it easier for the princi-
pal to monitor the agent, more delegation of authority will be required in 
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order to still elicit initiative from the agent. The incentive to delegate more 
authority to downstream agents, will also be enhanced by the fact that with 
AI, suboptimal decision- making by downstream agents can be more easily 
corrected and reversed: in other words, AI should reduce the loss of control 
involved in delegating authority downstream. A third reason for why AI may 
encourage decentralization in decision- making has to do with coordination 
costs: namely, it may be costly for the principal to delegate decision- making 
to downstream units if  this prevents these units from coordinating within the 
fi rm (see Hart and Holmstrom 2010). But here again, AI may help overcome 
this problem by reducing the monitoring costs between the principal and 
its multiple downstream units, and thereby induce more decentralization 
of authority.

More delegation of authority in turn can be achieved through various 
means: in particular, by eliminating intermediate layers in the fi rm’s hier-
archy, by turning downstream units into profi t centers or fully independent 
fi rms, or through horizontal integration that will commit the principal to 
spending time on other activities. Overall, one can imagine that the develop-
ment of AI in more frontier sectors should lead to larger and more horizon-
tally integrated fi rms, to fl atter fi rms with more profi t centers, which out-
source an increasing number of tasks to independent self- employed agents. 
The increased reliance on self- employed independent agents will in turn 
be facilitated by the fact that, as well explained by Tirole (2017), AI helps 
agents to quickly develop individual reputations. This brings us to the third 
aspect of AI and organizations on self- employment. Artifi cial intelligence 
and self- employment: as stressed above, AI favors the development of self- 
employment for at least two reasons: fi rst, it may induce AI intensive fi rms 
to outsource tasks, starting with low- occupation tasks; second, it makes it 
easier for independent agents to develop individual reputations. Does that 
imply that AI should result in the end of large integrated fi rms with individu-
als only interacting with each other through platforms? And which agents 
are more likely to become self- employed?

On the fi rst question: Tirole (2017) provides at least two reasons for why 
fi rms should survive the introduction of AI. First, some activities involve 
large sunk costs and/or large fi xed costs that cannot be borne by a single indi-
vidual. Second, some activities involve a level of risk- taking that also may 
not be borne by one single agent. To this we should add the transaction cost 
argument that vertical integration facilitates relation- specifi c investments in 
situations of contractual incompleteness: Can we truly imagine that AI will 
by itself  fully overcome contractual incompleteness?

On the second question: our above discussion suggests that low- skill ac-
tivities involving limited risk and for which AI helps develop individual rep-
utations (hotel or transport services, health assistance to the elder and/or 
handicapped, catering services, house cleaning) are primary candidates for 
increasingly becoming self- employment jobs as AI diff uses in the economy. 
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And indeed recent studies by Saez (2010), Chetty et al. (2011), and Kleven 
and Waseem (2013) point to low- income individuals being more respon-
sive to tax or regulatory changes aimed at facilitating self- employment. 
Natural extensions of  these studies would be to explore the extent to which 
such regulatory changes have had more impact in sectors with higher AI 
penetration.

The interplay between AI and self- employment also involves potentially 
interesting dynamic aspects. Thus it might be worth looking at whether 
self- employment helps individuals accumulate human capital (or at least 
protects them against the risk of  human capital depreciation following the 
loss of  a formal job), and the more so in sectors with higher AI penetra-
tion. Also interesting would be to look at how the interplay between self- 
employment and AI is itself  aff ected by government policies and institu-
tions, and here we have primarily in mind education policy and social or 
income insurance for the self- employed. How do these policies aff ect the 
future performance of  currently self- employed individuals, and are they 
at all complemented by the introduction of  AI? In particular, do currently 
self- employed individuals move back to working for larger fi rms, and how 
does the probability of  moving back to a regular employment vary with 
AI, government policy, and the interplay between the two? Presumably, a 
more performing basic education system and a more comprehensive social 
insurance system should both encourage self- employed individuals to bet-
ter take advantage of  AI opportunities and support to accumulate skills 
and reputation and thereby improve their future career prospects. On the 
other hand, some may argue that AI will have a discouraging eff ect on 
self- employed individuals, if  it lowers their prospects of  ever reintegrating 
a regular fi rm in the future, as more AI- intensive fi rms reduce their demand 
for low- occupation workers.

9.6 Evidence on Capital Shares and Automation to Date

Models that conceptualize AI as a force of increasing automation suggest 
that an upswing in automation may be seen in the factor payments going to 
capital—the capital share. In recent years, the rise in the capital share in the 
United States and around the world has been a central topic of research. 
For example, see Karabarbounis and Neiman (2013), Elsby, Hobijn, and 
Şahin (2013), and Kehrig and Vincent (2017). In this section, we explore this 
evidence, fi rst for industries within the United States, second for the motor 
vehicles industry in the United States and Europe, and fi nally by looking 
at how changes in capital shares over time correlate with the adoption of 
robots.

Figure 9.6 reports capital shares by industry from the US KLEMS data of 
Jorgenson, Ho, and Samuels (forthcoming); shares are smoothed using an 
HP fi lter with smoothing parameter 400 to focus on the medium- to long- 
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run trends. It is well- known that the aggregate capital share has increased 
since at least the year 2000 in the US economy. Figure 9.6 shows that this 
aggregate trend holds up across a large number of sectors, including agricul-
ture, construction, chemicals, computer equipment manufacturing, motor 
vehicles, publishing, telecommunications, and wholesale and retail trade. 
The main place where one does not see this trend is in services, including 
education, government, and health. In those sectors, the capital share is 
relatively stable or perhaps increasing slightly since 1990. But the big trend 
one sees in these data from services is a large downward trend between 1950 
and 1980. It would be interesting to know more about what accounts for 
this trend.

 While the facts are broadly consistent with automation (or an increase 
in automation), it is also clear that capital and labor shares involve many 
other economic forces as well. For example, Autor et al. (2017) suggest that a 
composition eff ect involving a shift toward superstar fi rms with high capital 
shares underlies the industry trends. That paper and Barkai (2017) propose 
that a rise in industry concentration and markups may underlie some of 
the increases in the capital share. Changes in unionization over time may 
be another contributing factor to the dynamics of factor shares. This is all 
to say that a much more careful analysis of factor shares and automation is 
required before any conclusions can be drawn.

Keeping that important caveat in mind, fi gure 9.7 shows evidence on the 
capital share in the manufacturing of  transportation equipment for the 
United States and several European countries. As Acemoglu and Restrepo 
(2017) note (more on this below), the motor vehicles industry is by far the 
industry that has invested most heavily in industrial robots during the past 
two decades, so this industry is particularly interesting from the standpoint 
of automation.

 The capital share in transportation equipment (including motor vehicles, 
but also aircraft and shipbuilding) shows a large increase in the United 
States, France, Germany, and Spain in recent decades. Interestingly, Italy 
and the United Kingdom exhibit declines in this capital share since 1995. 
The absolute level diff erences in the capital share for transportation equip-
ment in 2014 are also interesting, ranging from a high of more than 50 per-
cent in the United States to a low of around 20 percent in recent years in 
the United Kingdom. Clearly it would be valuable to better understand 
these large diff erences in levels and trends. Automation is likely only a part 
of the story.

Acemoglu and Restrepo (2017) use data from the International Federation 
of Robots to study the impact of the adoption of industrial robots on the 
US labor market. At the industry level, this data is available for the decade 
2004 to 2014. Figure 9.8 shows data on the change in capital share by indus-
try versus the change in the use of industrial robots.

 Two main facts stand out from the fi gure. First, as noted earlier, the motor 



Fig. 9.6 US capital shares by industry
Source: The graph reports capital shares by industry from the U.S. KLEMS data of Jorgen-
son, Ho, and Samuels (2017).
Note: Shares are smoothed using an HP fi lter with smoothing parameter 400.



Fig. 9.7 The capital share for transportation equipment
Sources: Data for the European countries are from the EU- KLEMS project (http:// www 
.euklems .net/  ) for the “transportation equipment” sector, which includes motor vehicles, but 
also aerospace and shipbuilding; see Jägger (2016). US data are from Jorgenson, Ho, and 
Samuels (2017) for motor vehicles.
Note: Shares are smoothed using an HP fi lter with smoothing parameter 400.

Fig. 9.8 Capital shares and robots, 2004– 2014
Sources: The graph plots the change in the capital share from Jorgenson, Ho, and Samuels 
(2017) against the change in the stock of robots relative to value added using the robots data 
from Acemoglu and Restrepo (2017).
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vehicles industry is by far the largest adopter of industrial robots. For ex-
ample, more than 56 percent of new industrial robots purchased in 2014 
were installed in the motor vehicles industry, the next highest share was 
under 12 percent in computers and electronic products.

Second, there is little correlation between automation as measured by 
robots and the change in the capital share between 2004 and 2014. The 
overall level of  industrial robot penetration is relatively small, and as we 
discussed earlier, other forces including changes in market power, unioniza-
tion, and composition eff ects are moving capital shares around in a way that 
makes it hard for a simple data plot to disentangle.

Graetz and Michaels (2017) conduct a more formal econometric study 
using the EU- KLEMS data and the International Federation of Robotics 
data from 1993 until 2007, studying the eff ect of robot adoption on wages 
and productivity growth. Similar to what we show in fi gure 9.8, they fi nd 
no systematic relationship between robot adoption and factor shares. They 
do suggest that adoption is associated with boosts to labor productivity.

9.7 Conclusion

In this chapter, we discussed potential implications of AI for the growth 
process. We began by introducing AI in the production function of goods 
and services and tried to reconcile evolving automation with the observed 
stability in the capital share and per capita GDP growth over the last cen-
tury. Our model, which introduces Baumol’s “cost disease” insight into 
Zeira’s model of automation, generates a rich set of possible outcomes. We 
thus derived suffi  cient conditions under which one can get overall balanced 
growth with a constant capital share that stays well below 100 percent, even 
with nearly complete automation. Essentially, Baumol’s cost disease leads 
to a decline in the share of GDP associated with manufacturing or agricul-
ture (once they are automated), but this is balanced by the increasing frac-
tion of the economy that is automated over time. The labor share remains 
substantial because of Baumol’s insight: growth is determined not by what 
we are good at but rather by what is essential and yet hard to improve. We 
also saw how this model can generate a prolonged period with high capital 
share and relatively low aggregate economic growth while automation keeps 
pushing ahead.

Next, we speculated on the eff ects of introducing AI in the production 
technology for new ideas. Artifi cial intelligence can potentially increase 
growth, either temporarily or permanently, depending on precisely how it 
is introduced. It is possible that ongoing automation can obviate the role 
of population growth in generating exponential growth as AI increasingly 
replaces people in generating ideas. Notably, in this chapter, we have taken 
automation to be exogenous and the incentives for introducing AI in various 
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places clearly can have fi rst- order eff ects. Exploring the details of endog-
enous automation and AI in this setup is a crucial direction for further 
research.

We then discussed the (theoretical) possibility that AI could generate 
some form of a singularity, perhaps even leading the economy to achieve 
infi nite income in fi nite time. If  the elasticity of substitution in combining 
tasks is less than one, this seems to require that all tasks be automated. 
But with Cobb- Douglas production, a singularity could occur even with 
less than full automation because the nonrivalry of knowledge gives rise to 
increasing returns. Nevertheless, here too the Baumol theme remains rele-
vant: even if  many tasks are automated, growth may remain limited due to 
areas that remain essential yet are hard to improve. Thus in the appendix 
we show that if  some steps in the innovation process require human R&D, 
then super AI may end up slowing or even ending growth by exacerbating 
business- stealing, which in turn discourages human investments in inno-
vation. Such possibilities, as well as other implications of “super- AI” (for ex-
ample for cross- country convergence and property right protection), remain 
promising directions for future research.

The chapter next considered how fi rms may infl uence, and be infl uenced 
by, the advance of artifi cial intelligence, with further implications for under-
standing macroeconomic outcomes. We considered diverse issues of market 
structure, sectoral reallocations, and fi rms’ organizational structure. Among 
the insights here we see that AI may in part discourage future innovation 
by speeding up imitation; similarly, rapid creative destruction, by limiting 
the returns to an innovation, may impose its own limit on the growth pro-
cess. From an organizational perspective, we also conjectured that while AI 
should be skill- biased for the economy as a whole, more AI- intensive fi rms 
are likely to: (a) outsource a higher fraction of  low- occupation tasks to 
other fi rms, and (b) pay a higher premium to the low- occupation workers 
they keep inside the fi rm.

Finally, we examined sectoral- level evidence regarding the evolution of 
capital shares in tandem with automation. Consistent with increases in 
the aggregate capital share, the capital share also appears to be rising in 
many sectors (especially outside services), which is broadly consistent with 
an automation story. At the same time, evidence linking these patterns to 
specifi c measures of  automation at the sectoral level appears weak, and 
overall there are many economic forces at work in the capital share trends. 
Developing sharper measures of automation and investigating the role of 
automation in the capital share dynamics are additional, important avenues 
for further research.
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Appendix

Artifi cial Intelligence in a Schumpeterian 
Model with Creative Destruction

In this appendix we describe and model a situation in which superin-
telligence (or “super- AI”) may kill growth because it exacerbates creative 
destruction and thereby discourages any human investment into R&D. We 
fi rst lay out a basic version of the Schumpeterian growth model. We then 
extend the model to introduce AI in the innovation technology.

Basics

Time is continuous and individuals are infi nitely lived, there is a mass L of  
individuals who can decide between working in research or in production. 
Final output is produced according to

 y = Ax ,

where x is the fl ow of intermediate input and A is a productivity parameter 
measuring the quality of intermediate input x. Each innovation results in 
a new technology for producing fi nal output and a new intermediate good 
to implement the new technology. It augments current productivity by the 
multiplicative factor � > 1: At+1 = �At. Innovations in turn are the (random) 
outcome of research, and are assumed to arrive discretely with Poisson rate 

.n where n is the current fl ow of research.

In a steady state the allocation of  labor between research and manu-
facturing remains constant over time, and is determined by the arbitrage 
equation

(9A.1) = v,

where the LHS of (A) is the productivity- adjusted wage rate � = (w /A) 
which a worker earns by working in the manufacturing sector and 
�v is 
the expected reward from investing one unit fl ow of labor in research. The 
productivity- adjusted value v of  an innovation is determined by the Bell-
man equation

 rv = ( ) nv,

where ( ) denotes the productivity- adjusted fl ow of  monopoly profi ts 
accruing to a successful innovator and where the term (–
nv) corresponds 
to the capital loss involved in being replaced by a subsequent innovator.

The above arbitrage equation, which can be reexpressed as

(9A.2) =
( )

r + n
,

together with the labor market- clearing equation
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(9A.3) x( ) + n = L,

where x( ) is the manufacturing demand for labor, jointly determine 
the steady- state amount of  research n as a function of  the parameters 

,�,L,r,�.

The average growth rate is equal to the size of each step, ln�, times the 
average number of innovations per unit of time, ln that is, g = 
n ln�.

A Schumpeterian Model with Artifi cial Intelligence

As before, there are L workers who can engage either in production of 
existing intermediate goods or in research aimed at discovering new inter-
mediate goods. Each intermediate good is linked to a particular GPT. We 
follow Helpman and Trajtenberg (1994) in supposing that before any of the 
intermediate goods associated with GPT can be used profi tably in the fi nal 
goods sector, some minimal number of them must be available. We lose noth-
ing essential by supposing that this minimal number is one. Once the good 
has been invented, its discoverer profi ts from a patent on its exclusive use in 
production, exactly as in the basic Schumpeterian model reviewed earlier.

Thus the diff erence between this model and the above basic model is that 
now the discovery of a new generation of intermediate goods comes in two 
stages. First a new GPT must come, and then the intermediate good must be 
invented that implements that GPT. Neither can come before the other. You 
need to see the GPT before knowing what sort of good will implement it, 
and people need to see the previous GPT in action before anyone can think 
of a new one. For simplicity we assume that no one directs R&D toward 
the discovery of a GPT. Instead, the discovery arrives as a serendipitous 
by-product of the collective experience of using the previous one.

Thus the economy will pass through a sequence of cycles, each having two 
phases; GPTi arrives at time Ti. At that time the economy enters phase 1 of 
the i th cycle. During phase 1, the amount n of  labor is devoted to research. 
Phase 2 begins at time Ti + �i when this research discovers an intermediate 
good to implement GPTi. During Phase 2 all labor is allocated to manufac-
turing until GPTi+1 arrives, at which time the next cycle begins.

A steady- state equilibrium is one in which people choose to do the same 
amount of research each time the economy is in Phase 1, that is, where n is 
constant from one GPT to the next. As before, we can solve for the equi-
librium value of n using a research- arbitrage equation and a labor market- 
equilibrium curve. Let �j be the wage, and vj the expected present value of 
the incumbent intermediate monopolist’s future profi ts, when the economy 
is in phase j, each divided by the productivity parameter A of  the GPT 
currently in use. In a steady state these productivity- adjusted variables will 
all be independent of which GPT is currently in use.

Because research is conducted in Phase 1 but pays off  when the economy 
enters into Phase 2 with a productivity parameter raised by the factor �, the 
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usual arbitrage condition must hold in order for there to be a positive level 
of research in the economy

 1 = v2.

Suppose that once we are in Phase 2, the new GPT is delivered by a Pois-
son process with a constant arrival rate equal to m. Then the value of v2 is 
determined by the Bellman equation

 rv2 = 2( ) + μ v1 v2( ).
By analogous reasoning, we have

 rv1 = 1( ) nv1.

Combining the above equations yields the research- arbitrage equation

 1 = 2( ) +
μ 1( )
r + n

/ r + μ .

Because no one does research in Phase 2, we know that the value of �2 is 
determined independently of  research, by the market- clearing condition 
L = x(�2) Thus we can take this value as given and regard the last equation 
as determining �1 as a function of n The value of n is determined, as usual, 
by this equation together with the labor- market equation

 L n = x 1( ).
The average growth rate will be the frequency of innovations times the 

size lng, for exactly the same reason as in the basic model. The frequency, 
however, is determined a little diff erently than before because the economy 
must pass through two phases. An innovation is implemented each time a 
full cycle is completed. The frequency with which this happens is the inverse 
of the expected length of a complete cycle. This in turn is just the expected 
length of Phase 1 plus the expected length of Phase 2:

 1 / n + 1 / μ = μ + n
μ n

.

Thus we have the growth equation

 g = ln μ n
μ + n

,

where n satisfi es

 f (L n) = f (L) +
μ f (L n)( )
r + n

/ r + μ

with

 f (.) = x 1(.)

as a decreasing function of its argument.
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We are interested in the eff ect of � on g and in particular by what happens 
when � → ∞ as a result of AI in the production of ideas. Obviously, n → 0 
when � → ∞ Thus E = 1/
n + 1/� → ∞ and therefore

 g = ln . 1
E

0.

In other words, we have described and modeled a situation where superin-
telligence exacerbates creative destruction to a point that all human invest-
ments in to R&D are being deterred and as a result growth tapers off . How-
ever, two remarks can be made at this stage:

Remark 1: Here, we have assumed that the second innovation stage 
requires human research only. If  instead AI allowed that stage to also be 
performed by machines, then AI will no longer taper off  and can again 
become explosive as in our core analysis.

Remark 2: We took automation to be completely exogenous and costless. 
But suppose instead that it costs money to make � increase to infi nity: then, 
if  creative destruction grows without limit as in our analysis above, the incen-
tive to pay for increasing � will go down to zero since the complementary 
human R&D for the stage- two innovation is also going to zero. But this 
goes against having � → ∞ and therefore against having AI kill the growth 
process.19
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Comment Patrick Francois

The political economy of artifi cial intelligence (AI) was not included as a 
topic in this conference, but political economy arose in a number of conver-
sations, including my discussion of this immensely thought- provoking chap-
ter. So I want to discuss it further here. It is important for two reasons. One, 
if  the scientists’ predictions pan out, we are on the cusp of a world where 
humans will be largely redundant as an economic input. How we manage the 
relationship between the haves (who own the key inputs) and the have- nots 
(who only own labor) is going to be a key aspect of societal health. Successful 
ones will be inclusive in the sense of sharing rents owned by the haves with 
the have- nots. This is quite obvious. Less obviously, I am going to argue that 
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