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Abstract

We study the design of enforcement mechanisms when enforcement resources are

chosen ex ante and are inelastic ex post. Multiple equilibria arise naturally. We

identify a new answer to the old question of why non-maximal penalties are used to

punish moderate actions: “marginal” penalties are much more attractive in the Pareto

inferior crime wave equilibrium. Specifically, although marginal penalties have both

costs and benefits, the net benefit is strictly positive in the crime wave equilibrium.

In contrast, marginal penalties frequently have a net cost in the non-crime wave

equilibrium. We also show that increasing enforcement resources may worsen crime.



An important constraint faced by tax inspectors, regulators, police forces, etc.

is that investigation resources are to a large extent fixed in the short-run. Human

employees constitute the key resource in these organizations, and cannot be increased

at short notice. Because of this, even if, for example, a tax inspector is in principle

committed to auditing all returns claiming deductions above $100,000, if an unusually

large number of returns fall into this category he is unable to audit them all. For the

most part, extant formal models of enforcement have ignored this constraint.1

In this paper we explicitly account for the ex post inelasticity of enforcement

resources, and revisit one of the oldest and most enduring questions in law and eco-

nomics, namely the optimality, or otherwise, of punishing proscribed behavior by

using the severest sanction available — that is maximal penalties versus “marginal

deterrence.” Our main argument is that the ex post inelasticity of enforcement re-

sources greatly strengthens the case for marginal deterrence.

As articulated by Becker (1968), there is a simple and compelling argument in

favor of maximal penalties: given a non-maximal penalty, one can always achieve

the same expected penalty by simultaneously reducing resources spent on detection

1The typical assumption is that an enforcement authority can ex ante commit to investigate

any number of individuals whose signal ex post fits the criteria for investigation (see, for example,

Mookherjee and Png 1992, 1994, DeMarzo, Fishman and Hagerty 1998). Bar-Gill and Harel (2001)

discuss a number of reasons for why the probability of investigation may vary ex post with the number

of offenders. A contemporaneous paper by Bassetto and Phelan (2008) analyzes a model in which

the total number of ex post investigations is constrained. The most important difference between

our paper and Bassetto and Phelan is that, as we discuss below, we are primarily interested in the

relative penalties imposed for moderate and severe offenses (i.e., marginal deterrence). Bassetto and

Phelan study a model in which there is just one possible offense, namely under-reporting income

(since their model has two income levels, there is no choice of how much to under-report by). As

such, the question of whether and how to differentially punish different offenses does not arise in

their model.
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and increasing the penalty. This argument is troubling because, of course, almost all

real-world penalty schedules instead mandate different penalties for different actions.

Arguably the leading counterargument to the optimality of maximal penalties relies

on the need for marginal deterrence: in terms of a commonly given example, a penalty

schedule needs to ensure not just that a potential offender prefers no crime to armed

robbery, but also that he prefers armed robbery to murder.2

Although persuasive in many respects, the proposition that the need for marginal

deterrence implies the optimality of non-maximal penalties is subject to at least

two important caveats. First, as observed by Mookherjee and Png (1992), Shavell

(1992), and Wilde (1992), it is often possible to monitor different actions at different

rates (with the assumption that there is no limitation on the number of ex post

investigations that can occur). Mookherjee and Png are the most specific in this

regard, and point out that if the enforcement authority is able to observe a signal

that is correlated to the action selected by the potential offender, it can vary its

monitoring effort according to the signal observed. As such, the standard argument

for maximal penalties still applies: the maximal penalty should be mandated for each

action, with marginal deterrence across actions provided by varying the monitoring

intensity.

Second, although marginal deterrence has the potential benefit of reducing the

crimes of the worst offenders, it also has the cost of increasing the crimes of other

individuals. In terms of the example above, reducing the penalty for armed robbery

increases the attractiveness of this crime. This drawback of marginal deterrence is

noted by Wilde (1992, page 334), and exists in Mookherjee and Png (1994). In their

analysis, all crimes are monitored at the same rate regardless of the seriousness of the

crime. This implies that marginal deterrence can only be accomplished through the

2While this argument is widely associated with Stigler (1970), it has considerably older an-

tecedents — see Shavell’s (1992) discussion.
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penalty. They show that at the optimal penalty schedule, there are typically agents

who cause a strictly positive amount of harm who would instead be fully deterred

under the first best.3 The harmful acts committed by these agents constitute the

cost of marginal deterrence - were marginal deterrence not a concern, the expected

penalty for these acts would be increased.

In this paper we show that in a model with limited ex post investigation resources,

both issues can be simply and simultaneously addressed. First, this assumption im-

mediately implies that an enforcement authority cannot reduce its expenditure by

implementing marginal deterrence via varying monitoring intensities. Since monitor-

ing resources must be decided ahead of time, there is nothing to be gained by reducing

monitoring intensity ex post.

Second, as many authors have observed, the assumption that enforcement re-

sources cannot be varied ex post leads to multiple equilibria in crime levels for stan-

dard congestion reasons.4 When other individuals commit more crime, enforcement

resources are stretched thin, and so the expected cost of crime falls.5 For our purposes,

the importance of multiple equilibria in crime levels is that they raise the question of

which equilibrium the enforcement authority cares about. Our main result is that the

balance of the costs and benefits of marginal deterrence differs dramatically across

equilibria. Specifically, we show that when the high crime equilibrium is played —

a situation we refer to as a crime wave — then there is always a level of marginal

deterrence at which the benefits outweigh the costs. In contrast, when the low crime

equilibrium is played, there are many parameter values for which the costs outweigh

the benefits, and maximal penalties are optimal.

3Specifically, in Mookherjee and Png (1994) the agent types in the lower interval of panel b of

Figures 1, 3 and 4 choose harmful actions which could be deterred at low cost.
4See, e.g., Schrag and Scotchmer (1997), Tabarrok (1997), Fender (1999), and Jost (2001).
5That is, the crime decisions of different individuals are strategic complements when enforcement

resources cannot be changed ex post.
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“Taste for crime”

preference parameter λ

Severe crime

No crime

λCW λNCW

Figure 1: The diagram shows equilibrium crime levels when maximal penalties are

used. No crime is an equilibrium for all sufficiently small realizations of the preference

parameter λ. Severe crime is an equilibrium for all sufficiently large realizations. For

moderate realizations of λ there is both a no crime equilibrium and a severe crime

equilibrium. The arrows show the effect of introducing marginal deterrence.

The intuition for this result is easiest to give using the simple diagram of Figure

1. In our model, as in the papers referenced above, individuals are heterogeneous

in their taste for crime, which we denote by λ. For the reasons discussed, for a

given penalty schedule there are generally multiple equilibria in crime levels. More

specifically, when extremal penalties are used both no crime and severe crime are

equilibria for agents with a moderate taste for crime: in Figure 1 this is the range of

taste parameters λ from λCW to λNCW .

Starting from the extreme of maximal penalties for moderate crime, the intro-

duction of non-maximal penalties has two effects. On the one hand, severe crime is

less likely to be an equilibrium outcome, since moderate crime is now a more attrac-

tive alternative. This is the familiar benefit of marginal deterrence noted by Stigler

(1970). In terms of Figure 1, the value λCW increases. On the other hand, since

moderate crime is now more attractive, no crime becomes harder to support as an

equilibrium. This is the cost of marginal deterrence. In terms of Figure 1, the value

λNCW decreases.
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If one assumes that crime waves occur (that is, the highest crime equilibrium is

played) then the equilibrium outcomes under maximal penalties are no crime when

the taste parameter is less than λCW , and severe crime otherwise. So in this case,

the benefits of marginal deterrence outweigh the costs: the relevant “boundary” in

Figure 1 is the severe crime boundary λCW , which shifts right, while because of the

equilibrium selection assumption the leftwards shift of the no crime boundary λNCW

has no effect.

Conversely, if one instead assumes that the lowest crime equilibrium is played

then the equilibrium outcomes under maximal penalties are no crime when the taste

parameter is less than λNCW , and severe crime otherwise. In this case the costs

of marginal deterrence outweigh the benefits, by a parallel argument. The relevant

boundary in Figure 1 is now the no crime boundary λNCW , and this shifts leftwards.

The remainder of the paper is as follows. Section 1 presents the model and some

preliminary analysis. Section 2 characterizes the benchmark outcomes when maximal

penalties are used. Section 3 establishes our main result by formalizing the intuitive

discussion above, and by dealing with the complication that marginal penalties intro-

duce additional equilibria as well as destroying existing equilibria. Section 4 considers

in more detail the optimal choice of the penalty for moderate crime, and presents sev-

eral comparative static results. Section 5 explores the consequences of increasing per

capita enforcement resources. Finally, Section 6 concludes.

1 Model and preliminary results

There are two agents, labelled i and j. (All our main results hold for N ≥ 2 agents

— see the discussion on page 21.) Each agent chooses between three possible action

levels: a ∈ {0, aM , 1}, where aM ∈ (0, 1). The social costs of these actions are 0, CM

and C1 respectively, where C1 > CM > 0. We will often refer to actions a = 0, aM , 1
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respectively as no crime, moderate crime and severe crime.

An enforcement authority oversees the two agents with the aim of minimizing the

social cost of their actions. However, the enforcement authority does not observe

the actions of agents i and j directly. Instead, it observes only noisy signals of these

actions, ai + εi

h
and aj + εj

h
, where h > 0 is a constant measuring the precision of the

signal. The error terms εi and εj are identically and independently distributed, with

distribution and density functions F and f . The signals observed by the enforcement

authority satisfy the monotone likelihood ratio property (MLRP); equivalently, the

density function f is log-concave.6

The enforcement authority can impose penalties on the two agents, but must

expend resources in order to do so. A central assumption in our analysis is that

the enforcement authority’s resources are fixed before agents choose their actions,

and cannot be increased ex post. This appears to be a reasonable description of

most real-world enforcement authorities: human employees typically constitute the

key resource, and tax collection agencies, regulatory inspection agencies, police forces

etc. cannot increase their staff at short notice. Throughout, we assume that the

enforcement authority has resources to penalize just one of the two agents.7

Formally, based on the pair of signals ai + εi

h
and aj + εj

h
the enforcement authority

chooses whether to investigate agent i or agent j. That is, an investigation policy is

6Let σi = ai + ε
i

h
be the signal observed by the enforcement authority. MLRP is defined as

∂

∂σi

(

1

Pr (σi|ai)

∂ Pr
(

σi|ai
)

∂ai

)

=
∂

∂σi∂ai
lnPr

(

σi|ai
)

> 0.

Since Pr
(

σi|ai
)

= f
(

σ
i
−a

i

h

)

, this condition is equivalent to log-concavity of the density function f .

Many common distributions, including the normal distribution, satisfy log-concavity.
7Of course, if society cares enough about preventing actions a = aM , 1 it will endow the enforce-

ment authority with resources to penalize both agents. In this case our environment corresponds

to the single-agent problem analyzed by previous authors.
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a mapping µ : <2 → {i, j}.8 We assume that the investigation policy is anonymous,

in the sense that it is independent of the identity of the agent (if µ (x, x′) = i then

µ (x′, x) = j). Define p (ai, aj) as the probability that agent i is investigated given

actions ai and aj, i.e., p (ai, aj) = Pr
(

µ
(

ai + εi

h
, aj + εj

h

)

= i
)

. For use throughout,

observe that anonymity of the investigation policy implies that, for any pair of actions

ai and aj,

p
(

ai, aj
)

= 1 − p
(

aj, ai
)

. (1)

Moreover, (1) implies that whenever both agents take the same action, each is inves-

tigated with probability 1/2, i.e., p (a, a) = 1/2 for any action a.

Investigating an agent allows the enforcement authority to perfectly observe the

action chosen by that agent. We assume that the penalty technology is such that

only an agent who has been investigated can be penalized. The maximum feasible

penalty is S. A general penalty specification is a triple (s0, sM , s1) ∈ [0, S]3. For

simplicity, we assume that penalties impose no social cost (for example, they are

wealth transfers).

The enforcement authority does not know how much agents benefit from the so-

cially costly actions a = aM , 1. Each agent’s payoff to action a is given by λa, where

λ is unobserved by the enforcement authority and is drawn from an atomless distribu-

tion with support
[

0, λ̄
]

. For simplicity we assume that both agents share the same

taste parameter λ. This assumption allows us to work with symmetric equilibria

8Since the enforcement authority’s resources are fixed in advance, it is natural to assume that

it will always use these resources ex post by investigating one agent. If the enforcement authority

derives any payoff from successfully penalizing an agent, then it will always choose to investigate one

agent ex post. Qualitatively, we do not believe our results would change if instead the enforcement

authority sometimes refrained from investigating anyone. On a technical level, the main issue is

that our proof that there is always a symmetric pure-strategy equilibrium (Lemma 2) relies on the

assumption that the enforcement authority always investigates one of the two agents.

7



throughout, and our results would be qualitatively unchanged by the introduction of

a small amount of preference heterogeneity between the two agents. Economically,

the assumption can be thought of as reflecting the widely held notion that cultural

norms against wrongdoing vary geographically, and may also change over time. Al-

ternatively, the assumption can be motivated by variations in community enforced

social sanctions; or by variations in the marginal utility of income.

We focus throughout on pure-strategy symmetric equilibria.9 No crime (ai = aj =

0) is an equilibrium if and only if

−s0p (0, 0) ≥ λaM − sMp (aM , 0) (IC0-M)

−s0p (0, 0) ≥ λ − s1p (1, 0) (IC0-1)

Moderate crime (ai = aj = aM) is an equilibrium if and only if

λaM − sMp (aM , aM) ≥ −s0p (0, aM) (ICM-0)

λaM − sMp (aM , aM) ≥ λ − s1p (1, aM) (ICM-1)

Severe crime (ai = aj = 1) is an equilibrium if and only if

λ − s1p (1, 1) ≥ −s0p (0, 1) (IC1-0)

λ − s1p (1, 1) ≥ λaM − sMp (aM , 1) . (IC1-M)

We assume that the social cost of actions a = aM , 1 exceeds the direct private ben-

efit, i.e., C1 − λ̄ > CM − λ̄aM > 0. So taking the enforcement authority’s ex post

investigative capacity as fixed at one investigation,10 its objective is to choose an

9Lemma A-1, stated and proved in the appendix, shows that the probability of the taste parameter

λ being such that an asymmetric pure-strategy equilibrium exists is zero. Lemma 2 below shows

that at least one pure-strategy symmetric equilibrium always exists. As standard in games with

strategic complementarities, whenever two distinct pure-strategy symmetric equilibria exist, there is

also a mixed strategy symmetric equilibrium. However, this mixed strategy equilibrium is unstable.
10It would be straightforward to expand the problem to one in which the investigative capacity is

also determined optimally.
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investigation policy µ and a penalty specification (s0, sM , s1) so as to minimize the

expected equilibrium crime level.

1.1 Preliminary results

The remainder of this section develops several preliminary results that allow us to

simplify the equilibrium characterization.

Consider a pair of offsetting incentive conditions — (IC0-M) and (ICM-0), for

example. Condition (IC0-M) says that agent i prefers no crime to moderate crime,

conditional on agent j choosing no crime. Condition (ICM-0) says that agent i

prefers moderate crime to no crime, conditional on agent j choosing the moderate

crime. Since the probability that agent i is investigated depends on agent j’s action,

these two conditions are not symmetric. This raises the possibility that both (IC0-M)

and (ICM-0) may simultaneously fail, a complication that would potentially lead to

the non-existence of a pure-strategy symmetric equilibrium. However, (1) is enough

to ensure that this possibility does not arise:

Lemma 1 Suppose that both the penalty schedule and investigation policy are mono-

tone, i.e., s1 ≥ sM ≥ s0 and p is increasing in its first argument. Then at least

one of (IC0-M) and (ICM-0) holds; at least one of (IC0-1) and (IC1-0) holds; and at

least one of (ICM-1) and (IC1-M) holds.

The existence of at least one pure-strategy symmetric equilibrium follows easily

from Lemma 1:

Lemma 2 Suppose that both the penalty schedule and investigation policy are mono-

tone, i.e., s1 ≥ sM ≥ s0 and p is increasing in its first argument. Then there exists

at least one pure-strategy symmetric equilibrium.
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Having established that a pure-strategy symmetric equilibrium exists for any re-

alization of λ, we turn now to simplifying the problem. Holding the investigation

policy µ fixed, setting s0 = 0 always increases the range of λ realizations for which no

crime is an equilibrium; and setting s1 = S always increases the range of λ realizations

for which severe crime is not an equilibrium. In a similar fashion, the investigation

policy “investigate the agent with the higher signal” is the investigation policy that

minimizes the range of the severe crime equilibrium and maximizes the range of the

no crime equilibrium. Formally:

Lemma 3 The probability that no crime is an equilibrium is maximized, and the

probability that severe crime is an equilibrium is minimized, by choosing s0 = 0,

s1 = S, and using the investigation policy “investigate the agent with the higher

signal.”

Given Lemma 3, for the remainder of the paper we assume s0 = 0, s1 = S,

and that the “investigate the agent with the higher signal” policy is used. Define

q (ai − aj) = p (ai, aj), since under this investigation policy only the difference in the

actions of the two agents affects the investigation probability.

Lemma 4 The investigation probability function q : [−1, 1] → [0, 1] is:

(I) Symmetric about 0: q (a)− q (0) = q (0) − q (−a).

(II) Increasing (decreasing) in signal precision for positive (negative) values.

(III) Concave (convex) over positive (negative) values.

For use in the remainder of the paper, the equilibrium conditions simplify to: no

crime (a = 0) is an equilibrium if and only if

0 ≥ λaM − sMq (aM) (IC0-M)

0 ≥ λ − Sq (1) ; (IC0-1)
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moderate crime (a = aM) is an equilibrium if and only if

λaM − sMq (0) ≥ 0 (ICM-0)

λaM − sMq (0) ≥ λ − Sq (1 − aM) ; (ICM-1)

and severe crime (a = 1) is an equilibrium if and only if

λ − Sq (0) ≥ 0 (IC1-0)

λ − Sq (0) ≥ λaM − sMq (aM − 1) . (IC1-M)

1.2 Extremal vs marginal penalties

Observe that in light of Lemma 3, the enforcement authority’s problem has reduced

to choosing the penalty sM to impose on an agent who chooses action aM . This is

the focus of the paper. We refer to the choice sM = s1 = S as an extremal penalty,

and to any choice sM < s1 = S as a marginal penalty.11

1.3 Assumptions

We assume that the supremum of the support of the taste parameter λ satisfies

λ̄ > S q(1−aM )
1−aM

. This guarantees that severe crime is the only equilibrium when the

taste parameter is sufficiently high, regardless of the choice of penalty sM .12 Moreover,

to make our analysis as transparent as possible, we assume that signal precision is

sufficiently poor such that

q (0) > q′ (0) . (2)

11Clearly one could also term the choice sM = 0 as an extremal penalty. This is purely an issue

of terminology.
12It is immediate that (ICM-1) does not hold at λ̄. By the concavity of q over positive values,

(IC0-1) does not hold either: q (a) ≥ aq (1) + (1 − a) q (0) > aq (1) for any a ∈ (0, 1), and so

S
q(1−aM )
1−aM

> Sq (1). Hence a = 1 is the only equilibrium at λ = λ̄.
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This assumption ensures that moderate crime is never an equilibrium under extremal

penalties. However, we stress that it is not essential for our main results, which

hold under much weaker conditions. In particular, our results hold whenever aM is

not too different from 1/2, regardless of whether or not (2) is satisfied (details are

available on the authors’ webpages).

2 A benchmark: equilibrium outcomes under ex-

tremal penalties

Our main object of enquiry is when extremal penalties are, and are not, optimal.

Accordingly, we begin our analysis by characterizing the equilibrium outcomes when

extremal penalties are used. No crime (a = 0) is an equilibrium when (IC0-M) and

(IC0-1) hold, i.e., if λ ≤ Sq(aM )
aM

and λ ≤ Sq (1). Since q is concave over positive

values,

q (aM) ≥ aMq (1) + (1 − aM) q (0) > aMq (1) . (3)

As such, for extremal penalties (IC0-M) holds whenever (IC0-1) does, and so no crime

is an equilibrium if and only if λ ≤ Sq (1).

At the other extreme, severe crime is an equilibrium when (IC1-0) and (IC1-M)

hold, i.e., λ ≥ Sq (0) and λ ≥ S q(0)−q(aM−1)
1−aM

. Under assumption (2), for extremal

penalties (IC1-M) holds whenever (IC1-0) does.13

Assumption (2) says that the investigation probability does not change very

quickly as an agent changes his action choice. This means that any agent with

preferences for crime that are strong enough for him to prefer moderate crime to no

13We must show that q (0) ≥ q(0)−q(aM−1)
1−aM

, or equivalently, q (aM − 1) − aMq (0) ≥ 0. Convexity

of q over negative values implies q (0)− q′ (0) (1 − aM ) ≤ q (aM − 1). From assumption (2) it follows

that q (0) aM = q (0) − q (0) (1 − aM ) < q (aM − 1).
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crime would derive an even higher payoff from severe crime, given that under ex-

tremal penalties sM and s1 coincide. As such, under extremal penalties moderate

crime is never an equilibrium. Formally, moderate crime (a = aM) is an equilibrium

if (ICM-0) and (ICM-1) hold, i.e., if λ ≥ Sq(0)
aM

and λ ≤ S q(1−aM )−q(0)
1−aM

, and assumption

(2) implies that both inequalities cannot be satisfied at once.14

Corresponding to Figure 1, we define the critical values of the taste parameter

identified above by λCW = Sq (0) and λNCW = Sq (1).

Proposition 1 When extremal penalties are used, no crime (a = 0) is an equilibrium

if λ ≤ λNCW ; severe crime (a = 1) is an equilibrium if λ ≥ λCW ; moderate crime

(a = aM) is never an equilibrium.

As an immediate implication:

Corollary 1 Both no crime and severe crime are equilibria when λ ∈ [λCW , λNCW ].

The source of multiple equilibria is, or course, the enforcement authority’s limited

resources ex post. This means that the action choices of the two agents are strategic

complements: when agent j chooses a more socially costly action, it reduces the

investigation probability faced by agent i, and so increases the utility gain to agent i

of choosing a more socially costly action.

Given the existence of multiple equilibria, an equilibrium selection rule is needed

to select the optimal choice of the penalty sM . Our main results characterize how the

equilibrium selection rule affects the optimal choice. We consider two selection rules:

14Specifically, assumption (2) implies
q(0)
aM

>
q(1−aM)−q(0)

1−aM
, or equivalently, aMq (1 − aM ) < q (0),

as follows. Concavity of q over positive values and assumption (2) together imply

q (1 − aM) ≤ q (0) + (1 − aM ) q′ (0) < (2 − aM) q (0) .

Since aM (2 − aM ) ≤ 1, the result follows.
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(CW), a crime wave selection rule, in which whenever multiple equilibria exist we

assume the one with the highest crime level is played; and (NCW), a no crime wave

selection rule, in which whenever multiple equilibria exist we assume the one with the

lowest crime level is played. Note that whenever multiple pure-strategy symmetric

equilibria exist, agents i and j strictly prefer the higher crime equilibrium.15 Conse-

quently, the crime wave selection rule corresponds to the commonly used device of

selecting the Pareto dominant (from the perspective of players i and j) equilibrium.

3 The costs and benefits of marginal penalties

In this section we present our main result, namely that the introduction of marginal

penalties always lowers crime under the crime wave selection rule, but for many

parameter values raises crime under the no crime wave selection rule. To establish this

result as directly as possible, we postpone until the next section a full characterization

of equilibrium outcomes under the crime wave selection rule.16

We consider first the crime wave selection rule. By Proposition 1, under extremal

penalties the equilibrium is severe crime (a = 1) for taste realizations λ ≥ λCW , and

no crime otherwise. The potential benefit of introducing marginal penalties — i.e.,

lowering sM below S — is that doing so destroys the severe crime equilibrium for

some λ ≥ λCW , by making the deviation to moderate crime attractive. This benefit

is first experienced at the taste realization λCW — which, by definition, is such that

that agents have a zero payoff in the severe crime equilibrium. Hence the benefit

of marginal penalties is first experienced when sM is lowered beyond the point at

which an agent with taste λCW gets a zero payoff from deviating from a severe crime

15The only exception is the zero-probability realization of the taste parameter λ in which, in

equilibrium, the agents are indifferent between a positive action level, and action a = 0.
16Related, nowhere in our analysis do we need a full characterization of the set of equilibria.
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equilibrium to commit moderate crime. The agent’s probability of being investigated

in this case is q (aM − 1), and so the benefit of marginal penalties is first experienced

at the marginal penalty sM defined by λCWaM − sMq (aM − 1) = 0.

Conversely, the potential cost of marginal penalties is that they introduce a mod-

erate crime equilibrium for some λ < λCW . Since a zero payoff is always attainable

by taking action a = 0, a necessary condition for such an equilibrium to exist is

that an agent derive a non-negative payoff from committing moderate crime, given

that the other agent also commits moderate crime, and so each faces an investigation

probability of q (0). Consequently, it is only possible for marginal penalties to have a

cost once sM is lowered beyond the level defined by λCW aM − sMq (0) = 0.

Since q (aM − 1) < q (0), we have established our first main result:

Proposition 2 Under the crime wave selection rule, as marginal penalties are adopted

by reducing sM away from S, equilibrium crime levels are at first unaffected and then

reduced.

The intuition is straightforward. Both the cost and benefit under the crime wave

selection rule occur when the type λCW first gets a zero payoff from moderate crime.

The difference is that the benefit occurs when this payoff arises from a downwards

deviation from a severe crime equilibrium, with an associated investigation probability

below 1/2, while the cost occurs when this payoff arises in equilibrium, with an

associated investigation probability of 1/2.

It is important to note that Proposition 2 says only that when marginal penalties

first have an impact on crime levels, that impact is positive. As will be clear from

Proposition 5 below, it does not follow that the penalty sM should be reduced all the

way to 0.

We turn now to the opposite case of Proposition 2 in which the no crime wave

selection rule is used. As we will see, for many parameter values the introduction of

15



marginal penalties actually increases the crime level in this case.

By Proposition 1, under extremal penalties the equilibrium is severe crime for taste

realizations λ > λNCW , and no crime otherwise. The potential benefit of introducing

marginal penalties is now that doing so may introduce a moderate crime equilibrium

for some λ > λNCW . This occurs when (ICM-0) and (ICM-1) are both satisfied.

Note that for λ > λNCW , the payoff to deviating to severe crime from a moderate

crime equilibrium, i.e., λ − Sq (1 − aM), is positive. Consequently, a moderate crime

equilibrium is introduced whenever (ICM-1) is satisfied. As marginal penalties are

adopted, this first occurs when sM is lowered beyond the level defined by λNCWaM −

sMq (0) = λNCW − Sq (1 − aM) (i.e., (ICM-1) holds with equality).

Conversely, under the no crime wave selection rule the potential cost of marginal

penalties is that they destroy the no crime equilibrium for some λ ≤ λNCW . This

occurs when an agent can obtain a positive payoff by deviating from a no crime

equilibrium to moderate crime, and facing an investigation probability of q (aM).

Consequently, the cost of marginal penalties is experienced once sM is lowered beyond

the level defined by λNCW aM − sMq (aM) = 0.

In contrast to the case under the crime wave selection rule, it is no longer clear

whether the benefits of marginal penalties are reached before or after the costs. The

reason is that the costs now arise when the type λNCW gets a zero payoff by deviating

to moderate crime from a no crime equilibrium; while the benefits arise when the same

type gets a strictly positive payoff from moderate crime in equilibrium. Because both

the payoffs and investigation probabilities differ across these two cases, the comparison

depends on the specific shape of the investigation probability function q. However,

one case in which the comparison is clear is when the deviation to moderate crime

from a no crime equilibrium does not affect the investigation probability very much.

This is the case when the precision h of the enforcement authority’s signal is low.

Formally:
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Proposition 3 Under the no crime wave selection rule, as marginal penalties are

adopted by reducing sM away from S, equilibrium crime levels are at first unaffected

and then increased if

λNCW aM

q (am)
>

Sq (1 − aM) − λNCW (1 − aM )

q (0)
, (4)

but decreased otherwise. (Recall λNCW = Sq (1).) Consequently, extremal penalties

are locally optimal when (4) holds. Moreover, condition (4) holds whenever the pre-

cision h of the enforcement authority’s signal is sufficiently low.

(Remark: It is readily verified that (4) also holds for all aM sufficiently small.)

Loosely speaking, the difference in the effect of marginal penalties across equi-

librium selection rules reflects the fact that, in our model, all else being equal it is

easier to destroy an existing equilibrium than to create a new equilibrium. Under the

crime wave selection rule, the benefits stem from destroying an existing crime wave

equilibrium; while under the no crime wave selection rule, the benefits stem from

creating a new moderate crime equilibrium.

4 Comparative statics under crime waves

In the previous section we showed that under the crime wave selection rule, some use

of marginal penalties is always optimal. As we showed, this contrasts sharply with

the situation under the no crime wave selection rule. There remains the question of

what level of marginal penalties is optimal under the crime wave selection rule. This

is the subject of the current section.

We begin by comprehensively characterizing the equilibrium outcome under the

crime wave selection rule. It is possible to do this using just three of the six equilibrium

conditions, namely (IC1-0), (IC1-M) and (ICM-0):
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SaM q(0)
q(aM−1)SaM q(0)

(1−aM)q(0)+q(aM−1)aM

Figure 2: Equilibrium outcomes under the crime wave selection rule. The graph shows

the highest crime equilibrium for each moderate crime penalty sM and taste-for-crime

parameter λ.

Proposition 4 Under the crime wave selection rule, the equilibrium is severe crime

(a = 1) whenever (IC1-0) and (IC1-M) both hold; the equilibrium is moderate crime

(a = aM) whenever (IC1-M) fails but (ICM-0) holds; and the equilibrium is no crime

(a = 0) otherwise.

Using Proposition 4, we can graphically represent the equilibrium outcomes un-

der the crime wave selection rule. To this end, it is useful to rewrite the incentive

constraints (IC1-0), (IC1-M) and (ICM-0) as bounds on λ:

λ ≥ Sq (0) (IC1-0)

λ ≥
Sq (0) − sMq (aM − 1)

1 − aM
(IC1-M)

λ ≥
sMq (0)

aM
. (ICM-0)

Figure 2 plots these three constraints as functions of the taste parameter λ and
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the extent of marginal penalties, sM . The lines (IC1-0) and (IC1-M) intersect at

sM = SaM q(0)
q(aM−1)

, while the lines (IC1-0) and (ICM-0) intersect at sM = SaM . Since

q (0) > q (aM − 1) the (IC1-0) line lies below the intersection of (IC1-M) and (ICM-

0). Economically, and as earlier established in Proposition 2, under the crime wave

selection rule the introduction of marginal penalties always reduces the crime level.

Strikingly, the adoption of marginal penalties reduces crime levels by switching

the equilibrium outcome from severe crime to no crime for some realizations of the

taste parameter λ. That is, marginal penalties are useful even though no agent

commits the moderate crime aM in equilibrium. This is only possible because of

the interdependency between different agents’ action choices, which in turn stems

from the ex post inelasticity of enforcement resources. Given this interdependency, it

is possible for marginal penalties to eliminate the severe crime equilibrium without

introducing moderate crime as an equilibrium. In contrast, absent ex post inelasticity

of enforcement resources each agent’s optimization problem would be independent of

other agents’ decisions, and marginal penalties would only affect outcomes if they

resulted in moderate crime in equilibrium.

Let g denote the probability density of the taste parameter λ. Using Figure

2 one can easily calculate social welfare for each penalty level sM , as follows. First,

note that the penalty for moderate crime should be set below the intersection point of

(ICM-0) and (IC1-M), i.e., below SaM q(0)
(1−aM )q(0)+q(aM−1)aM

, since above this point marginal

penalities generate only benefits, and no cost. For penalties sM below this level, social

welfare under crime waves is given by

SW ≡

∫

Sq(0)−sMq(aM−1)
1−aM

sM q(0)/aM

(λaM − CM ) g (λ) dλ +

∫ λ̄

Sq(0)−sMq(aM−1)
1−aM

(λ − C1) g (λ) dλ,

where the two terms represent the expected net social cost of moderate and severe

crime respectively.17 From this expression it is straightforward to show:

17One can also calculate social welfare without including the private benefits λaM and λ from
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Proposition 5 Under the crime wave selection rule, the optimal penalty for moder-

ate crime lies in the interval
[

0, SaM q(0)
(1−aM )q(0)+q(aM−1)aM

]

, and is decreasing in C1 and

increasing in CM .

The intuition behind Proposition 5 is clear. When the social cost of severe crime

is high, society should do everything it can to curtail severe crime. Setting sM low

achieves this objective because it induces agents to switch from the severe crime to

the moderate crime equilibrium. Of course, setting sM low also engenders more

moderate crime, but when CM is low relative to C1 this is a price worth paying.

The second comparative static we consider is the effect of signal precision h on

the optimal choice of sM . Signal precision affects social welfare via the investigation

probability q (aM − 1), which is decreasing in precision h: when signal precision is

high, the investigation probability faced by an agent who takes action aM while the

other takes action a = 1 is low. The investigation probability q (aM − 1) measures the

strength of incentives provided by the investigation policy for agents to abstain from

severe crime: if agent j chooses severe crime, agent i is punished with probability

q (0) = 1/2 if he also chooses severe crime, but with probability q (aM − 1) if instead

he chooses moderate crime. As such, when q (aM − 1) is low, the investigation policy

alone delivers considerable “marginality” in expected penalties even when sM is close

to the maximum penalty S. If instead q (aM − 1) is high, the investigation policy

delivers little marginality, and it is worthwhile setting sM much lower than S in order

to increase the difference in expected penalties for severe and moderate crime.

The effect of q (aM − 1), and hence of signal precision h, on social welfare depends

in part on the density g of the taste parameter λ. To abstract from these effects, we

consider the special case in which λ is uniformally distributed:18

actions a = aM , 1. Doing so has no qualitative effect on our results.
18More generally, Proposition 6 would hold whenever the derivative of the density function g′ is

sufficiently small.
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Proposition 6 Suppose the taste parameter is distributed uniformally. Under the

crime wave selection rule, the optimal penalty for moderate crime is decreasing in the

investigation probability q (aM − 1) and so is increasing in signal precision h.

5 Varying per capita enforcement resources

Thus far we have assumed that the enforcement agency has the resources to conduct

one investigation for each two potential offenders. We have focused on this case

purely for expositional convenience: our main results apply equally when instead the

enforcement authority oversees N ≥ 2 agents, and has the resources to investigate

and penalize just one of them. Details are available from the authors’ webpages. In

this section, we analyze the effect of changes in N , that is, of changes in per capita

enforcement resources.

With N agents, the probability of investigation faced by an agent choosing action

ã while the other N − 1 agents choose action a is given by qN (ã − a), for some

increasing function q. Clearly as the number of agents increases, the probability of

investigation qN (x) decreases for any value of x. Moreover, it is possible to show

that the ratio qN (x) /qN (0) is increasing (respectively, decreasing) in the number of

agents N if x > 0 (respectively, x < 0). That is, as N increases the probability of

investigation decreases faster for an agent who commits a lesser crime, holding the

actions of other agents fixed.

We can use this result to consider the effect of changes in per capita enforce-

ment resources on crime levels. Suppose that enforcement resources increase, i.e.,

N is reduced. This generates some unambiguously positive effects. For example, it

increases the range of λ realizations for which (IC0-1) and (IC0-M) hold, implying

that no crime (a = 0) is an equilibrium more often. However, for sM > 0 a decrease

in N has a tendency to make (ICM-1) less likely to hold, since as N decreases the
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ratio qN (1 − aM) /qN (0) decreases. Economically, a decrease in N increases qN (0)

by a larger amount than qN (1 − aM), and this makes it harder to prevent an agent

deviating from moderate crime to severe crime. In this case, the increase in resources

actually has a negative effect on the distribution of crime.

The above discussion gives the main intuition, but is somewhat loose in that (ICM-

1) involves the terms qN (1 − aM) and qN (0) separately, as opposed to in ratio. The

following result gives one reasonably concise set of sufficient conditions for a decrease

in N to have the negative effect described:19

Proposition 7 Suppose the no crime wave selection rule is used, and aM = 1/2.

Then for any moderate crime penalty sM ∈ (0, S/ (1 + 1/N)) and any number of

agents N > 2, there exists a signal precision h̄ such that whenever h ≥ h̄, an increase

in per capita enforcement (i.e., a reduction in N) increases the probability of severe

crime (though it also increases the probability of no crime).

In general, an enforcement agency that experiences an increase to its budget can

choose to spend these extra funds in one of two ways. On the one hand, the en-

forcement agency can expand its capacity to investigate and penalize agents (i.e.,

decrease N). On the other hand, the enforcement agency can seek to increase the

precision of its pre-investigation information, that is, of the information upon which

it decides whom to investigate (i.e., increase h). Proposition 7 shows that the former

use of funds may actually increase crime under the no crime wave selection rule. In

contrast, an immediate implication of part (II) of Lemma 4 is that an increase in

signal precision reduces crime under the no crime wave selection rule.20 As such,

using the increase in funds to increase signal precision is often the more attractive

19We emphasize that the effect described holds much more generally than the sufficient conditions

of Proposition 7. Additionally, given that Proposition 7 is stated for the case of signal precision h

being sufficiently high, it is worth noting that this result makes no use of assumption (2).
20Specifically, an increase in precision increases q (aM ), q (1 − aM ) and q (1), while leaving q (0)
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alternative, since it leads to an unambiguous decrease in crime, while increasing in-

vestigation capacity has the potential to actually increase the crime level under some

circumstances.

To some extent this prediction is consistent with the recent rise in “community

policing.” While the term encompasses a variety of distinct ideas, one important

element is that police officers should spend more time patrolling streets by foot, and

less time in patrol cars and responding to emergency calls.21 This, it is often argued,

will engender much better relations between police officers and the communities they

oversee.22 In terms of our analysis, this aspect of community policing can be thought

of as corresponding to an increase in signal accuracy achieved at the cost of a decrease

in investigation resources (increase in N). Enabling better communication between

a community and its police is akin to increasing the amount of information a police

department has on which to base its more formal investigations. However, taking

police out of patrol cars reduces their ability to arrive promptly at a crime scene and

possibly apprehend a criminal immediately.

unchanged; and this increases the range of parameters for which no crime is an equilibrium, and

for which moderate crime is an equilibrium. Given the no crime wave selection rule, it follows that

equilibrium crime declines for all realizations of the taste parameter λ.
21Perhaps the aspect of community policing to have attracted most comment is the “broken

windows” theory, which emphasizes the importance of the eliminating small crimes (or at least their

effects) for the control of more serious crimes. Although logically distinct from increasing the

number of police officers on foot-patrol, in practice the two ideas are closely related.
22For example, in their much-cited article, Wilson and Kelling (1982) emphasize the awkwardness

faced by an individual who wants to communicate with a police officer seated in a patrol car.
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6 Conclusion

Our analysis identifies a new answer to the old question of why non-maximal penalties

are used to punish moderate actions. In environments in which multiple equilibria

arise naturally, marginal penalties are much more attractive under the crime wave

selection rule, in which the highest crime equilibrium is played. Specifically, although

marginal penalties have both costs and benefits (as identified by prior authors — see

the introduction), the net benefit is strictly positive under the crime wave selection

rule. In contrast, for a wide range of parameter values marginal penalties have a net

cost under the no crime wave selection rule, in which the lowest crime equilibrium is

played. The economic reason for this difference is that under the crime wave selection

rule, the benefits of marginal penalties stem from the destruction of a severe crime

equilibrium, while the cost stems from the possible creation of a moderate crime

equilibrium (displacing a no crime equilibrium). Destroying an existing equilibrium

is easier than creating a new equilibrium, and so the benefits arrive first. Under the no

crime wave selection rule, the situation is reversed: the benefits of marginal penalties

now stem from the creation of a moderate crime equilibrium (displacing a severe crime

equilibrium), while the costs stem from the destruction of a no crime equilibrium.

In addition, our analysis has implications for the comparative efficacy of increasing

resources devoted to investigative capacity versus pre-investigation information
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A Appendix

For use below, observe that (1) implies that p is increasing in its first argument if and

only if it is decreasing in its second argument.

Lemma A-1 Suppose that both the penalty schedule and investigation policy are

monotone, i.e., s1 ≥ sM ≥ s0 and p is increasing in its first argument. The probabil-

ity of the taste parameter λ being such that an asymmetric pure-strategy equilibrium

exists is zero.

Proof of Lemma A-1: We consider an asymmetric equilibrium in which agent i

takes action aM and agent j takes action 1. (The other two possibilities for asymmetric

pure-strategy equilibrium can be dealt with in an identical way.) Suppose to the

contrary that such an equilibrium exists. Given anonymity of the investigation policy

µ, λaM − sMp (aM , 1) ≥ λ − s1p (1, 1) and λ − s1p (1, aM ) ≥ λaM − sMp (aM , aM).

Hence

s1p (1, 1) − sMp (aM , 1) ≥ λ (1 − aM) ≥ s1p (1, aM ) − sMp (aM , aM) . (A-1)

Since s1 ≥ sM and, by (1) and monotonicity, p (1, 1) − p (1, aM) = p (aM , 1) −

p (aM , aM) ≤ 0, this is possible only if both inequalities in (A-1) hold with equal-

ity. For any given penalty schedule and investigation policy, this can occur at at

most a single realization of λ.

Proof of Lemma 1: We will show that at least one of (ICM-1) and (IC1-M) holds

— the other two claims follow by parallel arguments. Suppose that (ICM-1) does

not hold, i.e.,

λ (1 − aM) > s1p (1, aM ) − sMp (aM , aM) .

To show that (IC1-M) holds it suffices to show

s1p (1, aM) − sMp (aM , aM) ≥ s1p (1, 1) − sMp (aM , 1) ,
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or equivalently,

s1 (p (1, aM) − p (1, 1)) ≥ sM (p (aM , aM) − p (aM , 1)) . (A-2)

The result then follows from s1 ≥ sM and, by (1) and monotonicity, p (1, aM ) −

p (1, 1) = p (aM , aM) − p (aM , 1) ≥ 0.

Proof of Lemma 2: Suppose that contrary to the claimed result no pure-strategy

symmetric equilibrium exists. Since a = 0 is not an equilibrium, at least one of

(IC0-M) and (IC0-1) must fail to hold.

First, suppose that (IC0-M) fails to hold. From Lemma 1, (ICM-0) holds, and

so (ICM-1) fails to hold (else a = aM is an equilibrium); and so (IC1-M) holds, and

(IC1-0) fails to hold (else a = 1 is an equilibrium). So

−s0p (0, 1) > λ − s1p (1, 1) ≥ λ − s1p (1, aM)

> λaM − sMp (aM , aM) ≥ λaM − sMp (aM , 0) > −s0p (0, 0) ,

a contradiction. (The strict inequalities follow from the failure of (IC1-0), (ICM-1)

and (IC0-M) respectively; the weak inequalities and contradiction follow from the

fact that p is decreasing in its second argument.)

Second, suppose that (IC0-1) fails to hold. Then (IC1-0) holds, and so (IC1-M)

must fail to hold (else a = 1 is an equilibrium). This in turn implies that (ICM-1)

holds, and (ICM-0) fails to hold (else a = aM is an equilibrium). So

−s0p (0, aM) > λaM − sMp (aM , aM) ≥ λ − s1p (1, aM ) ≥ λ − s1p (1, 0) > −s0p (0, 0) ,

a contradiction. (The inequalities follow from the failure of (ICM-0), (ICM-1), p

decreasing in its second argument, and the failure of (IC0-1).)

Proof of Lemma 3: The statement about the choice of penalties is established in

the main text. For the statement regarding the investigation policy, it suffices to

show that if any other investigation policy is used then shifting to the “investigate
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the agent with the higher signal” policy strictly increases p (aM , 0) and p (1, 0), and

strictly decreases p (0, aM) and p (0, 1). The proof is as follows. For an arbitrary

investigation policy µ and action a > 0,

p (a, 0) =

∫ ∫

µ

(

a +
εi

h
,
εj

h

)

f
(

εi
)

f
(

εj
)

dεidεj.

Changing variables,

p (a, 0) =

∫ ∫

µ

(

εi

h
,
εj

h

)

f (εi − ah)

f (εi)
f
(

εi
)

f
(

εj
)

dεidεj.

Anonymity of µ implies that

p (a, 0) = 1 − p (0, a) =

∫ ∫
(

1 − µ

(

εi

h
, a +

εj

h

))

f
(

εi
)

f
(

εj
)

dεidεj

= 1 −

∫ ∫

µ

(

εi

h
,
εj

h

)

f (εj − ah)

f (εj)
f
(

εi
)

f
(

εj
)

dεidεj.

Thus

p (a, 0) =
1

2
+

1

2

∫ ∫

µ

(

εi

h
,
εj

h

)(

f (εi − ah)

f (εi)
−

f (εj − ah)

f (εj)

)

f
(

εi
)

f
(

εj
)

dεidεj.

Log-concavity of f implies that
f(εi

−ah)
f(εi)

≥
f(εj

−ah)
f(εj)

if and only if εj ≤ εi. As such,

the investigation policy µ that maximizes p (a, 0) sets µ (xi, xj) = 1 whenever xi > xj

and µ (xi, xj) = 0 whenever xi < xj — that is, the “investigate the agent with the

higher signal” policy.

Proof of Lemma 4: Part (I) follows from rewriting (1) in terms of q, which gives

q (a) + q (−a) = 1 = q (0) + q (0) for any a ∈ [0, 1]. For Part (II), we use the explicit

expression for the function q:

q (a) =

∫

Pr

(

a +
εi

h
≥

εj

h

)

f
(

εj
)

dεj =

∫

(1 − F (ε − ha)) f (ε) dε.
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Clearly q (a) is increasing (decreasing) in precision h when a is positive (negative).

For Part (III), we first evaluate the derivatives of q:

q′ (a) = h

∫

f (ε − ha)f (ε) dε > 0

q′′ (a) = −h2

∫

f ′ (ε − ha) f (ε) dε.

Integration by parts implies

q′′ (a) = h2

∫

f (ε − ha) f ′ (ε) dε.

Since f is log-concave, f ′/f is decreasing. As such, f ′ (ε − ha) /f (ε − ha) > f ′ (ε) /f (ε)

for any a > 0, which in turn implies
∫

f (ε − ha) f ′ (ε) dε <

∫

f ′ (ε − ha) f (ε) dε = −q′′ (a) .

Thus we have established that q′′ (a) < −q′′ (a), and so q (a) must be concave over

positive values of a. The symmetry property of Part (I) implies that q is likewise

convex over negative values.

Proof of Proposition 3: The statement regarding (4) is established in the main

text prior. Here, we formally establish the statement relating to signal precision.

Condition (4) is equivalent to

Q (aM) ≡ (1 − aM) q (aM) q (1) + aMq (0) q (1) − q (aM) q (1 − aM) > 0.

Evaluating the derivatives of Q gives

Q′ (aM) = q (0) q (1) + q (aM) (q′ (1 − aM) − q (1)) + q′ (aM) ((1 − aM) q (1) − q (1 − aM))

Q′′ (aM) = 2q′ (aM) (q′ (1 − aM ) − q (1))

+q′′ (aM) ((1 − aM) q (1) − q (1 − aM )) − q (aM) q′′ (1 − aM) .

Observe that Q (0) = Q (1) = 0. As such, it suffices to show that Q′′ (aM) < 0 for

all aM when precision h is low. To do so, we show that Q′′(aM )
q′(aM )

→ −2q (1) as h → 0.
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We make use of the expressions for q′ and q′′ derived in Lemma 4. First,

q′′ (a)

q′ (a)
= −h

∫

f ′ (ε − ha) f (ε) dε
∫

f (ε − ha) f (ε) dε
→ 0 as h → 0,

since at h = 0,
∫

f (ε − ha) f (ε) dε > 0 while
∫

f ′ (ε − ha) f (ε) dε = 0.23 Second,

q′′ (1 − aM)

q′ (aM)
=

q′ (1 − aM)

q′ (aM)

q′′ (1 − aM)

q′ (1 − aM)
→ 1 × 0 = 0 as h → 0

Finally, q′ (1 − aM) → 0 as h → 0.

Proof of Proposition 4: As a preliminary, observe that (IC1-0) holds whenever

both (IC1-M) and (ICM-0) do. To see this, suppose to the contrary that for some

penalty sM and taste parameter λ (IC1-M) and (ICM-0) both hold but (IC1-0) fails.

On the one hand, by straightforward algebra (ICM-0) can hold while (IC1-0) fails only

if sM < SaM . On the other hand, and again by straightforward algebra, (IC1-M) can

hold while (IC1-0) fails only if sM > SaM q(0)
q(aM−1)

. Since SaM q(0)
q(aM−1)

> SaM this delivers the

required contradiction.

The Proposition’s statement regarding severe crime is immediate. The statement

regarding moderate crime is immediate given that (ICM-1) holds whenever (IC1-M)

fails (see Lemma 1). For the remaining case, suppose that neither (IC1-0) and (IC1-

M) both hold, nor that (IC1-M) fails but (ICM-0) holds. There are two remaining

possibilities. If (IC1-M) and (ICM-0) both fail, the only remaining equilibrium can-

didate is no crime. Alternatively, if (IC1-M) holds then (IC1-0) must fail. The

preliminary above then implies that (ICM-0) fails. Again, the only remaining equi-

librium candidate is no crime.

Proof of Proposition 5: Differentiating the social welfare SW with respect to sM

gives:

∂SW

∂sM
= − (λMaM −CM )

q (0)

aM
g (λM) − (C1 − CM − λ1 (1 − aM))

q (aM − 1)

1 − aM
g (λ1) ,

23Observe that
∫

f ′ (ε) f (ε) dε =
[

1
2
f (ε)2

]

∞

−∞

= 0.
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where λM = sM q(0)
aM

and λ1 = Sq(0)−sM q(aM−1)
1−aM

. Substituting in,

∂SW

∂sM
= (CM − sMq (0))

q (0)

aM
g (λM)−(C1 −CM − Sq (0) + sMq (aM − 1))

q (aM − 1)

1 − aM
g (λ1) .

Since the derivative is increasing in CM and decreasing in C1, the result follows.

Proof of Proposition 6: From the proof of Proposition 5, the derivative ∂SW/∂sM

is decreasing in q (aM − 1), which implies the result.

Proof of Proposition 7: First, observe (by straightforward algebra) that whenever

sM lies below SaM qN (1−aM )
(1−aM )qN (aM)+aM qN(0)

, condition (ICM-1) holds whenever (IC0-M) does.

Second, for any x > 0 and any N , qN (x) → 1 as signal precision h → ∞.

Consequently, since aM = 1/2 the penalty level

SaMqN (1 − aM)

(1 − aM) qN (aM) + aMqN (0)
→

S

1 + 1
N

as signal precision h → ∞.

As such, whenever precision is high enough the penalty sM does indeed lie below

SaM qN(1−aM)
(1−aM)qN (aM )+aM qN (0)

.

Third, observe that for a penalty sM below SaM qN(1−aM)
(1−aM)qN(aM )+aM qN (0)

, severe crime is

the equilibrium outcome whenever (ICM-1) fails: in this case, (IC0-M) also fails, and

hence the only equilibrium is severe crime.

Fourth, we claim that whenever precision h is high enough, a reduction in N (i.e.,

an increase in enforcement resources) leads (ICM-1) to fail for a larger set of taste

realizations. We must show that, for all h sufficiently large,

SqN (1 − aM) − sMqN (0) > SqN−1 (1 − aM) − sMqN−1 (0) .

Rearranging, and substituting in qN (0) = 1/N ,

sM

N (N − 1)
> S (qN−1 (1 − aM) − qN (1 − aM)) .

The righthand side converges to 0 as signal precision h → ∞, while the lefthand side

is clearly independent of h.

Together, these four observations establish the result.
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