NORTHWESTERN UNIVERSITY KELLOGG GRADUATE SCHOOL OF MANAGEMENT

Professor Kathleen Hagerty Finance 465 Fall 2006

Practice Problems

1. Do problems 13.1, 13.3, 13.9, 13.12

2. A stock is priced at \$30/share. The interest rate is 7%/year. A three-month European call option with a strike price of \$35 has a Black-Scholes price of \$.28

a. What is the value of a European put with the same underlying asset, same strike price and same time to expiration?

b. The delta of the call is .1515. How would you make a synthetic call (i.e., how many shares and how many dollars in T-bills)?

c. What is the delta of an otherwise identical put? How would you make a synthetic put?

d. If a trader sold 100 calls, what share position would he/she need to take to be delta neutral?

e. Suppose the gamma of the call is .0625. If the stock price increases by \$1, how does the delta change? If the stock price increases by \$3, does the hedged position make money or lose money?

3. A stock is priced at \$48/share. The volatility is 36%/year and the interest rate is 7%/year. Consider the following information on one-year options with a strike price of \$45.

	Call	Put
Price	\$9.88	\$3.84
Delta	.71	29
Gamma	.0198	.0198
Theta*	013	0047
Vega*	.1643	.1643
Rho [*]	.2420	1775

* The theta is the change in option price per day. The rho is the change in the option price per 1% change in the interest rate (i.e., if the interest rate changes from 7% to 8% the call price will change by (\$.2520 *1) = \$.2520). The vega is the change in the option per 1% change in the volatility (i.e., if the volatility increases from 36% to 37%, the price of the call would increase by .1643*1 = .1643)

a. Suppose a trader sold 50 calls. Assuming the stock price remained unchanged for one week, estimate the dollar profit on the position.

b. Suppose a trader buys 50 put options. Estimate the change in the value of the position if the volatility increased from 36% to 40%.

c. What is the elasticity of the call?

d. If the beta of the stock is 1.30, what is the beta of the call?

4. A stock is priced at \$20/share. The volatility is 30%/year and the interest rate is 7%/year. Consider the following information on three month at-the-money options.

	Call	Put
Price	\$1.37	\$1.02
Delta	.576	424
Gamma	.1306	.1306
Theta	0084	0046
Vega	.0392	.0392
Rho	.0254	0237

A trader wants to establish a position which will make money if the volatility increases.

a. Using the call and put given above, establish a position which is delta neutral and has a vega equal to .0404. What is the gamma of this position?b. Compare this position to a straddle. In particular compute the delta and the vega of the straddle.

c. What is the gamma of a straddle?

d. If an investor buys one call and sells one put, what is the delta?

NORTHWESTERN UNIVERSITY KELLOGG GRADUATE SCHOOL OF MANAGEMENT

Professor Kathleen Hagerty Finance 465 Fall 2006

Answers to Practice Problems

13.1

The delta of one long call at S=40 is .2815. Therefore the delta of short 100 calls is (-100)(.28)=-28. To hedge this position you should go long 28 shares.

	S=40 T=91/365	S=39 T=90/360	S=40.50 T=90/360	
Delta	0.2815	0.225513	0.30841	
Call	0.9710*100= 97.10	0.7054*(-100) =- 70.54	1.1046*(-100)=- 110.46	
Stock	-28*(40)= -1120	28*39= 1092	28*40.50=1134	
Initial Investment	-1022.90			
Fv of Initial		1022.90*(e ^{.08*1/365})	1022.90*(e.08*1/365)	
Investment		=1023.04	=1023.04	
Profit		-1.58	.50	

13.3

In a bull spread you buy a call at 40 and sell an otherwise identical call at 45. The delta of the position is .5824(1)+.2815(-1)=.301

	S=40 T=91/365	S=39 T=90/360	S=40.50 T=90/360	
Delta of 40 Call	0.5824	0.514737	0.614203	
Delta of 45 Call	0.2815	0.225513	0.30841	
Buy 40 Call	-2.780398	2.214415	3.062096	
Sell 45 Call	0.9710	0.7054*(-1) =.7054	1.1046*(-1)=1.1046	
Stock Position	.301*(40)= 12.036	.301*39= -11.74	.301*40.50=12.19	
Initial Investment	10.2266			
FV of Initial		10.2266e*(e.08*1/36	10.2266e*(e.08*1/36	
Investment		5) = 10.22884	5) = 10.22884	
Profit		0022	0038	

				Call+Delta+
	Actual Call		Call+Delta+G	Gamma+T
	Value	Call+Delta	amma	heta
30	0.0730	-3.0436	0.2142	0.1968
31	0.1267	-2.4612	0.1776	0.1602
32	0.2083	-1.8788	0.2062	0.1888
33	0.3263	-1.2964	0.2999	0.2825
34	0.4893	-0.7140	0.4588	0.4414
35	0.7055	-0.1316	0.6828	0.6655
36	0.9819	0.4508	0.9720	0.9547
37	1.3238	1.0332	1.3264	1.3090
38	1.7343	1.6156	1.7459	1.7286
39	2.2144	2.1980	2.2306	2.2132
40	2.7630	2.7804	2.7804	2.7631
41	3.3770	3.3628	3.3954	3.3780
42	4.0519	3.9452	4.0755	4.0582
43	4.7820	4.5276	4.8208	4.8035
44	5.5610	5.1100	5.6313	5.6139
45	6.3827	5.6924	6.5069	6.4895
46	7.2405	6.2748	7.4476	7.4303
47	8.1286	6.8572	8.4536	8.4362
48	9.0416	7.4396	9.5246	9.5073
49	9.9746	8.0220	10.6609	10.6435
50	10.9237	8.6044	11.8623	11.8449

				Delta-	
				Gamma	Delta-Gamma-
Stock			Delta	Approxim	Theta
Price		Long Put	Approximation	ation	Approximation
3	30	8.372107	6.593787212	8.117839	8.106128815
3	32	7.031004	5.916864898	6.892258	6.880547951
3	34	5.847552	5.239942583	5.788601	5.776891209
3	36	4.819803	4.563020269	4.806869	4.795158589
3	88	3.940235	3.886097955	3.94706	3.935350092
4	10	3.197364	3.20917564	3.209176	3.197465717
4	12	2.577325	2.532253326	2.593215	2.581505463
4	4	2.065225	1.855331012	2.099179	2.087469332
4	16	1.646194	1.178408698	1.727067	1.715357323
4	18	1.306121	0.501486383	1.476879	1.465169437
5	50	1.032107	-0.175435931	1.348616	1.336905672
5	52	0.812707	-0.852358245	1.342276	1.33056603
5	54	0.637999	-1.529280559	1.45786	1.446150509
5	56	0.499541	-2.206202874	1.695369	1.683659111
5	58	0.390263	-2.883125188	2.054802	2.043091835
6	60	0.304322	-3.560047502	2.536159	2.524448681
6	62	0.236939	-4.236969816	3.13944	3.127729649
6	64	0.184244	-4.913892131	3.864645	3.852934739

13.12

- a. Using put-call parity the value of the put is P = C - S + Ke-rT = \$.28 - 30 + 35 e-.07*.25 = \$4.67
 b. You would buy .1515 shares and borrow)S - C = (.1515)*(30)-.28 = \$4.265
 c. The delta of a put is)_{call} -1 = .1515 - 1 =-.8485. To make a synthetic put, you would short .8485 shares and lend .8485*30 + 4.67 = 30.125.
 d. The delta of the position is .1515*100 = 15.15, so you buy 15.15 shares
 e. The delta is approximately .1515 + .0625 = .2140. Since the gamma is positive, the position makes money.
- a. The initial revenue from the position is 50*\$9.88 = \$494. The theta is -.0127 so in one week the change in the value of the position is -.0127*7 = -.0894. So the call can be repurchased for \$9.88 .0894 = \$9.79/call. So the profit on the position is 50*(.0894) = \$4.47.
 b. If the volatility increases by .04, vega tells us that the value of the option will increase by 4*.1643 = .6572. So the change in the value of the position is 50*.6572 = \$32.86.
 c. The elasticity is equal to)*S/C = .071*48/9.88 = .345
 d. The beta of the call is Σ*∃ = 3.45*1.30 = 4.485
 - $\mathbf{u} \cdot \mathbf{h} \mathbf{e} \quad \mathbf{b} \mathbf{c} \mathbf{u} \quad \mathbf{b} \mathbf{c} \mathbf{u} \mathbf{h} \mathbf{c} \mathbf{c} \mathbf{u} \mathbf{h} \mathbf{b} \mathbf{z} = \mathbf{5} \cdot \mathbf{5} \cdot \mathbf{1} \cdot \mathbf{5} \mathbf{0} + \mathbf{5} \cdot \mathbf{5}$

4. a. To find the right combinations of calls and puts you have to solve two equations with two unknowns. Let n_c be the number of calls and let n_p be the number of puts.

Solving we get:

 $n_c = .437$ $n_p = .5936$

The gamma of the position is $.437^*.1306 + .5936^*.1306 = .1346$

b. A straddleconsists of long one call and long one put. The delta of a straddle is $v_c + v_p = .576 - .424 = .1520$. The vega of a straddle is $v_c + v_p = 2*.0392 = .0784$

- c. The gamma is equal to 2 * .1306 = .2612
- d. The delta is .576 + .424 = 1