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Abstract

We study the joint determination of wages, effort, and training in “apprenticeships” where novices must 
work in order to learn. We introduce the idea of learning-by-doing as an inequality constraint, which allows 
masters to strategically slow training down. Every Pareto-efficient contract has an initial phase where the 
novice learns as fast as technologically feasible, followed by a phase where their master constrains how 
fast they learn. This latter phase mitigates the novice’s commitment problem, and thus lets the novice 
consume more than they produce early on in the relationship. Our model has novel implications for optimal 
regulation.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Careers in a wide range of industries, such as medicine, academia, professional services, 
culinary arts, investment banking, and the traditional trades, frequently begin with a lengthy 
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“apprenticeship” stage where novices gain knowledge from their masters while working hard 
and receiving relatively low wages. We propose that these apprenticeships are shaped by cog-
nitive constraints that bound the speed at which novices can learn, combined with the novices’ 
desire to smooth their consumption, their initial lack of money, and their inability to commit not 
to leave once they are trained.

In our model, a principal offers an agent an apprenticeship consisting of time paths of knowl-
edge transfer, wages, and effort, subject to the constraint that the agent can walk away at any 
time, and subject to a learning constraint that bounds how quickly they can learn. Previous work 
on learning-by-doing has followed Arrow (1962) in modeling the learning constraint as an equal-
ity: workers or firms learn as quickly as their effort or production level allows. In contrast, we 
model it as an inequality constraint, to allow the masters to hold back knowledge even when their 
novices are working hard.1

To gain better insight into the forces that shape the apprenticeship, our analysis solves for the 
whole family of incentive-compatible, Pareto-optimal contracts given the agent’s initial knowl-
edge. This also facilitates comparative statics based on the agent’s bargaining power, as measured 
by their outside option at the time the principal offers to hire them.

Every Pareto-optimal contract has two phases. In the first one, the agent learns as fast as their 
learning-by-doing constraint allows given their effort level, while earning rents in the sense that 
they are more than compensated for the economic cost of working for the principal. Then in the 
second phase, the principal only allows the agent to learn as quickly as is consistent with the 
agent being willing to remain in the apprenticeship; here the principal keeps all rents.

We show that the nature and length of these phases vary significantly with the agent’s outside 
option. When this outside option is low, phase 1 is relatively short and prescribes low wages, 
while phase 2, which is relatively long, offers an increasing wage path that converges to the 
agent’s steady state (post graduation) earnings. As the agent’s outside option improves, phase 
1 grows and prescribes a larger knowledge transfer, while phase 2 becomes shorter. Perhaps 
surprisingly, Phase 2 never disappears completely, even in the agent-optimal contract. This is 
because when the agent’s outside option is high, phase 1 pays them more than they produce, thus 
placing them in “debt.” Phase 2 then allows the principal to gradually collect on this debt, despite 
the agent’s lack of commitment power, through the promise of just enough additional training to 
prevent the agent from walking away. The agent prefers this apprenticeship over a shorter one 
with only phase 1 because it allows for better consumption smoothing.2

Throughout the apprenticeship, effort is distorted above the static first best (i.e., the first-best 
effort when there is no learning). One reason is that higher effort allows the agent to learn faster; 
this force is only relevant in the first phase. A second reason is that increased effort transfers rents 
to the principal; this force is present in both phases, but gradually vanishes as the apprenticeship 
nears its end.

Empirical motivation. Real-life training relationships, including formal apprenticeships, tend 
to be rather complex. While these relationships are, in essence, a work-for-knowledge exchange, 
they frequently consist of a bundle of interrelated practices. These include:

1 Masters may have an incentive to hold back knowledge to prolong the apprenticeship while extracting rents from 
their novices (e.g. Smith, 1776, Chapter 10). Moreover, it seems plausible that without active participation by the master, 
a novice’s ability to learn will be limited.

2 If the agent had no reason to smooth consumption, they would prefer a shorter apprenticeship in which they are 
always trained at the maximum rate.
2
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1. Distinct phases. Apprenticeships are often criticized for taking excessively long, with mas-
ters strategically slowing down training while profiting from their novices (e.g. Smith, 1776). 
Yet, a novice’s training need not be uniformly slow. Ph.D. programs, for instance, frequently 
begin with an intense pre-candidacy instruction phase where students spend nearly all their time 
learning (and receive abundant input from faculty). Then students enter a post-candidacy phase 
with more work. Here they might be assigned tasks that benefit their university but can easily 
distract them from learning, such as grading or performing menial laboratory work.3 Formal ap-
prenticeships (e.g. in skilled trades) also frequently include both classroom phases with focused, 
practical learning—for instance, in a boot camp or at an affiliated college—and phases where 
novices work as they learn (e.g. Stockman, 2019). These work phases allow novices to master 
new skills, but may also entail a degree of grunt work that slows down their training.

2. Financial support. From the standpoint of novices, one of the most attractive features of 
being an apprentice is the ability to receive income or other forms of financial support while 
they learn. Ph.D. students, for instance, may receive a stipend sufficient for living even before 
they do any work. Similarly, “German apprenticeships generally offer a living wage for two or 
three years while students learn and work alongside experienced employees” (Hackman, 2018, 
WSJ); and in the U.S., according to the Department of Labor, “From their first day of work, 
apprentices receive a paycheck” averaging $15/hour to begin.4 Early in the apprenticeship, when 
the novice’s productivity is likely to be low, such stipends and guaranteed wages are a potential 
source of losses for the master, especially if the novice is primarily devoted to learning.5

3. Growing wages. As novices gain skills their earnings typical grow. In some cases, these 
gains are pronounced. For instance, many craft apprentices in Ireland can expect their earnings 
to more than double throughout their approximately 4-year apprenticeships.6 The earnings of 
Ph.D. students might also grow over time, though less dramatically, as they take on more R.A. or 
T.A. assignments. While novices no doubt prefer that wages increase holding the starting wage 
fixed, many of them would likely prefer flatter wages with the same present value.

4. High effort. Many novices, whether in traditional apprenticeships or in the early stages 
of high-skilled careers, encounter heavy workloads with long hours (e.g. Landers et al., 1996; 
Landrigan et al., 2004; Barlevy and Neal, 2019). While hard work may accelerate learning, and 
serve as a screening device, it is also a way to extract rents from the novice.

The optimal design of apprenticeships has been the subject of much debate and, in many cases, 
heavy regulation. In countries like Germany and Switzerland, where apprenticeships have a long 
and successful history, training programs are jointly designed by companies, trade associations, 
and state and federal authorities (Wyman, 2017). In the U.S., in contrast, where apprenticeships 
have recently attracted considerable interest, the government is seeking to expand participation 
by taking a less active role and instead letting trade associations, nonprofits, schools, and labor 

3 Ph.D. programs have a shared history with other forms of apprenticeship. As noted by Adam Smith, “to have studied 
seven years under a master properly qualified was necessary...to become a master, teacher, or doctor (words anciently 
synonymous) in the liberal arts, and to have scholars or apprentices (words likewise originally synonymous) to study 
under him” (Smith, 1776, Ch. 10).

4 See www.dol .gov /apprenticeship /toolkit /toolkitfaq .htm (accessed 7/7/20).
5 Employers may also face a variety of additional costs. Overall costs for German company’s “range from $25,000 

per apprentice to more than $80,000,” and might be even higher in the U.S. “where firms will have to build programs 
from scratch, pay school tuition...and in many cases funnel money into local high schools and community colleges to 
transform them into effective training partners....the Siemens USA plant in Charlotte...reportedly spends some $170,000 
per apprentice” (Jacoby, 2014).

6 See www.apprenticeship .ie /en /apprentice /craft /Pages /ApprenticeInfo .aspx (accessed 7/8/20).
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unions set standards themselves (Morath, 2019). Yet, critics fear that this approach will leave 
novices unprotected.

This debate highlights the need for a deeper theoretical understanding of the problem. Our 
model, while stylized, helps explain why the above practices may arise, and clarify their impact 
on the well-being of novices.

Related work. Our work builds on Garicano and Rayo (2017) and Fudenberg and Rayo (2019)
(henceforth GR and FR), where players exchange work for knowledge. Our main innovation 
relative to that work is to incorporate the agent’s learning-by-doing constraint. Making the model 
more realistic in this way introduces technical challenges that did not arise in GR and FR, because 
the optimal contract has two very different regimes, one where the learning constraint binds and 
one where it does not, and the learning constraint depends on the endogenous effort level. Thus 
to characterize the optimal contract we need to pin down the endogenous interface between these 
regimes, taking into account how it depends on the agent’s effort and accumulated knowledge at 
the transition point. For this reason we cannot use a first-order approach to determine the speed 
of knowledge transfer as in FR; instead, we conjecture and verify a solution that involves the 
pasting of the two regimes. We also generalize the form of the agent’s outside option: Instead of 
it being to use the same technology as with the principal, we allow for it to depend in a fairly 
general way on the agent’s stock of knowledge when they leave.

From an applied perspective, the most important difference relative to GR and FR is that they 
predict a single apprenticeship phase with wages lower than output, and suggest that the appren-
ticeship will become vanishingly short as competition between masters increases. In contrast, 
our model explains why the apprentice can go through a phase where wages exceed output, and 
predicts that the apprenticeship will have non-zero length—and include a phase with artificially 
slow knowledge transfer—regardless of the extent of competition. In addition, the more general 
outside option in our model allows us to capture scenarios, such as the agent switching to a new 
technology, which are not possible under the more restrictive outside option in GR and FR. The 
portion of our contract where the participation constraint binds (phase 2) is similar to the con-
tracts that arise in GR and FR once the agent has received an initial knowledge gift. The main 
difference is that our phase 2 prescribes non-zero effort and wage paths, whereas GR and FR 
each focus on only one. Moreover, in our model the static first-best effort is decreasing (due to 
an income effect absent in FR), while in FR it is either constant or increasing.7

The many papers on human capital accumulation (e.g. Ben-Porath, 1967; Rosen, 1972; Weiss, 
1972) summarized and synthesized in Killingsworth (1982) all assume that the agent chooses 
the time paths of effort, wages, and learning to maximize their utility given some technologi-
cal constraints. These models cannot explain inefficiently long training periods, and imply that 
regulation of wage or effort paths can only lower welfare.8

Thomas and Worrall (1994) and Albuquerque and Hopenhayn (2004), like us, study a con-
tracting problem where the agent’s outside option and productivity increase gradually over time. 
Both the assumptions and conclusions of these papers are quite different: In these earlier papers 
payment can only be enforced when the principal is able to directly punish the agent, there is no 

7 While in most ways this paper is more general than GR and FR, it only has one kind of effort, so it cannot be used to 
explain the transition from menial to skilled work.

8 In Ben-Porath (1967) and Killingsworth (1982) the agent has unlimited ability to borrow and save, and their earnings 
equal their productivity. In our model, earnings can be both above and below that level, depending on the stage of the 
apprenticeship and the agent’s bargaining power. Moreover, except in our first-best benchmark model, the agent can save 
but not borrow.
4



D. Fudenberg, G. Georgiadis and L. Rayo Journal of Economic Theory 197 (2021) 105347
excess effort, and there is no reason for consumption smoothing, so the agent gets no “wages” 
until the steady state is reached.9 Moreover, there is no analog to our learning constraint, and 
hence the solution involves a single type of regime.

Kolb and Madsen (2020) consider the design of careers in environments where the agent 
might be a saboteur. As in our model, the agent goes through various stages while the stakes of 
the relationship gradually increase. Unlike in our model, though, these stages serve as a dynamic 
screening device meant to weed out disloyal agents.

Finally, there is a large literature where transfers of general human capital are only possible 
because of market frictions (e.g. Katz and Ziderman, 1990; Acemoglu, 1997; Acemoglu and Pis-
chke, 1998, and Malcomson et al., 2003); these papers all assume that training is instantaneous. 
There is also a large literature on effort distortions that arise when the agent’s productivity is 
unknown (e.g. Akerlof, 1976; Landers et al., 1996; Holmström, 1999; Dewatripont et al., 1999; 
Board and Meyer-ter-Vehn, 2013; Barlevy and Neal, 2019; Bonatti and Hörner, 2017, and Cister-
nas, 2018); in our model such distortions arise instead because the agent is liquidity constrained.

2. Model

Technology and physical constraints. A principal wishes to employ and train an agent (each of 
whom will be referred to as “they”). Both players are infinitely-lived and discount the future at 
rate r > 0. Time is continuous. The agent is endowed with knowledge X ≥ 0 and the principal 
is endowed with knowledge X > X. The agent cannot learn on their own, so unless they walk 
away from the relationship and find an alternative master, the only way their knowledge level can 
grow is by means of knowledge transfers from the principal. The agent’s knowledge can never 
decrease.

At time t the agent possesses knowledge Xt ≥ X and can use this knowledge whether or not 
they work for the principal. If they work for the principal, they exert flow effort at ∈ [0, a] at cost 
d(at ) and produce flow output f (Xt )+ at . If they instead leave the principal, they can obtain an 
outside option worth h(Xt) in flow terms. The agent also has access to a bank account that pays 
interest r , but is liquidity constrained: They have a zero balance at time 0 and can never hold a 
negative balance. The agent’s flow consumption level is ct , which we assume cannot fall bellow 
a minimum subsistence level c ≥ 0, and the agent’s flow utility is u(ct ) −d(at ). Variables in bold 
(such as a and c) will denote time paths.

Assumption 1. f , u, and d are twice continuously differentiable with bounded first and second 
derivatives, and satisfy:

1. f ′ (X) > 0 and f ′′ (X) < 0 for all X ≥ X.
2. u′ (c) > 0 and u′′ (c) < 0 for all c ≥ c.
3. d ′ (0) = 0 and d ′′ (a) > 0 for all a ≥ 0.

For any given knowledge level X, let a∗(X) denote the (unique) solution to
maxa∈[0,a][u(f (X) + a) − d(a)], which represents the agent’s myopically optimal effort 
level when consuming all output. Because u′′ < 0, a∗(X) is decreasing in X. We normalize 
u′ (f (X)+ a∗(X)

)= 1 and assume a∗(X) < a.

9 In our setting, one way to punish the agent would be if the principal could forbid the agent from using the production 
technology. If this were possible, the principal would never slow the agent’s training.
5
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Assumption 2. The agent’s outside option h satisfies:

1. h(X) = u(f (X) + a∗(X)) − d(a∗(X)).
2. h is strictly increasing and has bounded first and second derivatives.

Part 1 of this assumption says that, once fully trained, the agent is equally productive with or 
without the principal.10 Before the agent is fully trained, other than being strictly increasing and 
having well-behaved derivatives, the outside option can take any value. This allows the outside 
option to capture a variety of different scenarios, such as the agent using the same technology 
elsewhere but gaining no further knowledge, switching to another master, or using what they 
have already learned in a related industry where knowledge has some value.

The speed zt := Ẋt at which the principal can train the agent at time t is bounded by the 
learning constraint

zt ≤ L(Xt , at ) , (1)

as well as the constraints 0 ≤ zt and Xt ≤ X.11 Other than these constraints, the principal can 
select any training rate they desire. Note that here we frame learning by doing as an inequality 
constraint as opposed to the equality used in Arrow (1962) and subsequent work. This is be-
cause we assume that even when the agent works they will not learn without guidance from the 
principal, who may have a strategic reason to slow the agent’s learning.12

Assumption 3. L(X, a) is additively separable, strictly positive, weakly increasing and weakly 
concave in each argument, and twice differentiable with bounded first and second derivatives.

This assumption implies that the agent can be fully trained in finite time. We use additive 
separability to give a simple sufficient condition for the uniqueness of the optimal contract.13

Assumption 4. For all X ∈ [X, X] and all a ∈ [0, a],
L(X,a)h′ (X)/r︸ ︷︷ ︸

value of maximum knowledge gain

> h(X) − [u (c)− d(a)]︸ ︷︷ ︸
economic cost

.

The left-hand side of the inequality is the agent’s instantaneous gain from being trained at 
the maximum rate, and the right-hand side is the opportunity cost of working for the principal 
when earning the minimum subsistence wage. Assumption 4 therefore says that if over a small 
period of time the principal teaches the agent as much as they can possibly absorb, while paying 
them only the minimum subsistence wage, then the agent earns rents. This assumption greatly 
simplifies the structure of the optimal contract.

Apprenticeship contracts. The principal employs (and trains) the agent between time 0 and 
a terminal time T ≤ T , where T is an exogenous upper bound of say 200 years.14 At the 

10 In Section 5 (footnote 30) we remark on the case where the fully-trained agent is more productive elsewhere.
11 The learning constraint could reflect a bound on the agent’s learning ability, the principal’s teaching ability, or both.
12 As far as we are aware in all past work on learning by doing there is no reason for learning to take place inefficiently 
slowly, so it is assumed that learning takes place as quickly as possible given other variables.
13 Alternate sufficient conditions involve restrictions on the third partials of L.
14 Provided T is sufficiently large the constraint T ≤ T will hold with strict inequality.
6
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start of the relationship, the principal commits to a contract C := 〈
T , (zt ,wt , at )

T
t=0

〉
, which 

consists of a terminal time T and time paths of knowledge transfers zt , wages wt , and effort 
at .

We assume that throughout the duration of the contract the principal controls the agent’s 
savings, so consumption ct equals wages wt . We adopt the convention that T is the earliest 
time t such that Xt = XT ; that is, the agent “graduates” as soon as the knowledge transfer has 
ended. From time T onward the agent enjoys flow payoff h(XT ). If the agent happens to be fully 
trained by the time of graduation (XT = X) they continue using the same technology as with the 
principal, but now they keep all of their output.

The principal’s and agent’s continuation payoffs from any time t onward, provided the agent 
remains with the principal until time T , are given by:

�t =
T∫

t

e−r(τ−t)[f (Xτ ) + aτ − wτ ]dτ,

Vt =
T∫

t

e−r(τ−t)[u(wτ ) − d(aτ )]dτ + e−r(T −t)h(XT )/r.

Let vt := rVt denote the agent’s continuation value measured in flow terms.
The agent can walk away from the principal at any time before T and receive h(Xt)/r , and can 

also reject the principal’s contract altogether and obtain utility v/r from an alternative occupation 
(one can interpret v/r as a measure of the agent’s bargaining power). Consequently, the principal 
is bound by the participation constraints

vt ≥h(Xt) for all t ≤ T , (2)

v0 ≥v. (3)

We call the first constraint the ongoing participation constraint and the second one the initial 
participation constraint. Notice that absent the learning constraint, the principal would wish to 
set knowledge at each time to the level where the ongoing participation constraint binds, as this 
would maximize the agent’s productivity.

3. Benchmark: the agent first-best

Here we consider a simple benchmark scenario where two of the central frictions are removed. 
First, we allow the agent to learn on their own, without any assistance from the principal, subject 
only to the learning constraint (1). Second, we allow the agent to commit to any output and 
wage paths they desire, which means the agent can use the bank to borrow and save. We call this 
benchmark the (agent) first-best.15

Formally, we solve

max
z,w,a

∞∫
0

e−rt [u (wt ) − d (at )]dt (I)

15 The resulting first-best contract is also profit maximizing if the agent has commitment power and their initial outside 
option is so large that the best the principal could do is earn zero profits.
7
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s.t. (1)

zt ≥ 0, X0 = X, Xt ≤ X

at ∈ [0, a]
∞∫

0

e−rtwtdt ≤
∞∫

0

e−rt [f (Xt ) + at ]dt. (4)

The objective here is the agent’s payoff, and both the ongoing and initial participation constraints 
(2) and (3) are omitted. Constraint (4) indicates that the present value of wages cannot exceed 
the present value of output, as required by the agent’s bank.16

Theorem 1. The first-best contract is unique. In this contract, at every t ∈ [0, T ), the learning 
constraint binds, the agent earns a constant wage w∗∗, and there is a non-negative function D̃t

such that their effort path satisfies

d ′ (at ) = min
{
d ′ (a) , u′ (w∗∗) (1 + D̃t

)}
. (5)

At time T the agent graduates with knowledge X, and from that time onward consumes w∗∗
and exerts the constant effort a∗∗ given by

d ′ (a∗∗)= min
{
d ′ (a) , u′ (w∗∗)} . (6)

Proof. See the Online Appendix. �
The first thing to note is that the agent uses their commitment power to fully smooth their 

consumption across time. Moreover, because faster learning leads to higher output and greater 
consumption (by relaxing the financial constraint (4)), the agent raises their knowledge as quickly 
as the learning constraint allows, until fully trained.

What remains is to characterize the optimal effort path. If effort did not impact learning, 
the agent’s ideal effort would equate the marginal cost of effort with the marginal utility of 
consumption. When the agent is still learning, they distort effort upward in proportion to the 
term D̃t in equation (5). This term is given by

D̃t = La (Xt , at )

T∫
t

e−r(s−t)f ′ (Xs) e
∫ s
t LX(Xτ ,aτ )dτ ds. (7)

In this equation, La captures the fact that greater effort leads to faster learning. The integral 
captures the fact that faster learning today raises output tomorrow, which happens both directly 
(per the term f ′(Xs)) and also via the compounding impact of knowledge on future learning (per 
the second exponential inside the integral).17

As we shall see next, once we reintroduce the original frictions, the optimal contract will 
preserve some but not all of these features.

16 We have also omitted the constraint wt ≥ c as we shall assume that the agent is sufficiently productive as to secure at 
least this level of consumption.
17 After time T the agent is done learning and faces a static problem, so the effort equation simplifies to (6).
8
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4. Main result

Here we return to the optimal contracting problem where all constraints are present. As we 
show in Theorem 2, the agent’s lack of commitment will cause a variety or distortions relative to 
the first best. These distortions, moreover, will be magnified by the principal’s desire to extract 
rents.

The principal’s problem is:

max
C

T∫
0

e−rt [f (Xt ) + at − wt ]dt (II)

s.t. (1), (2), (3)

zt ≥ 0, X0 = X, Xt ≤ X

at ∈ [0, a], wt ≥ c, T ≤ T .

Note that varying the agent’s outside payoff v traces the Pareto-efficient implementable payoffs 
via the initial participation constraint (3) (i.e. v0 ≥ v).18

We solve this model under two further assumptions. The first is that when the agent learns as 
fast as the learning constraint allows given their effort, the present value of output they produce 
is less than the present value of the output they would have produced in the same period of time 
had they been working with knowledge X and exerting effort a∗(X).

Assumption 5. For every time path of effort a,

T∫
0

e−rt [f (X̂t (a)) + at ]dt <

T∫
0

e−rt [f (X)+ a∗(X)]dt,

where X̂t (a) is the knowledge path when the agent learns at rate L (Xt , at ) and exerts effort a
until fully trained.

This assumption is met if knowledge is sufficiently valuable relative to effort, in the sense that 
high effort cannot make up for low knowledge.19

Our next assumption imposes some parametric restrictions.

Assumption 6. The parameters of the model are such that:

1. v > h 
(
X
)
.

2. There is a feasible contract with positive training (i.e., XT > X) where the principal makes 
a non-negative profit.

3. When the principal is indifferent they choose to train the agent.

18 A key challenge from a technical standpoint is that this problem is linear in zt , so the optimal trajectory of zt cannot 
be determined using a first-order approach. Instead, we must conjecture a solution and verify that it is optimal.
19 This assumption implies, in particular, that any arrangement where the agent earns steady-state wages f (X) +a∗(X)

from the beginning would cause the principal losses.
9
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Part 1 of this assumption says that the agent’s initial knowledge is sufficiently low that without 
training they would be more productive in their alternative occupation.20 Part 2 holds whenever 
v and c are sufficiently small.

We now introduce some notation. Given a fixed time path of knowledge, let

mt := f ′(Xt )

h′ (Xt ) /r
and St := −1 +

T∫
t

msds.

The ratio mt measures the marginal impact of knowledge on output relative to its impact on the 
agent’s outside option. The term St represents the slope of the Pareto frontier in a world with 
no learning constraints, where the agent’s ongoing participation constraint always binds and the 
agent is fully trained by time T . We call this the unconstrained Pareto frontier.

To understand why the unconstrained Pareto frontier has slope St , suppose that at time t the 
principal commits to giving the agent er(T −t) utils at time T when the agent’s training is complete 
(which is worth 1 util from the standpoint of t). Because at T the agent’s marginal utility is 1, 
this costs the principal er(T −t) (or 1 from the standpoint of t), but also increases the agent’s 
continuation payoff by er(s−t) utils at all times s < T . These higher continuation payoffs allow 
the principal to transfer additional knowledge, and in particular raise the agent’s productivity by 
er(s−t)ms at each s < T , so from the standpoint of t the principal recoups 

∫ T

t
msds.21 Notice 

that as we move backward in time, St falls in absolute terms (the frontier becomes flatter). This 
is because the greater the remaining time in the apprenticeship, the larger the output loss from 
the agent’s low knowledge level and lack of liquidity.22

Theorem 2 shows that the optimal contract consists of two phases, regardless of the agent’s 
initial outside option v. The first phase resembles the first-best contract in that the agent is trained 
as fast as the learning constraint allows, exerts high effort, and earns flat but less than first-best 
wages. This phase ends before the agent is fully trained. In the second phase, the agent is only 
trained quickly enough to meet their ongoing participation constraint, effort remains distorted 
above the static first best, wages grow, and the principal keeps all rents for themself. The agent 
graduates at the completion of this phase.

Theorem 2. The unique profit-maximizing contract consists of two learning phases, separated 
by a time θ ∈ (0, T ):

1. Phase 1 (“technologically-restricted learning”). In this phase the learning constraint binds. 
Moreover, the agent receives the constant wage w1 given by

u′ (w1
)

= min
{
u′ (c) , 1/|Sθ |

}
,

and is assigned the effort path

d ′ (at ) = min
{
d ′ (a) , (1 + Dt) /|Sθ |

}
,

20 This assumption guarantees that the learning constraint binds for some interval of time.
21 The interest rate does not impact St because agent and principal discount payoffs at the same rate.
22 In the absence of learning constraints, the profit-maximizing contract begins where St = 0. In the special case where 
the agent’s outside option consists of working with the same output technology but gaining no further knowledge and 
utility is linear, we have mt = 1/r and St = −1 + r(T − t), so the profit-maximizing contract absent learning constraints 
lasts 1/r years, as noted in FR.
10
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Fig. 1. Pareto frontiers and evolution of payoffs.

where Dθ = 0 and Dt ≥ 0 for all t < θ .23

2. Phase 2 (“principal-restricted learning”). In this phase the learning constraint is slack. 
Moreover, the agent earns zero rents, is offered the non-decreasing wage path

u′ (wt ) = min
{
u′ (c) , 1/|St |

}
,

and is assigned the non-increasing effort path

d ′ (at ) = min
{
d ′ (a) , 1/|St |

}
.

At time T the agent graduates with knowledge X, and from that time onward exerts first-best 
effort a∗ (X) and consumes the corresponding output.

As the agent’s initial outside option grows, phase 1 becomes weakly longer and phase 2 weakly 
shorter, each of them strictly whenever the agent’s initial participation constraint binds. Phase 
2, however, never disappears.

Proof. See Appendix A. �
Fig. 1 helps explain this result. It depicts two different Pareto frontiers. The higher one is the 

unconstrained frontier defined above, where the agent’s ongoing participation constraint binds. 
The lower frontier, which we call the constrained Pareto frontier, is relevant when the learning 
constraint is present. It lies below the unconstrained frontier because at time 0 knowledge cannot 
be instantly raised to the point where the agent’s ongoing participation constraint binds.24

The contract begins at a point along the constrained frontier—either at the peak of the frontier 
if v/r is to the left of this peak, or at the point where the agent receives exactly v/r otherwise. (In 
the figure, points a, b, and c indicate three possible starting points.) Because the unconstrained 
frontier lies above the constrained one, the principal wishes to reach this higher frontier with as 

23 Specifically, Dt = La (Xt , at )
∫ θ
t f ′ (Xs) e

∫ s
t [LX(Xτ ,aτ )−r]dτ ds. This expression differs from (7) only in that the 

first integral is taken from t to θ instead of from t to T , since the learning constraint (1) becomes slack after θ .
24 Recall that v > h(X) and the initial participation constraint requires that v0 ≥ v. The fact that knowledge cannot be 
instantly raised therefore implies that X0 = X and v0 > h(X0).
11
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little delay as possible, and hence trains the agent as fast as they can learn. Along the way the 
principal allows the agent to earn rents because the principal’s priority is to boost the agent’s 
productivity. Once the higher frontier is reached, which occurs at time θ , the contract enters the 
next phase where the principal extracts all additional rents. As this phase moves forward, the 
players’ continuation payoffs gradually move along the unconstrained frontier until the agent’s 
training is complete. Further properties of the contract are as follows:

Wages. Wages are constant during phase 1 because the slack participation constraint allows for 
full consumption smoothing. For reasons that will soon be clear, this wage is higher the steeper 
the slope of the relaxed frontier at the moment of transition between the two phases. During 
phase 2, the principal offers an increasing wage path (i.e. backloads wages) in order to relax the 
binding participation constraint. In this second phase, |St | represents the time-t shadow cost of 
paying the agent with knowledge (i.e. the loss in profits from raising the agent’s outside option); 
modulo the exogenous lower bound on wages, the optimal contract equates the marginal utility 
of wages to the inverse of this shadow cost, so that paying the agent with wages is equally costly 
in the margin as paying them with knowledge.

Effort. At all times before T , the contract prescribes effort strictly above the myopic optimum 
a∗(Xt ), which decreases over time. In phase 1 the effort distortion serves both to relax the learn-
ing constraint (with a greater Dt leading to a larger distortion) and to extract rents from the agent 
(with a smaller |Sθ | leading to a greater distortion). During this phase, effort need not be mono-
tone.25 During phase 2, in contrast, rent extraction is the single motive for the distortion. Because 
the principal pays for effort with knowledge, and the shadow cost of knowledge |St | grows as 
regime 2 evolves, the distortion becomes smaller over time, until finally disappearing at time T ; 
effort therefore decreases over time, strictly so whenever the effort upper bound is slack.

Transition between regimes. The path traced by the players’ continuation payoffs must con-
nect the two frontiers at points of equal slope. This condition, which determines the time θ that 
separates the two phases, is a form of smooth pasting that guarantees that wages and effort do 
not jump when the apprenticeship switches from one regime to the other. To see why the two 
slopes must be equal, notice that the participation constraint is slack during the first phase, so 
the principal can give the agent an extra dV utils in continuation value at the start of the next 
phase (e.g. by means of a slightly faster knowledge transfer shortly after θ ) without altering any 
of phase 1’s characteristics. As a result, the trade-off between profits and agent utility is the same 
at the start of phase 1 (or indeed at any time during that phase) as it is at the start of phase 2.26

Throughout phase 1, wages and effort are distorted in inverse proportion to that tradeoff, and 
hence these distortions fall as |Sθ | grows.

Impact of agent’s outside option. As the agent’s initial outside option increases (perhaps be-
cause ex-ante competition between different masters becomes more intense) the contract begins 
farther and farther to the right along the constrained frontier. This means that more training oc-
curs in phase 1 and less in phase 2. It also means higher wages and lower effort distortions (since 

25 Effort is guaranteed to be weakly decreasing during this phase if r ≤ LX(X, a) for all X and a, as this guarantees 
that the exponential in Dt (defined in footnote 23) falls over time, i.e., the compounding impact of knowledge on future 
learning via LX (which matters less as time goes by and there is less of phase 1 left) is significant enough to overcome 
the principal’s impatience. See footnote 40 in the Appendix.
26 Specifically, gifting the agent dV at time θ slightly shortens phase 2, raises the agent’s overall payoff V0 by e−rθ dV

and changes the principal’s overall payoff �0 by e−rθ Sθ dV , so d�0/dV0 = Sθ .
12
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|Sθ | grows), and thus a longer phase 1 and more rents for the agent. Notably, phase 2 has positive 
length even in the most preferred contract for the agent (i.e., the zero-profit contract starting at 
point c). This is because the principal can use phase 2, where they extract the most rent, to collect 
on “debt” incurred by the agent during phase 1. As a result, early in the apprenticeship, when 
the agent’s productivity is still low, they can consume more than they produce and better smooth 
their consumption, without needing to pay it all back in phase 1. The principal collects on the 
remaining debt once the agent is more productive by holding on to them for an artificially long 
time, paying them less than they produce, and promising a training rate just high enough to keep 
them from leaving. In this way, phase 2 allows the players to work around the agent’s commit-
ment problem. Because a two-phase arrangement allows for better consumption smoothing, the 
agent prefers it over a shorter apprenticeship with faster training and only a phase 1.27

Training rate. Throughout phase 1 the agent is trained at rate L(Xt, at ) to reach the uncon-
strained frontier as quickly as possible given the desired effort path. In phase 2, the agent is 
instead trained at a rate that keeps them indifferent between staying with the principal and walk-
ing away, given the prescribed wages and effort.28 We call this the zero-rent training rate; it 
generalizes the zero-rent training rates in GR and FR to allow for the effect of both effort and the 
agent’s desire for income smoothing. It is given by

zt = h(Xt ) − [u(wt ) − d(at )]
h′(Xt )/r

. (8)

The numerator is the (instantaneous) utility loss incurred by the agent when working for the 
principal rather than on their own and consuming all output; the denominator is the agent’s 
utility gain per unit of knowledge they acquire from the principal. The zero-rent rate therefore 
guarantees that the principal extracts all gains from further training. As the apprenticeship ends, 
|St | converges to 1, effort converges to its steady-state level a∗(X), wages converge to steady-
state output f (X) + a∗(X), and the training rate converges to zero. As a result, neither effort, 
wages, nor training have jumps at time T .

Fig. 2 illustrates the trajectories of key variables for two optimal contracts, corresponding to 
two different levels of v; each column in the figure depicts one such contract.29 Under the lower 
outside option, the principal earns positive flow profits throughout the apprenticeship; under the 
higher one, the principal first implicitly lends money to the agent. The higher outside option 
leads to higher wages, less distorted effort, and a longer amount of time before the agent’s out-
side option h(Xt) reaches their continuation value vt . In both contracts, the training rate drops 
discontinuously at the moment of transition.

In practice, apprentices might experience a discrete jump in wages (and perhaps also effort) 
at the time of graduation. This possibility can be accounted for via a simple extension of our 

27 Phase 2 would also arise if the agent had linear utility provided the minimum consumption c was sufficiently large.
28 The training rate zt is not guaranteed to be monotone in either phase. In phase 1, this is because zt is positively 
impacted by both effort and knowledge, and the former may decrease over time. In phase 2, it is because knowledge and 
the agent’s flow payoff (both of which increase over time) have opposing effects on zt , as shown below (and h′ affects 
the training rate was well).
29 The contract on the left is in the interior of the constrained Pareto frontier, corresponding to a point like b in Fig. 1; 
the contract on the right is the most preferred by the agent, corresponding to point c. The contract most preferred by 
the principal (point a) has an even shorter phase 1, throughout which effort is at its upper bound. To construct this 
figure we assume X = 0, X = 0.8, f (X) = X0.99, L(X, a) = 0.3(0.1 + X + a), u(w) = 2

√
w, d(a) = 2.5a2, h(X) =

u(f (X) + a∗(X)) − d(a∗(X)), a = 1, c = 0.1, and r = 0.2.
13
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Fig. 2. Illustration of optimal contract for two different initial outside options for the agent.

model where the principal receives a prize as soon as the agent graduates (for example, because 
they can start training a new agent). In this case, since the principal is in more of a rush to 
complete the apprenticeship, the training rate (8) no longer converges to zero toward the end 
of the apprenticeship. Accordingly, wages remain strictly below (and effort strictly above) their 
post-graduation levels.30

The apprenticeships our model predicts have features that are roughly in line with the real-life 
practices discussed in the introduction. Phase 1 in our model, for instance, represents a period of 
intense learning (e.g. during Ph.D. courses or boot camps for new employees), where productivity 
is relatively low, and phase 2 represents a stage where novices learn below their potential (e.g. 
because they devote time to work they can already do well) while at the same time producing 
valuable output for their masters.31 The weakly increasing wage path, with wages potentially 
higher than output at first, also seems to mirror the examples noted there.

While some of these practices may seem abusive to the agent, our analysis shows that they 
might actually be beneficial. With this in mind, we turn to the problem of optimal regulation.

30 The training rate would also remain strictly positive at time T if, contrary to Assumption 2, the agent was more 
productive elsewhere once fully trained, as this puts pressure on the principal to complete their training. In this case, 
wages and effort would also be distorted at time T , but we can no longer say whether or not they will jump upon 
graduation, and in which direction, as at that time the agent will potentially switch to a different technology.
31 In some real-life apprenticeships, stages of work and study alternate with each other. Our analysis suggests that all 
phases where learning is carried out at the maximum rate, whether on-the-job or in a laboratory/classroom setting, should 
be front-loaded. Ph.D. programs seem to follow this idea. The same is true, for example, of the Vermont HITEC two-stage 
apprenticeship model, where at first “apprentices are immersed in the field of study for nine hours per day, five days a 
week [with classrooms] typically set up at the employer’s facility,” and then “move into the job setting full-time to apply 
these technical competencies on a daily basis” (see Vermont HITEC Program Case Study, www.dol .gov /apprenticeship /
toolkit .htm, accessed 7/14/20).
14
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5. Regulation

Apprenticeships are a frequent target of regulation. The G20, for instance, has expressed 
interest in making apprenticeship programs “attractive to both employers and employees” and 
protecting apprentices from being underpaid and undertrained. In some cases, regulators in-
tervene in nearly all aspects of the apprenticeship (e.g. wages, duration, curriculum, and even 
location), as occurs for instance in the German and Swiss dual-education models.32 In other in-
stances regulators seem especially concerned with specific aspects of the relationship, such as 
the ACGME restricting the hours of medical residents in the U.S.33

Caps on effort (i.e. hours worked) and floors on wages should be much easier to enforce than 
restrictions on the rate of knowledge transfer, as the agent’s knowledge can be difficult to monitor 
by an external regulator. Proposition 1 shows that a planner who is able to set upper bounds on 
effort and lower bounds on wages is able to implement any contract on the constrained Pareto 
frontier (i.e. any among the family of contracts characterized in Theorem 2) subject to the players 
ex-ante outside options being met, without needing to control the knowledge path.

Proposition 1. Select any contract C∗ that is Pareto efficient (i.e. lies on the constrained Pareto 
frontier) and that satisfies the agent’s initial participation constraint and gives the principal 
non-negative profits; let (w∗, a∗, X∗) denote the agent’s lifetime wages, effort, and knowledge 
paths when trained under this contract. If the planner restricts the effort path to be pointwise 
weakly below a∗ and the wage path to be pointwise weakly above w∗ for the duration of the 
apprenticeship, then C∗ is the unique profit-maximizing contract.

Proof. See the Online Appendix. �
To understand this result, notice that a contract that specifies any other effort and wage paths, 

while also satisfying the planner’s bounds, would lead to a strictly higher payoff for the agent 
and hence lower profits for the principal. Moreover, because the knowledge path X∗ maximizes 
the agent’s output given a∗ and w∗, while also meeting the learning and ongoing participation 
constraints, the principal will opt for that path.

Observe that the planner need not worry about capping the overall length of the contract, even 
though the principal might in principle be temped to hold on to the agent for too long. This is 
because, once the principal is forced to pay the right wages and limit effort, it is in their interest 
to quickly train the agent in order to raise productivity and make up for these wages.34

There is empirical precedent for time-varying wage floors. For example, in formal U.S. ap-
prenticeships, the paychecks of novices are “guaranteed to increase as their training progresses,” 
and employers in Germany “must grant apprentices reasonable remuneration [and] remuneration 

32 See, e.g., “OECD Note on ‘Quality Apprenticeships’ for the G20 Task Force on Employment” (www.oecd .org /els /
emp /OECD %20Apprenticeship %20Note %2026 %20Sept .pdf, accessed 7/19/21), the German Vocational Training Act 
(www.gesetze -im -internet .de /bbig _2005/, accessed 7/12/20), and Wyman (2017).
33 These restrictions include maximum weakly hours (80 on average) and limits on hours worked straight (24 in some 
cases). See www.acgme .org /Portals /0 /PDFs /dh -ComparisonTable2003v2011 .pdf (accessed 7/12/20).
34 In contrast, the regulations proposed by FR, which do not involve wages, require caps on length. GR considers wage 
regulations, but restricts to a constant minimum wage and does not consider effort distortions. While these interventions 
help, they can be improved.
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increases with progressive vocational training, at least annually.”35 Time-varying caps on hours 
should also not be difficult to implement.

A regulator who has the power to solve the agent’s commitment problem and to impose 
time-varying effort caps and wage floors is also able to implement the agent-optimal (first-best) 
contract in Theorem 1, which generates constant wages throughout the agent’s lifetime and trains 
the agent as quickly as feasible until fully trained.

Proposition 2. Let C∗∗ denote the agent-optimal (first-best) contract in Theorem 1, and let 
(w∗∗, a∗∗, X∗∗) denote the agent’s lifetime wages, effort, and knowledge paths when trained 
under this contract. If the planner grants the principal the power to retain the agent for as 
long as the principal wishes, so the players no longer face an ongoing participation constraint, 
and restricts the effort path to be pointwise weakly below a∗∗ and the wage path to be pointwise 
weakly above w∗∗ for the duration of the apprenticeship, then C∗∗ is the unique profit-maximizing 
contract.36

Proof. See the Online Appendix. �
In this intervention, certification requirements and non-compete clauses, which are frequently 

observed, should be accompanied by restrictions on both the wage and effort paths. However, if 
these restrictions are optimally set, there is no need to regulate the knowledge path or contract 
length. The intuition is similar to that of Proposition 1, save that the principal no longer needs to 
worry about the ongoing participation constraint.

The regulator can use the same type of intervention to implement any desired Pareto efficient 
contract (in the world with full commitment by both parties) so long as players earn no less than 
their ex-ante outside options. Such contracts are very similar to that characterized in Theorem 1, 
with a binding learning constraint throughout the training period and flat wages throughout the 
agent’s lifetime.37

6. Conclusion

We have studied the problem of training a novice who must work as an apprentice in order to 
learn. To do so, we introduced the idea of learning-by-doing as an inequality constraint instead 
of as an equality, as this allows the master to strategically slow training down even when the 
agent works hard. Perhaps paradoxically, slow training expands the players’ payoff frontier, as it 
allows the principal to capture rents despite the agent’s inability to commit to make payments.

In the novice’s most preferred contract, the learning constraint causes the novice to initially 
produce less than they are paid, so they accumulate “debt.” A slow-training phase then allows the 
master to gradually collect on this debt. Because this arrangement allows for better consumption 
smoothing, the novice prefers it to a shorter apprenticeship without the slow-training phase.

35 See www.dol .gov /apprenticeship /toolkit /toolkitfaq .htm (accessed 7/7/20) and www.gesetze -im -internet .de /bbig _
2005/ (accessed 7/12/20).
36 Unlike the contracts in Proposition 1, this contract lasts forever, so the agent can pay the debt they accumulate during 
training. However, the principal can exit the relationship as soon as training is over by selling the agent’s debt to a third 
party for a lump-sum payment of 

∫∞
T e−r(t−T )[f (X) + a∗∗

t − w∗∗
t ]dt .

37 Any such Pareto efficient contract satisfies all properties in Theorem 1 upon substituting a new (lower) wage level in 
the place of w∗∗ (see Online Appendix, footnote 46), and can be implemented by the planner in the same manner as the 
agent first-best contract (see Online Appendix, footnote 47).
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Our model helps rationalize why real-life training relationships, including formal appren-
ticeships, consist of a bundle of interrelated practices, including distinct phases and imperfect 
consumption smoothing. It also suggests optimal regulation based on the idea that by simultane-
ously restricting the effort and wage paths, the social planner can induce the master to train the 
novice at the ideal rate.

We have abstracted from the possibility that the master learns about the novice’s intrinsic 
ability during the apprenticeship, which would likely generate yet richer predictions. We leave 
this for future work.

Appendix A. Proof of Theorem 2

The proof is organized in four steps. First, we consider a relaxation of (II) that omits the 
constraint zt ≥ 0, and introduces a Lagrange multiplier for the constraint v0 ≥ v. Lemma 1 shows 
that there exists an optimal solution to this relaxed problem in which zt , wt , and at are as given in 
Theorem 2. It determines the agent’s initial payoff v0 and the thresholds θ , and characterizes the 
trajectories of Xt and vt . Second, Lemma 2 shows that this solution is in fact unique. Third, we 
turn to solving the original problem, (II). We show in Lemma 3 that the solution of the relaxed 
problem satisfies the omitted constraint zt ≥ 0. Finally, we complete the proof by showing that 
there exists a Lagrange multiplier for the constraint v0 ≥ v such that the corresponding solution 
of the relaxed problem uniquely solves (II).

For a fixed ω ≥ 0, consider the following optimal control problem:

S(ω) = max r

T∫
0

e−rt [f (Xt ) + at − wt ]dt + ωv0 (9)

s.t. Ẋt = zt (10)

v̇t = r [vt − u(wt ) + d(at )] (11)

v0 free and vT = h(XT )

zt ≤ L(Xt , at ) (12)

vt ≥ h(Xt ) (13)

X0 = X, Xt ≤ X (14)

at ∈ [0, a] ,wt ≥ c.

This problem is a relaxation of (II) as we have omitted the constraint zt ≥ 0 and replaced the 
constraint v0 ≥ v with the assumption that the principal maximizes the weighted sum of their 
own and the agent’s payoff with weights one and ω, respectively. Note that we multiplied the 
integral in the objective by r . We also fixed the horizon to be equal to T . This will turn out to be 
without loss of generality, because after the agent’s knowledge reaches X, they earn their output 
and the principal’s continuation payoff is zero.

We say that a five-tuple (Xt , vt , zt ,wt , at ) is admissible if the functions Xt and vt are piece-
wise continuously differentiable, and wt , zt , and at are piecewise continuous functions that 
satisfy the constraints in (9). Define the functions

m(X) := f ′(X)

′ and φ(X,w,a) := h(X) − u(w) + d(a)

′ .

h (X)/r h (X)/r

17



D. Fudenberg, G. Georgiadis and L. Rayo Journal of Economic Theory 197 (2021) 105347
The following lemma characterizes one optimal solution for this problem.

Lemma 1. There are θ ≥ 0, T > θ , and functions (Xt , vt , zt ,wt , at ) that solve the optimal con-
trol problem given in (9) such that:

(i) zt , wt , and at satisfy the expressions given in Theorem 2, where the function Dt :=
La(Xt , at )μt and μt is defined in (iv) below.

(ii) On t ∈ [θ, T ], the function St = −1 + ∫ T

t
m(Xs)ds and the agent’s continuation payoff vt

satisfy the system of ordinary differential equations[
Ṡt

v̇t

]
=
[ −m(h−1((vt ))

r [vt − u(wt ) + d(at )]

]
subject to the boundary conditions ST = −1 and vT = h(X).

(iii) θ = min
{
t ≥ 0 : St = −ω or h−1(vt ) = X

}
, and Xt = Xθ + ∫ T

θ
φ(Xs, ws, as)ds with 

XT = X.
(iv) If θ > 0, then for t ∈ [0, θ ], vt , Xt , and the function μt uniquely solve the system of ordinary 

differential equations⎡⎣ Ẋt

v̇t

μ̇t

⎤⎦=
⎡⎣ L(Xt , at )

r (vt − u(w0) + d(at ))

−f ′(Xt ) + μt (r − LX(Xt , at ))

⎤⎦
such that X0 = X, the initial values Xθ and vθ are determined from (iii), and μθ = 0.

Proof of Lemma 1. Define the Hamiltonian

H := re−rt [f (Xt ) + at − wt ] + pX
t zt + pv

t r [vt − u(wt ) + d(at )] ,

where pX
t and pv

t are the co-state variables associated with the state variable Xt and vt , respec-
tively, and the Lagrangian

L := re−rt [f (Xt ) + at − wt ] + pX
t zt + pv

t r [vt − u(wt ) + d(at )]

+ qL
t r [L(Xt , at ) − zt ] + qh

t r [vt − h(Xt)] + qX
t (X − Xt),

where qL
t , qh

t , and qX
t are multipliers associated with the agent’s learning constraint, their ongo-

ing participation constraint, and the constraint that their knowledge level Xt does not exceed X, 
respectively.38

This problem is a special case of the one considered in Section 6.7 of Seierstad and Sydsaeter 
(1986), and Theorem 6.13 provides sufficient conditions for a solution to be optimal. To be spe-
cific, an admissible five-tuple (Xt , vt , zt ,wt , at ) solves (9) if there exists piecewise continuously 
differentiable functions pX

t and pv
t , and piecewise continuous functions qL

t , qh
t , and qX

t such 
that the following conditions are satisfied:

(C.1) The control variables (zt , wt, at ) maximize the Lagrangian L.

38 For convenience, we have multiplied both sides of the first two inequality constraints by r . Doing so is without loss 
of generality.
18
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(C.2) The trajectory of the co-state variable pX
t and pv

t is governed by the adjoint equation

ṗX
t = − ∂L

∂Xt

= − re−rtf ′(Xt ) − qL
t rLX(Xt , at ) + qh

t rh′(Xt ) + qX
t , and (15)

ṗv
t = − ∂L

∂vt

= − pv
t r − qh

t r, (16)

respectively.
(C.3) The functions qL

t , qh
t , and qX

t satisfy the complementary slackness conditions

qL
t ≥ 0 (= if zt < L(Xt , at )),

qh
t ≥ 0 (= if vt > h(Xt)), and

qX
t ≥ 0 (= if Xt < X).

(C.4) The transversality condition

pv
0 ≤ −ω (= if v0 > h(X)) (17)

is satisfied
(C.5) The Hamiltonian is concave in the state and the control variables for each t , and the right-

hand-side of the equality constraints is quasi-concave in the state and the control variables.

To complete the proof, it suffices to show there are constants θ and T , and continuously 
differentiable functions pX

t and pv
t , and piecewise continuous functions qL

t , qh
t , and qX

t such that 
the trajectories of (Xt , vt , zt ,wt , at ) satisfy conditions (i)-(iv) of Lemma 1, and these functions 
together with (pX

t , pv
t , qL

t , qh
t , qX

t ) satisfy conditions (C.1-5).
Let us begin with (C.5). Since f (X) is strictly concave, h(X) is strictly increasing, and 

L(X, a) is additively separable and concave in each of its arguments, this condition is satisfied 
as long as pv

t ≤ 0 for all t .
Next, consider (C.1). Differentiating the Lagrangian yields:

∂L
∂z

=pX
t − rqL

t ,

∂L
∂w

=r
[−e−rt − pv

t u′(w)
]
,

∂L
∂a

=r
[
e−rt + pv

t d ′(at ) + qL
t La(Xt , at )

]
.

We want to show that either zt = φ(Xt , wt, at ), or zt = L(Xt , at ). Since both φ and L are finite-
valued, it must be the case that pX

t = rqL
t for all t . Because wt ≥ c and at ≤ a, it follows from the 

above expressions that the optimal wage satisfies u′(wt ) = min
{
u′(c), −e−rt /pv

t

}
, and the op-

timal effort is implicitly defined by the equation d ′(at ) = min{d ′(a), − 
[
qL
t La(Xt , at ) + e−rt

]
/

pv
t }. Because d ′(0) = 0, d ′′ > 0, and Laa ≤ 0, as long as pv

t < 0, there exists a unique at that 
satisfies this equation.

We now fix an arbitrary T ≤ T and a θ ∈ (0, T ), and characterize the variables (pX
t , pv

t , qL
t ,

qh
t , qX

t ) such that (C.1-4) are satisfied. In our solution, (12) is slack for t > θ , (13) is slack for 
t < θ , and (14) is slack for t < T . Thus, the complementary slackness conditions in (C.3) can be 
rewritten as
19
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qL
t

{
≥ 0 if t ≤ θ

= 0 if t > θ
, qh

t

{
= 0 if t < θ

≥ 0 if t ≥ θ
and qX

t

{
= 0 if t < T

≥ 0 if t ≥ T .
(18)

Next, we characterize the trajectories of the co-state variables by solving the corresponding 
adjoint equations. Solving (16) yields

pv
t = −e−rt

⎛⎜⎝−pv

T
erT − r

T∫
t

ersqh
s ds

⎞⎟⎠
for some pv

T
that remains to be determined.

For t ∈ [0, T ), since pX
t = rqL

t and qX
t = 0, (15) can be rewritten as

ṗX
t = −re−rtf ′(Xt ) − pX

t LX(Xt , at ) + qh
t rh′(Xt ),

and this ODE admits the following solution:

pX
t = e− ∫ t

0 LX(Xs,as )ds

⎡⎣pX
0 − r

t∫
0

(
e−rsf ′(Xs) − qh

s h′(Xs)
)

e
∫ s

0 LX(Xs,as )dτ ds

⎤⎦ ,

where pX
0 is an initial value which we determine next. Recall that for t > θ , the learning con-

straint is slack, so by (18) we have qL
t = 0. This implies that pX

t = 0 for all t > θ . The continuity 
of pX

t implies that pX
θ = 0, and therefore

pX
0 = r

θ∫
0

e−rsf ′(Xs)e
∫ s

0 LX(Xτ ,aτ )dτ ds,

where we have used from (18) that qh
t = 0 for all t < θ . Because pX

t = 0 for all t ∈ (θ, T ), 
e−rsf ′(Xs) − qh

s h′(Xs) = 0, or equivalently,

qh
t = e−rtm(Xt )/r for all t ∈ (θ, T ),

and recall that by definition, m(X) = rf ′(X)/h′(X).
For t ∈ [T , T ], we must have pX

t = 0 (since qL
t = 0). Since pX

T = 0, it suffices that ṗX
t = 0

for all t > T , or equivalently using (15),

qX
t = re−rtf ′(X) − rqh

t h′(X).

Let us guess that for all t > T , qh
t = 0 and pv

t = −1e−rt .39 Then we have the following expres-

sions for (pX
t , pv

t , qL
t , qh

t , qX
t ):

pX
t = rqL

t =
{

re− ∫ t
0 LX(Xs,as )ds

∫ θ

t
e−rsf ′(Xs)e

∫ s
0 LX(Xτ ,aτ )dτ ds if t ≤ θ

0 if t > θ,

pv
t =

⎧⎪⎪⎨⎪⎪⎩
−e−rt

[
1 − ∫ T

θ
m(Xs)ds

]
if t ≤ θ

−e−rt
[
1 − ∫ T

t
m(Xs)ds

]
if θ < t ≤ T

−e−rt if t > T ,

(19)

39 Since these conditions are sufficient for an optimum, it suffices to show that a solution given this guess exists.
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qh
t =

⎧⎪⎨⎪⎩
0 if t < θ

e−rtm(Xt )/r if θ < t < T

0 if t > T

, and qX
t =

{
0 if t < T

re−rtf ′(X) if t > T .
(20)

Using the above expressions and d ′(a(X)) = u′(f (X) + a(X)) = 1, the optimal wage and 
effort satisfy

u′(wt ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

{
u′(c), 1

1−∫ T
θ m(Xs)ds

}
if t < θ

min

{
u′(c), 1

1−∫ T
t m(Xs)ds

}
if θ < t < T

1 if t > T , and

(21)

d ′(at ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

{
d ′(a),

ertLa(Xt ,at )q
L
t +1

1−∫ T
θ m(Xs)ds

}
if t < θ

min

{
d ′(a), 1

1−∫ T
t m(Xs)ds

}
if θ < t < T

min
{
d ′(a), 1

}
if θ > T .

(22)

Because qL
t ≥ 0, and d ′(0) = 0, d ′′ > 0 and Laa ≤ 0, for t < θ there is a unique at ∈ [0, a] that 

satisfies the above implicit equation. Finally, because the learning constraint binds for t < θ , 
while the ongoing participation constraint binds for t ≥ θ , the training rate

zt =

⎧⎪⎨⎪⎩
L(Xt , at ) for t ∈ (0, θ)

φ(Xt ,wt , at ) for t ∈ [θ,T )

0 for t ∈ [T ,T ).

So far, we have fixed an arbitrary T and θ < T , and characterized the functions (zt , wt, at ,p
X
t ,

pv
t , qL

t , qh
t , qX

t ) such that conditions (C.1-4) are satisfied, and we argued that (C.5) is satisfied 
by assumption. Moreover, the agent’s continuation value vt must satisfy vt > h(Xt ) for all t < θ

and vθ = h(Xθ). (By the construction of φ(X, w, a), vt = h(Xt) for all t > θ .) A priori, there is 
no guarantee that there exists a T and a θ such that the conditions pertaining to Xt and vt are 
satisfied. We now show that this is indeed the case.

First, we will determine the trajectory of vt and hence that of Xt (since vt = h(Xt )) during 
Phase 2, that is, during the interval [θ, T ]. In doing so, we will pin down the duration of this 
interval (i.e., T − θ ). Then we will turn to Phase 1.

Let us fix some arbitrary T . Since vt = h(Xt ) on this interval and h(X) is strictly increas-
ing, it will be convenient to define the function ξ(y) := m 

(
h−1 (y)

)
and recall that m(X) =

rf ′(X)/h′(X). Recall that St = −1 + ∫ T

t
m(Xs)ds, which can be rewritten in differential form 

as Ṡt = −ξ(vt ) with ST = −1.
Notice from (21) and (22) that for each t ∈ [θ, T ], the agent’s wage, wt , and effort, at , 

depends solely on St . In particular, it satisfies u′(wt ) = min
{
u′(c), −1/St

}
and d ′(at ) =

min
{
d ′(a), −1/St

}
, respectively. During Phase 2, the trajectories of St and vt satisfy the fol-

lowing system of ODE:[
Ṡt

v̇

]
= G(St , vt ) :=

[ −ξ(vt )

r [v − u(w(S )) + d(a(S ))]

]
(23)
t t t t
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subject to the initial conditions ST = −1 and vT = h(X). Because u, d , f , and h have bounded 
first and second derivatives by assumption, G has bounded partial derivatives and hence it is Lip-
schitz continuous. Therefore, by the Picard–Lindelof theorem, this system has a unique solution. 
It immediately follows that Xt = h−1(vt ) during the interval [θ, T ].

We now explain how to determine the threshold θ , and hence the duration of Phase 2 using the 
above solution (and a given T ). To do so, we will use the transversality condition (C.4), which 
from (19) can equivalently be rewritten as Sθ ≤ −ω (′ =′ if v0 > h(X)). This condition implies 
that either (I) Sθ ≤ −ω and v0 = h(X), or (II) Sθ = −ω and v0 > h(X). In Case (I), Phase 1 is 
non-existent, vθ = h(X), and hence θ is the first time that vt hits h(X). In Case (II), Phase 1 has 
strictly positive duration, vθ > h(X), and hence θ is the first time that St hits −ω. Thus, given a 
solution to the system of ODE (23), we define θ := min

{
t : St = −ω or h−1(vt ) = X

}
. That is, 

starting at T and moving backward in time, θ is the first time that St hits −ω or h−1(vt ) = Xt

hits X, whichever occurs first. Because Ṡt = −ξ(vt ) < 0 for all t , such θ exists and it is unique 
(for given T ). Let us consider the two cases mentioned above separately:

Case I: If Xt hits X first, Phase 1 has zero length. Because the above system of ODE is au-
tonomous, that is, it doesn’t explicitly depend on time, without loss of generality, we can shift 
time by replacing t with t̃ = T − θ so that X0 = X. Then Phase 2 starts at θ = 0, and the agent’s 
level of knowledge reaches X at t̃ = T − θ . In this case, the characterization of a solution for (9)
is complete.

Case II: If St hits −ω first, this procedure determines (i) the duration of Phase 2, which equals 
T − θ , (ii) the agent’s continuation payoff at the beginning of Phase 2, denoted v∗

θ , and (iii) the 
knowledge level Xθ = h−1(vθ ). We characterize the duration of Phase 1 and the trajectory of the 
state and control variables next.

We now characterize the duration of Phase 1 for the case in which St hits −ω first in the 
procedure described above. It will be convenient to define μt := ertqL

t . Using (15), and that 
pX

t = rqL
t and qh

t = qX
t = 0 during Phase 1, we obtain the following expression for the trajectory 

of μt :

μ̇t = −f ′(Xt ) + μt (r − LX(Xt , at )) .

The trajectory of Xt , vt , and μt satisfies the following system of ODE:⎡⎣ Ẋt

v̇t

μ̇t

⎤⎦= H(Xt , vt ,μt ) :=
⎡⎣ L(Xt , at )

r (vt − u(w0) + d(at ))

−f ′(Xt ) + μt (r − LX(Xt , at ))

⎤⎦ , (24)

subject to the initial conditions Xθ = h−1(v∗
θ ), vθ = v∗

θ , and μθ = 0, where v∗
θ was deter-

mined in the analysis of Phase 2 above, and μθ = 0 follows from the fact that qL
θ = 0. The 

wage w0 = max
{
c, u′−1(1/ω)

}
, and effort at is implicitly defined by the equation d ′(at ) =

min
{
d ′(a), [La(Xt , at )μt + 1]/ω

}
.40 Because by assumption, f ′′, LX , LXX , and Laa are 

bounded, LXa = 0, d ′′ is strictly positive, and Laa ≤ 0, H has bounded partial derivatives and 
hence it is Lipschitz continuous. Therefore, by the Picard–Lindelof theorem, this system of ODE 
has a unique solution.

40 Differentiating this expression with respect to t shows that when effort is interior, ȧt = La(Xt , at )μ̇t /[ωd ′′(at ) −
Laa(Xt , at )μt ]. Because La, μt ≥ 0, d ′′ > 0 and Laa ≤ 0, for any ω > 0 effort is decreasing if and only if μ̇t ≤ 0, 
which is the case whenever r ≤ LX(X, a) for all X and a. (If ω = 0, then at = a for all t .)
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Define t0 to be the first time such that Xt0 = X. Such t0 exists and it is unique since L(X, a) >
0 for all X and a. Then θ − t0 is the duration of Phase 1, and the agent’s initial payoff is v0 = vt0 . 
Finally, because the system of ODE is autonomous, we can replace t with t̃ = t − t0. Then 
the above solution continues to satisfy (24) with X0 = X, Xθ−t0 = h−1(v∗

θ ), vθ−t0 = v∗
θ , and 

μθ−t0 = 0, where v∗
θ denotes the agent’s continuation value at the beginning of Phase 2, which 

was characterized in the last step. Therefore, in the new time-space, Phase 1 ends at t̃ = θ − t0, 
and Phase 2 ends at t̃ = θ∗ + (T − θ). By assumption, T is sufficiently large such that ̃t < T .

To summarize, we have shown that there exists an admissible five-tuple (Xt , vt , zt ,wt , at )

and thresholds T and θ such that the sufficient conditions (C.1-5) are satisfied. Moreover, 
this five-tuple and the variables St and μt satisfy conditions (i)-(iv) of Lemma 1. Specifi-
cally, during Phase 1, which lasts from t = 0 until θ , the agent’s wage is constant and satis-
fies u′(w) = min

{
u′(c),1/ω

}
. Moreover, their effort satisfies d ′(at ) = min

{
d ′(a), (1 + Dt)/ω

}
, 

where Dt := La(Xt , at )μt , and their training rate is zt = L(Xt , at ).41 During Phase 2, which 
lasts from t = θ until T , the wage, effort and training rates are u′(wt ) = min

{
u′(c),1/|St |

}
, 

d ′(at ) = min
{
d ′(a),1/|St |

}
, and zt = φ(Xt , wt, at ). that St < 0. After T , the agent’s knowledge 

stays constant at X, their effort satisfies d ′(at ) = min
{
d ′(a),1

}
, and they earn wt = f (X) + at , 

while the principal earns zero (since f (Xt ) + at − wt = 0 for all t ≥ T ). �
We have characterized one optimal solution for the relaxed problem given in (9). The follow-

ing lemma shows that this solution is in fact unique.

Lemma 2. Consider the optimal control problem given in (9) for a fixed ω ≥ 0. This problem has 
a unique solution.

Proof of Lemma 2. This proof is organized in two steps. First, using Corollary 8.2 of Hartl et 
al. (1995), we establish uniqueness of the optimal trajectories of the state variables Xt and vt . 
Then we show that this implies uniqueness of the optimal trajectories of the control variables.

Hartl et al. (1995) analyze a problem that is similar to (9), except that (i) there is a terminal 
value function in the objective, whereas we have the initial value function −ωv0, and (ii) they 
assume that the initial values of the state variables are fixed, whereas v0 is free in (9).

We now explain how to modify our relaxed problem, (9) so that it is a special case of the 
one considered in Hartl et al. (1995), allowing us to apply their Corollary 8.2. First, we reverse 
time in (9) so that time “starts” at T and “ends” at 0, and hence the term −ωv0 becomes a 
terminal value function. Second, in every optimal solution to (9), as well as the transformed 
problem, XT = X.42 Therefore, we fix the “initial” values of the state variables XT = X and 

41 Note that whenever θ > 0, ω = −Sθ , and so the expressions for the optimal wage and effort are the same as in 
Theorem 2.
42 To see why, towards a contradiction, suppose that there exists another optimal contract C′ with X′

T
< X. Consider 

a modified version of the relaxed problem given in (9) where X is replaced with X′
T

; i.e. the principal is endowed with 
knowledge X′

T
instead of X. Because C′ is feasible for this modified problem, any solution C′′ to this problem must 

achieve a payoff no less than that of C′. By Lemma 1, one such solution is a contract such that for some T < T , XT = X′
T

and the principal earns zero payoff for all t ≥ T . Now consider extending this contract such that during (T , T + 	] for 
some 	 > 0 sufficiently small, the agent is paid the minimum wage c, exerts the maximum effort a, and is trained at the 
zero-rent rate φ(Xt , c, a). This modified contract is feasible for (9) and because f (Xt ) + a > c for all t ∈ (T , T + 	], 
it strictly increases the principal’s objective. Therefore, the principal’s objective is strictly higher under this modified 
contract than under C′ , which is a contradiction.
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vT = h(X), and impose the condition that X0 = X meanwhile v0 is free (which is permitted in 
the formulation of Hartl et al. (1995)). The sufficiency conditions given in Theorem 8.2 of Hartl 
et al. (1995) are identical to Conditions (C.1-5), and hence an optimal solution takes the same 
form, except that the requirement that f (X) is concave (from C.5) is replaced by the condition 
that the function

H0(X,v,pX,pv, t)

:= max
L(Xt ,at )≥zt

re−rt [f (Xt ) + at − wt ] + pX
t zt + pv

t r [vt − u(wt ) + d(at )]

is concave in X and v for any given pX, pv and t . If in addition, H0(X, v, pX, pv, t) is strictly 
concave in X and v for any given pX, pv and t , then by Corollary 8.2, the optimal trajectory of 
the state variables, Xt and vt is unique. We will first show that this is indeed the case, and then 
argue that the trajectories of the control variables zt , wt , and at are also unique.

Let us fix t , Xt , vt , pX ≥ 0, and pv ≤ 0, and evaluate H0(X, v, pX, pv, t). For this purpose, 
we write the Lagrangian for the static problem:

L̃(κ) = max
z,w,a

re−rt [f (X) + a − w] + pXz + pvr [v − u(w) + d(a)] + κr [L(X,a) − z]

s.t. w ≥ c and a ≤ a

where κ ≥ 0 is a dual multiplier. This problem is convex, and for any κ , the optimal controls 
satisfy43

z =

⎧⎪⎨⎪⎩
−∞ if pX < κr

∈R if pX = κr

∞ if pX > κr

,
u′(w) = min

{
u′(c), −e−rt /pv

}
, and

d ′(a) = min
{
d ′(a), − [e−rt + κLa(X,a)

]
/pv
}
.

Moreover, strong duality is satisfied, so H0(X, v, pX, pv, t) = minκ≥0 L̃(κ). We argue that the 
Lagrangian-minimizing κ = pX/r . That is because for any κ < pX/r (κ > pX/r), L(κ) can be 
made ∞ by setting z = ∞ (z = −∞).

Noting that L(X, a) is additively separable in X and a by assumption, and the optimal control 
variables, z, w, a are all independent of X and v. The Hessian of H0(X, v, pX, pv, t),[

∂2H 0/∂X2 ∂2H 0/∂X∂v

∂2H 0/∂v∂X ∂2H 0/∂v2

]
=
[

re−rtf ′′(X) + λrLXX(X,a) 0
0 0

]
is negative semidefinite since f ′′(X) < 0 and LXX(X, a) ≤ 0 for all X and a by assumption. 
Therefore, H0(X, v, pX, pv, t) is strictly concave in X and v, so the trajectory of Xt and vt is 
unique.

Since Ẋt = zt , this immediately implies that the trajectory of zt is also unique. We now show 
that the trajectories of wt and at are unique as well. Towards this goal, define kt := u(wt ) −d(at ), 
and note that it is also unique as v̇t = r(vt − kt ) and vt are unique. Define θ such that zt =
L(Xt , at ) for all t < θ , and zt < L(Xt , at ) for all t > θ . Such θ is uniquely determined since Xt

and zt are unique.
First, consider t < θ . Because L(X, a) is strictly increasing in a, the trajectory of at and 

hence that of wt = u−1 (kt + d(at )) is also unique on [0, θ). Next, consider t > θ . Any optimal 
solution must satisfy the first-order conditions u′(wt ) = min

{
u′(c), −e−rt /pv

t

}
and d ′(at ) =

43 The expressions for w and a assume that pv < 0. If pv = 0, then w = c and a = a is optimal.
24



D. Fudenberg, G. Georgiadis and L. Rayo Journal of Economic Theory 197 (2021) 105347
min{d ′(a), −[qL
t La(Xt , at ) +e−rt ]/pv

t } are satisfied, and qL
t = 0 for all t > θ (see, for example, 

Theorem 6.15 in Seierstad and Sydsaeter (1986)). Observe that either kt = u(c) − d(a), or kt is 
a strictly increasing function of pv

t . Since kt is unique, then so is pv
t on the domain such that 

kt > u(c) − d(a). Therefore, wt and at are also unique for such t . �
Recall that in relaxing the original problem, we omitted the constraint zt ≥ 0. The next lemma 

shows that this constraint is in fact satisfied in the solution given in Lemma 1.

Lemma 3. Consider the optimal control problem given in (9) for a fixed ω ≥ 0. In the unique 
solution characterized in Lemma 1, the training rate zt ≥ 0 for all t .

Proof of Lemma 3. Clearly, zt = L(Xt , at ) ≥ 0 for all t < θ since L(X, a) > 0 for all X and 
a by assumption. For t ≥ θ , we have zt = φ(Xt , wt, at ) = v̇t /h′(Xt ), where we have used the 
fact that for such t , the ongoing participation constraint binds so vt = h(Xt ), and that v̇t =
r [vt − u(wt ) + d(at )]. Since h′(X) > 0 for all X, it suffices to show that v̇t ≥ 0 for all t ≥ θ . 
Towards a contradiction, suppose that there exists some t ′ ≥ θ such that v̇t ′ < 0. This implies 
that for dt > 0 sufficiently small, vt ′+dt < vt ′ . Recall that u′(wt ) = min

{
u′(c), −1/St

}
, d ′(at ) =

min
{
d ′(a), −1/St

}
, and Ṡt = −ξ(vt ) < 0, implying that −u(wt) + d(at ) is weakly decreasing 

in t . Therefore,

v̇t ′+dt = r
[
vt ′+dt − u(wt ′+dt ) + d(at ′+dt )

]
< r [vt ′ − u(wt ′) + d(at ′)] = v̇t ′ < 0.

By induction, it follows that v̇t < 0 and hence Ẋt < 0 for all t > t ′. This however, contradicts 
the fact that XT = X and Xt ≤ X for all t . Therefore, we conclude that such t ′ cannot exist, and 
hence zt ∝ v̇t ≥ 0 for all t . �

To complete the proof of Theorem 2, we will show that for an appropriately chosen ω ≥ 0, the 
solution of the relaxed problem (9) solves the original problem (II). Let us denote the contract 
which solves (9) for given ω by C(ω) = {Xt, vt , zt ,wt , at } with corresponding ex-ante payoffs 
π∗

0 (ω) and v∗
0(ω) for the principal and the agent, respectively. Thus, S(ω) = π∗

0 (ω) + ωv∗
0(ω). 

We will show that the contract C(ω) for the smallest ω such that v∗
0(ω) ≥ v uniquely solves the 

original problem (II).
First, we claim that v∗

0(ω) is strictly increasing in ω, while π∗
0 (ω) is strictly decreasing in ω. 

To see why the first claim is true, because C(ω) uniquely solves (9), for any pair ω, ω′ we have

π∗
0 (ω′) + ω′v∗

0

(
ω′)> π∗

0 (ω) + ω′v∗
0 (ω) , and

π∗
0 (ω) + ωv∗

0 (ω) > π∗
0 (ω′) + ωv∗

0

(
ω′) .

Therefore,

ω′ [v∗
0

(
ω′)− v∗

0 (ω)
]
> π∗

0 (ω) − π∗
0 (ω′) > ω

[
v∗

0

(
ω′)− v∗

0 (ω)
]
, (25)

implying that v∗
0

(
ω′)− v∗

0 (ω) > 0 if and only if ω′ > ω. It follows from (25) that for any ω and 
ω′ > ω, π∗

0 (ω) − π∗
0 (ω′) > 0, which implies the second claim.

Next, we show that v∗
0(∞) := limω→∞ v∗

0 (ω) > v. Note first that as ω → ∞, the wages 
prescribed by C(ω) go to infinity. This implies π∗

0 (∞) = −∞, and hence π∗
0 (ω) < 0 for all large 

ω. Now suppose towards a contradiction that v∗
0(∞) := limω→∞ v∗

0 (ω) ≤ v. This implies that 
there exists a large ω′ such that π∗

0 (ω′) < 0 and v∗
0(ω′) ≤ v, which in turn implies that there is 

no feasible contract C(ω′) for the relaxed problem such that π∗(ω′) ≥ 0 and v∗(ω′) ≥ v. This 
0 0

25
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leads to a contradiction because, by assumption, v is sufficiently small such that the principal can 
fully train the agent while meeting the initial participation constraint and obtaining non-negative 
profits.

Moreover, because the trajectories of wt and at , which together determine the agent’s payoff, 
vary continuously with ω, θ, T , and the latter two variables vary continuously with ω, π∗

0 (ω) and 
v∗

0(ω) are continuous in ω.
Let ω∗ = inf

{
ω ≥ 0 : v∗

0(ω) ≥ v
}
. We will now show that the solution of (9) corresponding 

to ω = ω∗ uniquely solves (II). There are two cases to consider:

Case 1: v∗
0(0) ≥ v. In this case C(ω∗) = C(0) uniquely solves the original problem because 

it uniquely maximizes profits in the relaxed version of the original problem where the agent’s 
initial participation constraint is ignored, and yet it is satisfied by C(0). Uniqueness follows 
directly from Lemma 2.

Case 2: v∗
0(0) < v. Suppose contrary to the claim, that C(ω∗) does not solve the original 

problem. Then, because C(ω∗) is feasible for the original problem, there must exist another 
feasible contract C′ leading to payoffs π ′

0 ≥ π∗
0 (ω∗) and v′

0 ≥ v∗
0(ω∗) = v, so π ′

0 + ω∗v′
0 ≥

π∗
0 (ω∗) + ω∗v∗

0(ω∗). But since C′ is also feasible for the auxiliary problem, this contradicts the 
fact that C(ω∗) uniquely solves the auxiliary problem.

Note also that ω∗ < 1, and hence Phase 2 has strictly positive length. Otherwise, the agent 
would earn no less than steady state wages throughout the apprenticeship, which per Assump-
tion 5, would create losses for the principal. By Assumption 6.2, however, there is a contract that 
allows the principal to make a non-negative profit.

Finally, we show that as the agent’s initial outside option v increases, the length of Phase 1 
increases and the length of Phase 2 decreases, each strictly so if the initial participation constraint 
binds. Note that if this constraint is slack, the length of each phase is independent of v, and so 
we shall restrict attention to the case in which it binds.

From (23) and the fact that Sθ = −ω that the length of Phase 2, T − θ , strictly decreases in ω. 
Since v∗

0(ω) strictly increases in ω and v∗
0(ω∗) = v, it follows that ω∗ strictly increases in v, and 

hence T − θ strictly decreases in v.
To establish that phase 1 becomes strictly longer, fix two initial outside options v, v′ such 

that v > v′, and denote the associated contracts by C and C′, respectively. Assume the initial 
participation binds under both contracts. From (23) and because ω∗ > ω∗′, we have Xθ > X′

θ ′
and |Sθ | > |S′

θ ′ |. Now suppose towards a contradiction that θ ≤ θ ′; i.e., the length of Phase 1 
when the initial outside option is v′ is at least as large as when it is v.

We claim that there is a time t̃ < θ such that at̃ > a′
t̃

and Xt ≥ X′
t for all t ≥ t̃ . To see why this 

must be the case, define s to be the largest time before θ such that Xs = X′
s . Note s < θ and by 

construction Xt > X′
t for all s < t ≤ θ . If the claim is not true, then it must be that at ≤ a′

t for all 
s ≤ t ≤ θ . But then the learning constraint implies that Xθ ≤ X′

θ , a contradiction.
Next, since f ′ is decreasing in X, La is weakly decreasing in a, and LX is weakly decreasing 

in X, the expression for Dt (given in footnote 23) implies that Dt̃ < D′
t̃
. Because |Sθ | > |S′

θ ′ |, it 
follows from the expression for at that at̃ ≤ a′

t̃
, contradicting the claim established above. This 

completes the proof.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2021 .105347.
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