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Abstract

This paper considers a moral hazard model with agent limited liability. Prior to interacting with the 
principal, the agent designs the production technology, which is a specification of his cost of generating 
each output distribution. After observing the production technology, the principal offers a payment scheme 
and then the agent chooses a distribution over outputs. We show that there is an optimal design involving 
only binary distributions (i.e., the cost of any other distribution is prohibitively high), and we characterize 
the equilibrium technology defined on the binary distributions. Notably, the equilibrium payoff of both 
players is 1/e.
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1. Introduction

A central result in contract theory is that agency rents are a key source of economic welfare. 
When analyzing environments with asymmetric information, most microeconomic models take 
the determinants of these agency frictions as given. In hidden-information models, for example, 
the distribution of types, which determines information rents, is typically treated as exogenous. 
Similarly, in principal-agent problems with hidden actions, the production technology available 
to the agent, which governs the principal’s cost of implementing various actions, is usually part 
of the model description. However, if an agent’s payoff depends on agency frictions, then he is 
likely to pursue generating these frictions in a way that enhances his payoff. The goal of this 
paper is to reconsider the standard limited-liability moral hazard problem and understand how 
an agent might maximize rents by optimally designing the production technology.

For a potential application where such a problem may arise, consider an entrepreneur who 
is starting a business, and will eventually need venture capital backing to grow it. Prior to con-
tracting with venture capitalists, he must make a host of choices pertaining to the product, the 
business model, the product market strategy, and so on.1 If the venture capitalist has strong bar-
gaining power, the entrepreneur benefits from making choices that exacerbate the moral hazard 
problem to increase agency rents. Even if there were more profitable alternatives, they may not 
be considered in the contractual negotiations if the venture capitalist is unaware of them.

Identifying the agent-optimal technology turns out to be useful even in those environments 
where the agent has no meaningful way of influencing the production technology and, from his 
viewpoint, it is given exogenously. Indeed, we are able to express predictions regarding surplus 
sharing in principal-agent models with limited liability that are robust to the set of available 
technologies. Specifically, we characterize the entire set of payoff combinations in such models 
which can arise for some production technology.2 The agent-optimal technology corresponds to 
an extreme point in this set at which the agent’s payoff is maximal. This exercise is similar in 
spirit to that of Bergemann et al. (2015), who characterize the set of consumer and seller payoffs 
in a model of third-degree price discrimination for some information of the seller.3

In the baseline setup, we consider a risk-neutral agent who can choose a production technol-
ogy (or “project”) before interacting with a principal.4 A production technology specifies the 
agent’s cost of each output distribution with support contained in [0,1]. That is, the only restric-
tion on the available projects is that output is uniformly bounded. Such a bound may represent a 
physical constraint and is normalized to one. After observing the agent’s project, the principal of-
fers a wage contract, which is a mapping from output realizations to monetary compensation. We 
assume that the agent has limited liability and hence the payment must be non-negative. Finally, 
the agent chooses an output distribution at a cost determined by his first-stage choice.

In order to focus on the incentives to generate agency rents we consider a particularly stylized 
model which abstracts from a number of forces that may have first-order importance in applica-
tions. Perhaps most importantly, the agent in our model does not incur any costs in choosing a 
production technology. In practice, developing a project is likely to require a substantial amount 
of irreversible investment. In fact, the necessity of such investments may prevent the technology 

1 A sizable literature on entrepreneurship examines the decisions of entrepreneurs when developing a business. See 
Gans et al. (2019) for a recent review.

2 To be precise, we characterize this set as a function of the largest possible output realization.
3 See also Garrett (2021) for a related exercise in a setting with moral hazard and adverse selection.
4 We extend our analysis to environments where the agent is risk averse in the Online Appendix.
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from being renegotiated at the contracting stage. The reason is that, even if both parties are aware 
of production technologies that are more profitable than the one put forward by the agent, they 
would not be implemented if modifying the agent’s project is too expensive.5 Since the agent 
chooses the production technology before the contracting stage, our model is a hold-up problem. 
The expense of modifications could also prevent the agent from secretly adjusting the technology 
after contracting to make the chosen output distribution less costly, helping to make the agent’s 
commitment to the technology credible.6

We also recognize that, in practice, the agent’s ability to shape the production technology may 
be severely limited. For example, some output distributions may be impossible to generate. The 
constraints on the set of available technologies are likely to be important determinants of the 
optimal design. However, even when the space of projects is restricted, our main result holds as 
long as this space includes the agent-optimal technology. Moreover, in the Discussion Section, 
we demonstrate that our analysis can accommodate certain moment constraints on the domain of 
production technologies.

Our first main result is that the optimal project involves only binary distributions on {0,1}.7
In other words, the cost of all other distributions can be assumed to be so high that the principal 
never wants to implement them, and the agent would never choose them irrespective of the pay-
ment scheme. This means that the equilibrium project can be thought of as a task which yields 
a positive payoff only if completed. The production technology specifies the cost of each prob-
ability of completion. The principal’s wage contract can be viewed as a bonus paid for project 
completion, with payments set to zero otherwise.

Let us explain the optimality of binary projects. Just like in standard moral hazard problems, 
output plays a dual role in our model. On the one hand, it is the principal’s revenue, and on the 
other hand, it is an informative signal about the output distribution chosen by the agent, which 
is used by the principal to incentivize the agent. By the Informativeness Principle, if this signal 
is made less informative, incentivizing the agent becomes more expensive. The key observation 
is that each binary distribution with support {0,1} can be viewed as a garbling of a distribution 
with the same mean. Consider now a transformation of each project so that, if the agent incurs 
a cost of a distribution, output is distributed according to the binary distribution with the same 
mean. This means that the agent’s cost of inducing a given level of expected output remains the 
same in the transformed project but the principal’s cost of implementing it goes up. In this sense, 
such a transformation exacerbates the moral hazard problem. We show how this observation can 
be used to replace any project with a binary one for which the agent’s payoff is at least as high.

Our second main result is a full characterization of the optimal binary project. In this project, 
the cost of completing the task with probability 1/e is zero. That is, even if the agent incurs no 
cost, project completion can be achieved with probability 1/e. In equilibrium, the principal offers 
a bonus which induces the agent to complete the project with probability one. Furthermore, the 
principal is indifferent between offering this bonus and anything less than that. This indifference 
condition pins down the cost to the agent of any probability of success between 1/e and one. 

5 Gans et al. (2019) argue that many of the decisions an entrepreneur takes during business development cannot be 
revisited or renegotiated.

6 Another consideration that may rule out secret deviations by the agent is monitoring by the principal. The principal 
may not permit the agent to adjust the project initially proposed, especially if she finds it costly to evaluate all the 
implications of the adjustments.

7 While there is some multiplicity of optimal projects, we show in Appendix B that all optimal projects share the same 
essential attributes, so we write informally of “the” optimal project.
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Since the marginal cost of the success probability is less than one and the maximal output is 
produced surely, the equilibrium is ex-post efficient. That is, given the equilibrium production 
technology, the allocation is efficient. It turns out that the optimal project yields an equal split of 
surplus: both the principal and the agent earn payoff 1/e.

The first-best social surplus in our model is one since projects that can generate output one 
at no cost are feasible. Of course, the agent does not choose such a project because then the 
principal could achieve the maximal output without making any payment. To earn rents, the 
agent designs the technology so that generating high expected output is artificially costly. In fact, 
since the equilibrium output is one with probability one, the only source of distortion induced 
by the optimal design relates to this cost. This might be considered a form of “cost padding”, 
different from others identified in the literature.8

As mentioned above, an identifying feature of the optimal project is that the principal is in-
different between implementing a large range of completion probabilities. Let us explain the 
economic reasoning behind this feature. Note that, since the agent receives the bonus offered by 
the principal with the probability of completion, her marginal benefit at each completion proba-
bility is the bonus. Hence, at the agent’s optimal completion probability, the marginal cost equals 
the bonus. This means that the principal’s expected payment to implement a given completion 
probability is increasing in the marginal cost at that probability, so lowering this marginal cost 
makes it more attractive to the principal to implement the completion probability. However, if the 
principal strictly prefers to implement the equilibrium probability of completion to implementing 
some smaller probabilities, then the marginal costs at these smaller probabilities can be lowered 
without affecting the principal’s equilibrium choice. Since the cost of a completion probability 
is the integral of the marginal costs of smaller probabilities, such a modification of the project 
decreases the agent’s total cost and thus increases his overall payoff (while the principal is still 
willing to offer the same bonus that implements the equilibrium completion probability). The 
agent can improve any project in this way unless the principal is indifferent between implement-
ing any completion probability which has a positive marginal cost.

We demonstrate that our main results remain valid even if the agent is risk averse.9 In particu-
lar, the search for an optimal project can still be restricted to the set of binary projects. Moreover, 
the optimal binary project is still ex-post efficient; that is, the principal implements completion 
probability one. The optimal binary project is still characterized by the requirement that the prin-
cipal must be indifferent between offering the equilibrium bonus and anything less than that. Of 
course, the equilibrium payoffs of the principal and the agent are no longer 1/e and they depend 
on the agent’s concave utility function.

Despite the fact that our model is stylized, we believe that there are a number of lessons 
emerging from our analysis which may be useful in applications. First, a general message is that 
the agent in a technology design problem will often commit to a project that is not cost-efficient. 
By padding costs, he may be able to earn additional rents. Second, there is reason to expect 
that, where possible, an agent’s optimal technology will be binary. That is, the project essentially 
specifies a task and the agent either completes it or fails to solve it. More generally, the agent 
is likely to favor designs where the information content of output regarding his effort is limited. 
The reason is that this makes it more expensive for the principal to induce the target level of 
effort. A third observation that we expect to generalize is the importance of principal incentive 

8 For example, Averch and Johnson (1962) observe that a regulated firm has incentives to inflate capital costs.
9 See the Online Appendix.
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constraints in the design of the agent’s project. The agent’s design must dissuade the principal 
from choosing ungenerous incentive schemes that give the agent little rent. Where such incentive 
constraints are slack, however, it may be possible for the agent to redesign the project to lower 
his equilibrium cost.

Finally, we characterize the payoff combinations that can arise in limited-liability moral haz-
ard problems for some exogenously given technology where output is restricted to the interval 
[0,1]. This follows by first identifying the largest payoff the agent can achieve as a function of a 
given profit of the principal. The domain of this function is the interval [0,1] because the prin-
cipal can always guarantee a nonnegative profit by offering zero wage and she cannot get more 
than the maximal output. This function is shown to be strictly concave and zero at the boundaries 
of its domain. We argue that a payoff profile can be generated by some production technology if 
and only if it lies weakly below this curve.

The rest of the paper is as follows. Next we discuss related literature. Section 2 introduces 
the model, Section 3 provides our characterization of the agent’s optimal project, and Section 4
provides discussion and extensions, including the characterization of the set of possible player 
payoffs. Appendix A provides proofs not given in the main text and Appendix B discusses the 
uniqueness of the agent’s optimal project. The Online Appendix solves the agent’s project design 
problem when the agent is risk averse.

Literature.— The limited liability model of moral hazard for a risk-neutral agent is a staple 
of introductory courses on contract theory, where a restriction to binary output (which emerges 
endogenously in our setting) is often made for tractability. A classic reference for limited-liability 
moral hazard is Innes (1990), who demonstrates the optimality of simple debt contracts in a 
model with a continuum of outputs. More recent treatments of moral hazard with limited liability 
include Poblete and Spulber (2012) for a model with a continuum of outputs and Ollier and 
Thomas (2013) for a model with binary output, but complicated by the presence of adverse 
selection.10

While the models discussed above feature a risk-neutral agent with limited liability, the al-
ternative friction commonly explored is risk aversion. Seminal work for the moral hazard model 
with a risk-averse agent includes Mirrlees (1976), Holmstrom (1979), Grossman and Hart (1983), 
Rogerson (1985) and MacLeod (2003); see Bolton and Dewatripont (2005) and Holmstrom 
(2017) for comprehensive treatments, and Georgiadis (2022) for a review. More recently, a strand 
of this literature has focused on models where the agent can shape the entire distribution of output 
under different assumptions about the cost of distributions (Hebert, 2018; Bonham and Riggs-
Cragun, 2021, Georgiadis et al., 2022, and Mattsson and Weibull, 2022). The focus of the moral 
hazard literature, then, has been on contract design taking the agent’s technology as given. Our 
paper departs from this approach by viewing the production technology as a choice of the agent, 
raising the problem of technology design. We are unaware of this kind of problem being posed 
elsewhere in the moral hazard literature.

The question of project design is also related to work on how the primitive contractual en-
vironment affects payoffs in moral hazard problems. A relevant example in our context is the 
development of the Informativeness Principle by Holmstrom (1979), which was later refined for 

10 Also related are Carroll (2015) who studies a principal facing ambiguity with respect to the agent’s technology, Laux 
(2001) who considers agents with multiple projects, and Jewitt et al. (2008) who explore general bounds on payments 
beyond limited liability.
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instance by Chaigneau et al. (2019). These papers clarify how additional information about the 
agent’s action can reduce agency costs for the principal.

Another related paper is Condorelli and Szentes (2020) who study the problem of optimally 
generating information rents in the context of a bilateral trade model. Before interacting with the 
seller, the buyer can choose the distribution of her valuation for the seller’s good. This choice is 
observed by the seller before she makes a take-it-or-leave-it offer. It turns out that the equilibrium 
distribution generates a unit-elastic demand, that is, it makes the seller indifferent between setting 
any price on its support. This is reminiscent of our optimal binary project which makes the 
principal indifferent across a range of bonuses.11 This similarity might explain why, when the 
buyer is restricted to choose distributions with support in the interval [0,1], the equilibrium 
payoffs of the buyer and the seller are also 1/e. We further elaborate on the relationship between 
these two results in Section 4.12

2. Model

We consider a game between a principal (she) and an agent (he), which proceeds as follows. 
In the first stage, the agent chooses a cost function c : F → R+ ∪ {+∞}, where F denotes 
the set of CDFs with support on [0,1]. We refer to such a function c as a project. Then, after 
observing c, the principal offers a payment scheme w : [0, 1] → R+, which is restricted to be 
Borel-measurable.13 Finally, after observing the offered payment scheme, the agent chooses a 
distribution F ∈ F , and output is realized according to F .14 If the realized output is x then the 
agent’s and principal’s payoffs are w(x) − c (F ) and x − w (x), respectively. Both parties are 
expected payoff maximizers.

Notation.— For each F ∈F , let μF denote the expected value of F , that is, μF = ∫ 1
0 xdF (x). 

The set of projects and the set of Borel-measurable payment schemes are denoted by C and W , 
respectively. We refer to a triple (c,w,F ) ∈ C ×W ×F as an outcome. Let U and � denote the 
expected payoffs of the agent and the principal defined on the outcomes; that is,

U (c,w,F ) =
1∫

0

w (x)dF (x) − c (F ) , and �(w,F) =
1∫

0

[x − w (x)]dF (x) .

Equilibrium in a Project.— Loosely speaking, we wish to call a pair (w,F ) ∈ (W,F) an equi-
librium in project c ∈ C if it satisfies the following two requirements. First, the distribution F is 
incentive compatible (or a best response) for the agent given project c and the payment sched-
ule w. Second, the payment scheme w is incentive compatible for the principal given project c. 
Formal statements of the incentive compatibility constraints and the equilibrium definition are 
provided below.

11 Such an indifference argument has appeared in the contexts of incentivizing monitoring (Ortner and Chassang 
(2018)), optimal testing (Perez-Richet and Skreta (2018)) and monopoly pricing in the presence of ambiguity (Berge-
mann and Schlag (2011)).
12 Also related, Roesler and Szentes (2017) consider a setting where signals inform an otherwise uninformed buyer of 
his value, and ask which signal structure yields the highest information rent.
13 Non-negativity of payments encodes the limited-liability constraint.
14 That the agent can choose any distribution on [0,1] departs from much of the moral hazard literature, where the output 
distribution is parameterized by a one-dimensional variable called “effort”. We view the agent’s chosen distribution as 
synonymous with his action, an approach also taken for instance by Carroll (2015).
6
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Optimal Projects.— We define the project c to be optimal if there is an equilibrium (w,F ) in c
such that the agent’s payoff in outcome (c,w,F ) is larger than in any outcome 

(
c′,w′,F ′) such 

that 
(
w′,F ′) is an equilibrium in c′. Thus, we assess the optimality of a project c that induces 

multiple equilibria by considering those which give the highest payoff to the agent. This is in 
line with the approach prevalent in mechanism design, where the designer is permitted to pick 
the most favorable equilibrium.

Incentive Compatibility.— We say that choosing F is incentive compatible for the agent in the 
subgame (c,w) if

U (c,w,F ) ≥ U
(
c,w,F ′) for all F ′ ∈F . (1)

To describe the principal’s incentive constraint is harder because the agent may not have a best 
response in a subgame generated by a pair (c,w). In turn, this can make it difficult to assess the 
profitability of certain deviations. To circumvent this problem, we define the value of the agent, 
u (c,w), in each subgame (c,w), by

u (c,w) ≡ sup
F∈F

U (c,w,F ) .

We aim to define the value of the principal in a subgame (c,w) by reference to sequences of 
distributions along which the agent’s payoff converges to his value. In general, there may be many 
such sequences, potentially generating different limit payoffs to the principal. Let Fc,w denote 
the set of sequences of distributions (Fn) along which the agent’s payoff converges to u (c,w). 
Formally, (Fn) ∈ Fc,w if and only if limn→∞ U (c,w,Fn) = u (c,w). Then, the principal’s value 
in subgame (c,w) is given as

π (c,w) ≡ sup

{
lim sup
n→∞

�(w,Fn) : (Fn) ∈ Fc,w

}
.

Evaluating the principal’s value by reference to the supremum is again in the spirit of the ap-
proach prevalent in mechanism design, where the principal is permitted to pick the most favorable 
best response of the agent. The principal’s incentive compatibility constraint guaranteeing that 
she offers payment schedule w in project c can be stated as follows: for all w′ ∈W ,

π (c,w) ≥ π
(
c,w′) . (2)

That is, the principal cannot gain by deviating to a payment schedule w′, whether or not the agent 
has a best response to w′.

Equipped with the incentive compatibility constraints, we are ready to define equilibria for-
mally.

Definition. The pair (w, F) is said to be an equilibrium in project c if

(i) the distribution F satisfies (1),
(ii) the payment scheme w satisfies (2), and

(iii) �(w, F) = π(c, w).

Observe that Part (iii) requires that the distribution F indeed generates the principal’s value 
in subgame (c, w).
7
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Binary Projects and Linear Contracts.— As mentioned in the Introduction, binary projects 
play an important role in our analysis. Next, we formally define these projects. We call a dis-
tribution in F binary if its support is contained in {0,1}. For each μ ∈ [0,1], let Bμ denote the 
binary CDF which specifies an atom of size μ at one. Note that the mean of Bμ is also μ. Let B
denote the set of binary distributions; that is, B ={

Bμ : μ ∈ [0,1]
}
. We call a project c binary if 

c (F ) = +∞ whenever F /∈ B.
In each binary project, the principal always finds it optimal to offer a compensation scheme 

which pays zero if output is zero. So, the optimal payment scheme can be summarized by a single 
bonus, b, which is paid to the agent if output is one. If the project is binary, the wage at output 
x /∈ {0,1} is irrelevant, so without loss of generality, such a wage contract can be assumed to be 
linear, denoted by wb, that is, wb (x) = bx for all x.

If the principal offers a linear contract, wb, the output distribution affects the payoffs of the 
agent and the principal only through its mean. That is, whether or not the project is binary,

U (c,wb,F ) = μF b − c (F ) , and �(w,F) = μF (1 − b) . (3)

This implies that, if the principal offers a linear contract to which the agent has a best response, 
this best response must involve a distribution which is the least costly among those with the same 
mean.

3. Main results

This section is devoted to our two main results. In the next section, we show that it suffices to 
restrict attention to binary projects and, in Section 3.2, we fully characterize an optimal binary 
project.

3.1. Binary projects

In this section, we fix a project c∗ and an equilibrium (w∗,F ∗) in c∗. Our aim is to construct 
a binary project ̃c and an equilibrium (w̃, F̃ ) in ̃c so that the outcome (̃c, ̃w, F̃ ) Pareto dominates 
the outcome (c∗,w∗,F ∗). Since c∗ can be an optimal project, this result implies that there exists 
an optimal project in the class of binary projects.

As explained in the Introduction, the key observation for this result is that an output realiza-
tion not only determines the principal’s payoff, but also serves as an informative signal about the 
agent’s action. If this signal is made less informative in the sense of Blackwell, incentivizing the 
agent becomes harder for the principal. To see how an output distribution can be made less in-
formative, consider the following garbling: instead of observing output x, the principal observes 
output one with probability x and output zero otherwise. That is, the garbling of each F ∈ F is 
BμF

, so the expected output is unaffected. In fact, BμF
is the least informative garbling of F , as 

the same transformation can be applied to any other garbling of F which would again result in 
BμF

. So, if the principal could contract only on the realization of BμF
but not on that of F , her 

wage cost of implementing F would increase. We next explain how this observation can be used 
to transform the project c∗ to a binary one which is more beneficial for the agent.

The idea behind the construction of the binary project, ̃c, is as follows. First, define the agent’s 
cost of any binary distribution to be the cost of the cheapest distribution in project c∗ with the 
same mean. In this binary project, the principal’s wage cost of attaining any level of expected 
output is higher than in project c∗. In fact, the wage cost of generating μF ∗ may be so high that 
the principal prefers to implement a distribution with a lower mean, thus saving on payments to 
8
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the agent. In this case, the payoffs of both parties can be lower. Therefore, we further modify 
the binary project by reducing the agent’s cost of BμF∗ so that the principal can implement it at 
exactly the same wage cost as that of F ∗ in c∗.

Before stating the main result of this section, let us introduce an additional piece of notation. 
Note that the expected payment in outcome (c∗,w∗,F ∗) is EF ∗

[
w∗]. If μF ∗ > 0 (as must be the 

case if the outcome is optimal for the agent), we can define b∗ to equal EF ∗
[
w∗]/μF ∗ . We can 

then observe that15

EF ∗
[
w∗] = μF ∗b∗ = EF ∗ [wb∗ ] = EBμF∗ [wb∗ ] . (4)

That is, the expected payment induced by the pair (w∗,F ∗) is the same as that induced by (
wb∗ ,BμF∗

)
.

Proposition 1. Suppose that (w∗,F ∗) is an equilibrium in project c∗ with μF ∗ > 0. Then there 
exists a binary project, ̃c, such that

(i)
(
wb∗ ,BμF∗

)
is an equilibrium in ̃c,

(ii) U (c∗,w∗,F ∗) ≤ U
(̃
c,wb∗ ,BμF∗

)
, and

(iii) � (w∗,F ∗) = � 
(
wb∗ ,BμF∗

)
.

Let us describe the binary project ̃c and the main arguments in the proof of the proposition. 
It turns out that, in this binary project, the agent’s rent can be ensured by making it hard for 
the principal to dissuade the agent from deviating downwards (i.e., to distributions with lower 
means). Upwards deviations need not play a role, so we specify the agent’s cost of each Bμ with 
μ > μF ∗ to be infinity throughout the construction. We now explain the two steps of constructing 
c̃ from c∗ in more detail. In the first step, we take the agent’s cost of BμF∗ to also be infinite. For 
each μ < μF ∗ , we specify the cost of Bμ to be the cost of the cheapest distribution in project c∗
with expectation μ.16 We then prove that, in order to achieve any expected output, the principal 
must make a higher expected payment in this binary project than in c∗. In the second step, we 
redefine the agent’s cost of BμF∗ so that the principal’s wage cost of implementing BμF∗ is 
exactly EF ∗

[
w∗] = EBμF∗ [wb∗ ], thus obtaining the project c̃. We show that the agent’s cost 

of BμF∗ in c̃ is less than c∗ (F ∗). This means that, by Equation (4), Parts (ii) and (iii) of the 
proposition are satisfied.

We now explain how to obtain Part (i). Note that, by our choice of the agent’s cost of the dis-
tribution BμF∗ in project ̃c, the agent best responds to wb∗ by choosing BμF∗ . Therefore, to prove 
that 

(
wb∗ ,BμF∗

)
is an equilibrium in this project, we need to demonstrate only that offering wb∗

is incentive compatible for the principal. By construction, if the principal wants to implement 
BμF∗ , she offers payment schedule wb∗ . She therefore receives a payoff of � (w∗,F ∗). As ex-
plained, attaining any other expected output μ (μ �= μF ∗ ) is more expensive for the principal in 
c̃ than in c∗. Therefore, since the principal found it optimal to implement F ∗ in c∗, she optimally 
chooses to implement BμF∗ in ̃c by offering wb∗ ; that is, wb∗ is incentive compatible in ̃c.

Towards the first step described above, let us define the binary project, ̂c, as follows:

ĉ
(
Bμ

) =
{

inf {c∗ (F ) : μF = μ} if μ < μF ∗ ,

∞ otherwise.

15 Recall that wb∗ (x) = b∗x for all x.
16 We take the infimum in case no cheapest distribution exists.
9
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We next formalize the aforementioned implication of the Informativeness Principle; in particu-
lar, we demonstrate that the principal is worse off in ĉ than in c∗. In fact, we show that, from 
the principal’s point of view, the transformed project ĉ is worse than being restricted to linear 
contracts in c∗ in the sense that each contract wb generates weakly more profit to the principal in 
project c∗ than in ̂c.

Lemma 1. For all b ∈ [0,1], π (̂c,wb) ≤ π (c∗,wb).

Proof. See the Appendix. �
Let us illustrate the argument behind the proof of this lemma for the case where the principal’s 

value in subgame (c∗,wb), π (c∗,wb), is generated by a best response of the agent. Since the 
agent’s expected payment generated by the linear contract wb depends only on the expected 
output, he chooses a distribution only if it is the cheapest among those with the same mean. 
Therefore, the agent’s value in subgame (c∗,wb) is

sup
μ∈[0,1]

{
μb − inf

{
c∗ (F ) : F ∈ F , μF = μ

}}
. (5)

This is the same problem as the one which determines the agent’s value in the subgame (̂c,wb), 
except that in the latter, the domain is effectively restricted to be [0, μF ∗). Suppose now that 
F is incentive compatible in (c∗,wb) and generates the principal’s value. That is, μF solves 
the problem in (5) and π (c∗,wb) = � (wb,F ). If μF < μF ∗ , then μF also solves the agent’s 
problem with the restricted domain, implying that BμF

is incentive compatible in (̂c,wb). In 
this case, π (̂c,wb) = μF (1 − b) = π (c∗,wb). If μF ≥ μF ∗ , then the principal’s value is at 
least μF ∗ (1 − b) in the subgame (c∗,wb), so π (c∗,wb) ≥ μF ∗ (1 − b) ≥ π (̂c,wb), where the 
second inequality holds because, in project ̂c, the agent never chooses a distribution which has 
mean larger than μF ∗ .

We are now ready to define project ̃c. Our aim is to modify ̂c at BμF∗ so that 
(
wb∗ ,BμF∗

)
is an 

equilibrium in project ̃c. On the one hand, this requires the cost of BμF∗ to be sufficiently small 
to guarantee that BμF∗ is a best response to wb∗ . On the other hand, this cost cannot be too small, 
for otherwise BμF∗ could be implemented with a bonus smaller than b∗. Therefore, we specify 
the cost of BμF∗ to be the largest cost at which the agent still best responds to wb∗ by choosing 
BμF∗ . This cost, denoted by c, satisfies μF ∗b∗ − c = sup

{
μb∗ − ĉ

(
Bμ

)}
. The binary project ̃c

is defined as follows:

c̃ (F ) =
{

c if F = BμF∗ ,

ĉ (F ) if F �= BμF∗ .

Next, we demonstrate that the outcome 
(̃
c,wb∗ ,BμF∗

)
Pareto dominates (c∗,w∗,F ∗). To this 

end, we first argue that the cost of BμF∗ in project ̃c is weakly smaller than c∗ (F ∗). Suppose, for 
a contradiction, that c > c∗ (F ∗). Then,

μF ∗b∗ − c∗ (
F ∗) > μF ∗b∗ − c = sup

{
μb∗ − ĉ

(
Bμ

)}
= sup

{
μF b∗ − c∗ (F ) : F ∈F ,μF < μF ∗

}
,

where the two equalities follow from the definitions of c and ̂c, respectively. By continuity, this 
chain implies the existence of b < b∗ such that

μF ∗b − c∗ (
F ∗) > sup

{
μF b − c∗ (F ) : F ∈F ,μF < μF ∗

}
.

10
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This means that offering the linear contract wb in project c∗ provides the principal with a 
value at least μF ∗ (1 − b), which is strictly more than her equilibrium payoff, � (w∗,F ∗) =
μF ∗ (1 − b∗). This contradicts the incentive compatibility of w∗ in c∗.

We are now ready to show that the agent is weakly better off in the outcome 
(̃
c,wb∗ ,BμF∗

)
than in (c∗,w∗,F ∗). Indeed,

U
(
c∗,w∗,F ∗) = μF ∗b∗ − c∗ (

F ∗) ≤ μF ∗b∗ − c̃
(
BμF∗

) = U
(̃
c,wb∗ ,BμF∗

)
, (6)

where the equalities follow from (4) and the inequality follows from c̃
(
BμF∗

) = c ≤ c∗ (F ∗). 
Also note that (4) implies that the principal’s payoffs are the same in these two outcomes:

�
(
w∗,F ∗) = μF ∗ −EF ∗

[
w∗] = μF ∗

(
1 − b∗) = �

(
wb∗ ,BμF∗

)
. (7)

We defined ̃c
(
BμF∗

)
so that the payment schedule wb∗ implements BμF∗ in project ̃c. Next, 

we confirm that the principal cannot implement BμF∗ in project ̃c with any payment schedule wb

such that b < b∗. This means that the principal’s value from offering wb in project ̃c is the same 
as in project ̂c.

Lemma 2. For all b ∈ [0, b∗), π (̃c,wb) = π (̂c,wb).

Proof. See the Appendix. �
Let us illustrate the argument of the proof for the case where the agent has a best response 

to wb∗ in project ̂c, say Bμ′ (with μ′ < μF ∗ ); that is, μ′b∗ − ĉ
(
Bμ′

) = sup
{
μb∗ − ĉ

(
Bμ

)}
. By 

the definition of c̃, this means that μ′b∗ − c̃
(
Bμ′

) = μF ∗b∗ − c̃
(
BμF∗

)
. Since μ′ < μF ∗ , this 

equality implies that, for all b ∈ [0, b∗), μ′b − c̃
(
Bμ′

)
> μF ∗b − c̃

(
BμF∗

)
, implying that BμF∗

is not incentive compatible in (̃c,wb). Since the projects ̃c and ̂c are identical on the rest of their 
domains, the statement of the lemma follows.

Finally, we are ready to prove Proposition 1.

Proof of Proposition 1. Observe that the outcome 
(̃
c,wb∗ ,BμF∗

)
satisfies Parts (ii) and (iii) of 

the proposition by Equations (6) and (7), respectively. Therefore, we only need to establish Part 
(i); that is, we need to argue that 

(
wb∗ ,BμF∗

)
is an equilibrium in project ̃c. By the definition of 

c, BμF∗ is incentive compatible in the subgame (̃c,wb∗). Next, we prove that wb∗ is incentive 
compatible in ̃c.

If b > b∗, then

π (̃c,wb) ≤ μF ∗ (1 − b) < μF ∗
(
1 − b∗) = �

(
wb∗ ,BμF∗

)
,

where the first inequality follows from ̃c
(
Bμ

) = ∞ for all μ > μF ∗ , and the second inequality 
is implied by b > b∗.

If b < b∗, then

π (̃c,wb) ≤ π
(
c∗,wb

) ≤ �
(
w∗,F ∗) = �

(
wb∗ ,BμF∗

)
where the first inequality follows from Lemmas 1 and 2, the second one follows from (w∗,F ∗)
being an equilibrium outcome in project c∗, and the equality is implied by the definition of 
b∗. �
11
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3.2. Optimal project

Each binary project, c, can be described by specifying the cost of each probability of success 
through a function C : [0,1] → R+. In particular, we set C (μ) = c

(
Bμ

)
for all μ, and we keep 

in mind that the cost of a non-binary distribution is infinity. Recall that, in binary projects, it is 
without loss of generality to restrict attention to bonus contracts, wb, where the agent is paid b
if output is one. Finally, the agent’s choice of distribution Bμ can be identified by its mean, μ
(equivalently, by its “completion probability”). In what follows, we describe each binary outcome (
c,wb,Bμ

)
by a triple (C,b,μ).

We are ready to state the main result of this section.

Proposition 2. There is an optimal binary project, C∗, and an agent-optimal equilibrium in C∗, 
(b∗,μ∗), such that

(i) C∗′ (μ) = 1 − 1/ (eμ) if μ ≥ 1/e and zero otherwise,
(ii) b∗ = 1 − 1/e, and

(iii) μ∗ = 1.

Proposition 2 describes an optimal binary project in terms of the marginal costs of the possible 
completion probabilities. Of course, adding a fixed cost has no impact on incentives, so C∗ (0) =
0. We explain below that the functional form of the marginal cost in Part (i) is pinned down by the 
requirement that the principal be indifferent between implementing a large range of completion 
probabilities. To this end, we sketch an argument for Proposition 2 that restricts the agent to 
choose cost functions C that are non-decreasing, differentiable, and such that equilibrium can be 
determined using the first-order approach. The formal proof in the Appendix uses an envelope 
type argument to determine the agent’s payoff and does not rely on any such restrictions.

We view the agent’s problem of finding an optimal binary project as a maximization prob-
lem subject to incentive compatibility constraints. Our argument can be understood in terms of 
backward induction. We first determine a condition relating the principal’s choice of bonus b
to the agent’s optimal choice of completion probability μ. We can then determine a condition 
on the project C for the principal to implement a given completion probability μ. Finally, we 
consider optimizing the agent’s payoff over the project C and the completion probability μ to be 
implemented by the principal, subject to the constraints determined in the previous steps.

Let us then describe the agent’s incentive constraint in a subgame (C,b). Note that, at this 
stage, the agent’s problem is to solve maxμ̂∈[0,1] {μ̂b − C (μ̂)}. Then the requirement on the 
reward b ensuring the agent chooses a given completion probability μ can be described by the 
first-order condition

b = C′ (μ) . (8)

We now turn to the incentive constraint of the principal. In project C, the principal’s problem 
is

max
μ∈[0,1],b∈R+

μ(1 − b)

subject to the constraint that μ and b satisfy Equation (8). Plugging the constraint into the maxi-
mand, the principal’s problem can be expressed solely in terms of the completion probability she 
wants to implement; that is, maxμ∈[0,1] μ 

(
1 − C′ (μ)

)
. So, in project C, the principal’s choice of 

μ must satisfy
12
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μ
(
1 − C′ (μ)

) ≥ μ̃
(
1 − C′ (μ̃)

)
, (9)

for all μ̃ ∈ [0,1].
We are now ready to state the project selection problem. As anticipated above, we include the 

completion probability μ as a choice variable alongside the cost function C. This is important 
because the principal may be indifferent between implementing various completion probabilities, 
generating different payoffs for the agent. The interpretation of including μ as a choice is that, 
after designing the project, the agent makes a recommendation to the principal regarding which 
μ to implement. The agent’s first-stage problem can be written

max
C,μ,b

μb − C (μ)

s.t. (8) and (9).

Alternatively, plugging the constraint (8) into the maximand, it can be written as

max
C,μ

μC′ (μ) − C (μ) (10)

s.t. (9).

Now let us explain that, if (Ĉ, ̂μ) solves this problem, the constraint (9) must bind at each 
μ̃ < μ̂ such that Ĉ′ (μ̃) > 0. To understand this observation, notice first that the agent’s cost 
of μ̂ must be given by Ĉ (μ̂) = ∫ μ̂

0 Ĉ′ (μ̃) dμ̃, since Ĉ (0) = 0.17 Hence, reducing the marginal 
cost Ĉ′ (μ̃) for any μ̃ < μ̂ implies a reduction in the cost Ĉ (μ̂). However, the possibility to 
reduce the marginal costs Ĉ′ (μ̃) is restricted by the constraint (9) evaluated at (C,μ) = (Ĉ, ̂μ). 
We can conclude that, for the optimum (Ĉ, ̂μ), the constraint (9) binds for all μ̃ < μ̂ as long 
as Ĉ′ (μ̃) > 0, implying that the principal is indifferent between implementing any completion 
probability below μ̂ which has a strictly positive marginal cost.

Our next aim is to use this indifference condition to reduce the agent’s problem in (10) to a 
two-dimensional problem by replacing the domain of projects by the principal’s possible equilib-
rium payoffs. To this end, note that if (Ĉ, ̂μ) solves (10), then Ĉ′ can be expressed in terms of the 
principal’s equilibrium payoff, π̂ ≡ μ̂

(
1 − Ĉ′ (μ̂)

)
. Indeed, the binding constraint (9) evaluated 

at (C,μ) = (Ĉ, ̂μ) can be written as

Ĉ′ (μ̃) =
{

0 if μ̃ < π̂

1 − π̂
μ̃

if μ̃ ∈ [π̂ , μ̂] .
(11)

Consequently, the agent’s problem in (10) can be rewritten as

max
μ̂,π̂∈[0,1]

μ̂

(
1 − π̂

μ̂

)
−

μ̂∫
π̂

(
1 − π̂

μ̃

)
dμ̃. (12)

To conclude Proposition 2, observe that

μ̂

(
1 − π̂

μ̂

)
−

μ̂∫
π̂

(
1 − π̂

μ̃

)
dμ̃ =

μ̂∫
π̂

π̂

μ̃
dμ̃ = π̂

[
log μ̂ − log π̂

]
, (13)

17 Note that Ĉ (0) = 0 follows because, if Ĉ (0) > 0, we could reduce all costs by this amount, keeping the players’ 
incentives unchanged, but increasing the agent’s equilibrium payoff.
13
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Fig. 1. The shaded area represents the set of payoffs for the principal and the agent that arise for some technology of the 
agent. The players’ payoffs under the optimal project characterized in Proposition 2 are illustrated by the dot.

which is maximized at μ̂ = 1 and ̂π = 1/e. This explains how we obtain Parts (ii) and (iii) of the 
proposition. In particular, the principal’s profit in an optimal outcome is π∗ = μ∗ (1 − b∗) = 1/e, 
and since μ∗ = 1, we have b∗ = 1 − 1/e. Finally, note that evaluating the right-hand side of (11)
at μ̂ = 1 and π̂ = 1/e yields Part (i) of the proposition.

Finally, we compute the payoffs of the agent and the principal in the outcome (C∗, b∗,μ∗). 
As mentioned above, the principal’s equilibrium payoff is μ∗ (1 − b∗) = 1/e. The agent’s payoff 
is pinned down by evaluating (13) at (μ∗,π∗) = (1,1/e), also yielding 1/e.

4. Discussion

Payoff Possibility Set.— We can use our results to characterize the set of possible payoff com-
binations which can arise in principal-agent models for some arbitrary production technology. To 
be more specific, we still consider an environment where the agent is risk neutral and has limited 
liability. However, the production technology is exogenously given and satisfies the constraint 
that the largest output cannot exceed one. Moreover, the agent has an outside option we take to 
be zero. We wish to characterize those payoff profiles which can arise in equilibrium for some 
production technology. We next show that there exists a production technology where the princi-
pal receives ̂π and the agent receives ̂u if and only if ̂π ∈ [0,1] and ̂u ∈ [

0,−π̂ log π̂
]
; see Fig. 1

for illustration.
First note that the principal’s payoff, π̂ , must be between zero and one. The reason is that 

the contract w0 guarantees at least zero profit. Since output is less than one, limited liability 
implies that the profit cannot exceed one. Next, we identify the frontier of the payoff possibil-
ity set. That is, we compute the largest payoff the agent can get if the principal’s payoff is π̂ . 
By Proposition 1, we know that this largest payoff is achieved in a binary project. Furthermore, 
recall that in Section 3.2 we rewrote the problem of designing the optimal binary project as a 
maximization problem with respect to the equilibrium probability of success, μ̂, and the prin-
cipal’s equilibrium profit, π̂ ; see (12). So the problem of designing the agent-optimal binary 
technology which generates π̂ can be reduced to a similar maximization problem except π̂ is 
14
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treated as a parameter instead of a choice variable. By Equation (13), the agent’s maximal payoff 
is −π̂ log π̂ .

Since the agent’s outside option is zero, his equilibrium payoff cannot be negative. It remains 
to argue that given the principal’s payoff, π̂ , for each û ∈ [0, −π̂ log π̂), there is a production 
technology so that the equilibrium payoff profile is (π̂, û). To do so, consider the production 
technology generating (π̂ ,−π̂ log π̂) and add a fixed cost of −π̂ log π̂ − û. That is, the agent’s 
cost of each distribution is increased by this quantity. Adding this fixed cost does not change the 
agent’s incentives, but it lowers his payoff to ̂u.

Competition Among Agents.— As is standard in the literature, we maintained the assumption 
that the principal has full bargaining power and makes a take-it-or-leave-it offer to the agent. 
The principal’s strong bargaining power is often motivated by fierce competition among the 
agents, which is usually left unmodeled. At first glance, such a justification might be questioned 
in our setting because competition could limit the rent an agent can earn from contracting with 
any principal. It is therefore of interest to examine which projects may arise in markets with 
imperfect competition among agents.

One way to understand competition among agents is to consider embedding our model into 
a standard search and matching framework in which one-to-one matches occur over time. Each 
steady state equilibrium in such a model is associated with a continuation value of an unmatched 
principal. So, when an agent designs a project, he must bear in mind that any principal prefers 
to remain unmatched whenever her value from contracting with the agent is less than the con-
tinuation value from further search. As before, the agent’s problem of designing his equilibrium 
project can be understood in terms of maximizing the expression in Equation (13) by choice of 
the completion probability and principal expected profits. The difference, however, is that the 
principal profit, π̂ , is bounded from below by a constant which makes a principal indifferent 
between contracting with the agent and remaining unmatched. The solution to that problem has 
features similar to those of the optimal project described by Proposition 2. In particular, the 
equilibrium completion probability is one and the principal is indifferent between offering the 
equilibrium bonus and anything less than that.

Other Constraints on the Technology.— While we believe there are a range of situations where 
the agent can determine the technology in advance of contracting, in reality the agent’s choice 
of projects would typically be more limited than in our setting where the only constraint is the 
bounds on output. Such constraints on technology design may ultimately be responsible for the 
key properties of the selected project. An example is where noise in the environment prevents dis-
tributions that put mass at the extremes of the possible output values, ruling out binary projects. 
Note also that imposing additional constraints on the set of available technologies is related to 
the possibility that some designs are more costly than others, e.g. binary technologies might be 
feasible but too costly to set up. We have treated in this paper the case where the agent is only 
subject to output bounds, and where all designs are costless to the agent. This was intended as a 
natural first step and helps shed light on the forces at play in the agent’s design problem, while 
future work could examine the choice of projects given different constraints or costly technology 
choice.

In spite of these observations, the analysis in the paper does already allow determination of the 
agent’s optimal project in some situations where he is more constrained. For instance, suppose 
that the choice of project c is restricted to come from a set that contains c∗, a project determined 
to maximize the agent’s payoff in our setting with only bounds on output. Then the same project 
c∗ remains optimal in the more constrained setting. An example is where there is, in addition to 
the output bounds, a lower bound L (μ) on the cost of generating mean output μ. Recall that C∗
15
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is the optimal binary project defined in Proposition 2. Provided L (μ) ≤ C∗ (μ) for all μ ∈ [0, 1], 
then C∗ remains an optimal project for the agent.

There are also cases where constraints on project selection bind, but the optimal project fol-
lows closely from our analysis. Suppose that, in addition to output being bounded between zero 
and one, mean output is restricted to be no greater than some m ∈ (0,1). This constraint does 
not affect any of the arguments needed to obtain Proposition 1, so there is an optimal project 
for the agent which is binary.18 Also, the agent’s maximal payoff in an equilibrium where the 
probability of output one is μ̂ and the principal earns payoff π̂ is still given by the expression 
in Equation (13), following the arguments in the proof of Proposition 2. An optimal project is 
then defined by Equation (11) with μ̂ = m and π̂ = m/e. There is an equilibrium given this bi-
nary project where the principal offers a bonus payment 1 − 1/e for output one (and pays zero 
otherwise), and the agent chooses probability m of output one. We have thus seen that, in the 
mean-constrained version of the problem, the agent’s equilibrium probability of a high output is 
less than one.

Risk Aversion.— Our results can be generalized to the case where the agent is risk averse. 
To explain it more formally, let us modify our model so that, if the agent receives payment w
and chooses F at cost c (F ), then his payoff is v (w) − c (F ), where v is an increasing, concave 
and continuously differentiable function. It can be shown that, even in this case, binary projects 
remain optimal. More precisely, the following version of the statement of Proposition 1 remains 
valid. For each project c∗ and any equilibrium (w∗,F ∗) in c∗, there is a binary project c̃ with 
an equilibrium (w̃,B1) such that the outcome (̃c, w̃,B1) Pareto dominates (c∗,w∗,F ∗). The 
characterization of optimal binary projects follows the same steps as for the risk-neutral case. 
The marginal cost of any completion probability μ > π∗ is v

(
1 − [

π∗/μ
])

, where π∗ is the 
equilibrium payoff of the principal. These claims are proved in the Online Appendix.

Relation to Another Hold-up Problem.— As mentioned in the Introduction, Condorelli and 
Szentes (2020) study a different hold-up problem in the context of bilateral trade. In their model, 
the buyer first chooses the distribution of her valuation for the seller’s good. Then the seller, after 
observing the value distribution, makes a take-it-or-leave-it price offer. It turns out that, when 
the support of any value distribution must be in [0,1], the buyer’s equilibrium CDF, F ∗, has the 
same functional form as C∗′ described in Proposition 2. More precisely, F ∗ (v) = 1 − 1/ (ev) on 
(1/e,1). In what follows, we attempt to illuminate this similarity and the relationships between 
the two models by transforming the buyer’s problem into a strategically equivalent one and show 
that the transformed problem is identical to the constrained maximization problem (10).

First note that by choosing a value distribution, F , the buyer determines his demand curve, 
1 −F . That is, the probability of trade at price p is 1 −F (p). The idea behind the transformation 
is that we replace the buyer’s choice set by inverse demand curves and assume that the seller sets 
a quantity instead of a price, i.e., the probability of trade. Since there is a bijection between 
demand curves and inverse demand curves and the price is pinned down by inverse demand 
curve for each quantity, the transformed model is strategically equivalent to that of Condorelli 
and Szentes (2020). Since both the buyer’s willingness-to-pay and the probability of trade are in 
[0,1], the domain as well as the range of the inverse demand curve must also be in [0,1]. Let P
denote the set of such inverse demand functions. So, if the buyer chooses P ∈ P and the seller 
sets Q then the price is P (Q). Next, we explain that the buyer’s problem can be written as

18 Given a possibly non-binary equilibrium distribution F ∗ , we showed that agent upward deviations to distributions 
with means above μF ∗ could be ignored in the analysis (recall the construction of the binary project ̃c).
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max
q∈[0,1],P∈P

Q∫
0

(P (x) − P (Q))dx

s.t. QP (Q) ≥ Q̃P
(
Q̃

)
for all Q̃ ∈ [0,1] .

Note that the objective function is the familiar expression for the buyer’s payoff from Consumer 
Theory, for a given inverse demand curve P and quantity Q. In addition, the constraint guarantees 
that when the buyer’s inverse demand curve is P , the seller indeed prefers to set Q to any smaller 
quantity. Now, observe that replacing P by 1 − C′ in this problem yields (10), that is, the two 
problems are equivalent. This means that the buyer-optimal inverse demand curve, P ∗, is given 
by P ∗ (Q) = 1 − C∗′ (Q), where C∗ is characterized Proposition 2, that is, P ∗ (Q) = 1/ [eQ]
on [1/e,1]. Finally, notice that for each inverse demand curve P , the buyer’s value distribution 
is determined by the following equation: P (1 − F (v)) = v. Coincidently, applying this formula 
for P ∗ yields F ∗ (v) = 1 − 1/ (ev) on (1/e,1), confirming the main result in Condorelli and 
Szentes (2020).

Our discussion about the similarity of Proposition 2 to the main result in Condorelli and 
Szentes (2020) has followed the heuristic argument presented in Section 3.2. This assumes the 
applicability of the first-order approach to derive that the agent’s bonus is equal to his marginal 
cost, i.e., to derive Equation (8). Importantly, the validity of this approach must be verified, and 
hence the proof of Proposition 2 in the appendix relies on a different argument, one which has 
no parallel in Condorelli and Szentes.

Data availability

No data was used for the research described in the article.

Appendix A. Omitted proofs

A.1. Proofs of results in Section 3.1

Proof of Lemma 1. Consider a sequence (μn), with μn ∈ [0, μF ∗) for all n, such that

u (̂c,wb) = lim
n→∞U

(̂
c,wb,Bμn

)
and π (̂c,wb) = lim

n→∞�
(
wb,Bμn

)
.

For each k ∈N , there exists nk such that, for all μ ∈ [0,1],

μnk
b − ĉ

(
Bμnk

)
+ 1

k
≥ μb − ĉ

(
Bμ

)
.

Equivalently, for all k, and all μ ∈ [0, μF ∗),

μnk
b − inf

{
c∗ (F ) : μF = μnk

} + 1

k
≥ μb − inf

{
c∗ (F ) : μF = μ

}
.

For each k, we can pick a distribution Fnk
with mean μnk

such that

c∗ (
Fnk

)
< inf

{
c∗ (F ) : μF = μnk

} + 1

k
.

Then, for all k and all F ∈ F with mean μF ∈ [0, μF ∗),

μnk
b − c∗ (

Fnk

) + 2
> μF b − c∗ (F ) . (14)
k
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There are then two cases. In the first, the inequality (14) holds for all k and all F ∈ F (not 
only those F with μF < μF ∗ ). Then

u
(
c∗,wb

) = lim
k→∞U

(
c∗,wb,Fnk

)
and hence

π
(
c∗,wb

) ≥ lim
k→∞�

(
wb,Fnk

) = lim
k→∞�

(
wb,Bμnk

)
= π (̂c,wb)

as desired. In the second, the inequality (14) fails to hold for some k and some F ∈ F with 
μF ≥ μF ∗ , which implies

u
(
c∗,wb

) = sup
{
μF b − c∗ (F ) : F ∈ F

}
> sup

{
μF b − c∗ (F ) : F ∈ F ,μF < μF ∗

}
.

This means that there is a sequence of distributions in F along which the agent’s payoff converges 
to his value u (c∗,wb) and for which every distribution has mean at least μF ∗ . By the definition 
of the principal’s value, we have

π
(
c∗,wb

) ≥ μF ∗ (1 − b) ≥ π (̂c,wb) ,

where the second inequality follows because any distribution with mean at least μF ∗ is assigned 
an infinite cost in the project ̂c. �
Proof of Lemma 2. Let us fix b ∈ [0, b∗). We first show that wb does not implement BμF∗ in 
(̃c,wb). Suppose for a contradiction that BμF∗ satisfies the agent’s incentive constraint in (̃c,wb), 
that is,

μF ∗b − c ≥ sup
μ<μF∗

{
μb − c̃

(
Bμ

)}
. (15)

Therefore,

c ≤ − sup
μ<μF∗

{
(μ − μF ∗) b − c̃

(
Bμ

)} ≤ − sup
μ<μF∗

{
(μ − μF ∗) b∗ − c̃

(
Bμ

)} = c,

where the first inequality is just the previous displayed inequality rearranged, the second inequal-
ity follows from b < b∗, and the equality is the definition of c. Since the farthest left term and 
the farthest right term are equal in the previous chain, all inequalities must be equalities. Note 
that the second inequality is an equality only if the supremum in Equation (15) is approached 
along a sequence of μ’s converging to μF ∗ . Since c̃

(
Bμ

) = ĉ
(
Bμ

)
whenever μ �= μF ∗ , and 

since ̂c
(
Bμ

) = ∞ for μ ≥ μF ∗ , it follows that the supremum of μb − ĉ
(
Bμ

)
is approached by 

the same sequence. Hence, π (̂c,wb) = μF ∗ (1 − b). We can conclude that

π
(
c∗,wb

) ≥ π (̂c,wb) = μF ∗ (1 − b) > μF ∗
(
1 − b∗) = �

(
w∗,F ∗) ,

where the first inequality follows from Lemma 1, the strict inequality is implied by b < b∗ and 
the second equality follows from the definition of b∗. This inequality implies that w∗ is not 
incentive compatible in project c∗, a contradiction.

Since wb does not implement BμF∗ in c̃, U
(̃
c,wb,BμF∗

)
< u (̃c,wb). We next show that 

Fc̃,wb = Fĉ,wb .19 Note that, for each (Fn) ∈ Fc̃,wb ∪ Fĉ,wb , there exists K ∈ N such that Fk �=

19 Recall that (Fn) ∈ Fc,w if and only if limn→∞ U (c,w,Fn) = u (c,w).
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BμF∗ if k > K . If (Fn) ∈ Fĉ,wb , it follows from ̂c
(
BμF∗

) = ∞. If (Fn) ∈ Fc̃,wb , it is implied by 
U

(̃
c,wb,BμF∗

)
< u (̃c,wb). Since ̃c (F ) = ĉ (F ) whenever F �= BμF∗ , this means that, for each 

(Fn) ∈ Fc̃,wb ∪ Fĉ,wb ,

lim
n→∞U (̃c,wb,Fn) = lim

n→∞U (̂c,wb,Fn) ,

implying that Fc̃,wb = Fĉ,wb . Consequently,

π (̃c,wb) ≡ sup

{
lim sup
n→∞

�(wb,Fn) : (Fn) ∈ Fc̃,wb

}
= sup

{
lim sup
n→∞

�(wb,Fn) : (Fn) ∈ Fĉ,wb

}
= π (̂c,wb) . �

A.2. Proof of Proposition 2

This section proves Proposition 2. We begin by considering an arbitrary binary project C. Let 
us drop the dependence on C and write the value for the agent when the bonus is b as u (b). The 
value is given by

u (b) = sup
μ∈[0,1]

{bμ − C (μ)} .

Note that u is non-decreasing. Moreover, as the upper envelope of linear functions, it is convex 
and hence continuous.

Let � (b) be the set of values μ such that there is a sequence (μn) with μn → μ and bμn −
C (μn) → u (b). Take μ̄ (b) = max� (b), and note that the maximum is attained. Similarly, let 
μ(b) be the minimum of � (b) (also attained). Note that, if the principal offers a bonus b ∈ [0,1]
in project C, then she obtains value μ̄ (b) (1 − b).

For any b ≥ 0, let u′+ (b) be the right derivative of u at b. For any b > 0, let u′− (b) be the 
left derivative of u at b. We next show a result that is analogous to Theorem 1 of Milgrom and 
Segal (2002), but adjusted for the possibility that the agent’s payoff u (b) is not attained by values 
μ ∈ � (b).

Lemma 3. For all b ≥ 0, u′+ (b) ≥ μ̄ (b). For all b > 0, u′− (b) ≤ μ(b).

Proof. Consider a sequence (μn) with μn → μ̄ (b) and bμn − C (μn) → u (b). Then, for any 
b′ > b, we have(

b′ − b
)
μ̄ (b) = lim

n→∞
{
b′μn − C (μn)

} − lim
n→∞{bμn − C (μn)} ≤ u

(
b′) − u (b) .

Dividing by b′ − b and taking limits as b′ approaches b from above yields u′+ (b) ≥ μ̄ (b).
Let b > 0 and consider a sequence (μn) with μn → μ(b) and bμn −C (μn) → u (b). For any 

b′ < b, we have(
b − b′)μ(b) = lim

n→∞{bμn − C (μn)} − lim
n→∞

{
b′μn − C (μn)

} ≥ u (b) − u
(
b′) .

Dividing by b − b′ and taking limits as b′ approaches b from below yields u′− (b) ≤ μ(b). �
We can further use the convexity of u to determine its right derivative in terms of the comple-

tion probability attainable with a given bonus.
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Lemma 4. For all b ≥ 0, u′+ (b) = μ̄ (b).

Proof. Fix b ≥ 0 and suppose for a contradiction that u′+ (b) > μ̄ (b). By convexity of u and the 
previous lemma

μ̄ (b) < u′+ (b) ≤ u′−
(
b′) ≤ μ

(
b′)

for all b′ > b. For each n ∈N , let

bn ∈
(

b, b + 1

n

)
and let μn ∈

[
μ̄(b)+u′+(b)

2 ,1
]

and such that

bnμn − C (μn) > u(bn) − 1

n

(that such a choice is possible follows because 
μ̄(b)+u′+(b)

2 < u′− (bn) ≤ μ(bn) for all n). Consider 

a subsequence 
(
bnk

)
such that μnk

→ μ∗ ≥ μ̄(b)+u′+(b)

2 for some μ∗. We have

lim
{
bμnk

− C
(
μnk

)} = lim
{
bnk

μnk
− C

(
μnk

)} = limu
(
bnk

) = u (b)

where the final equality follows by continuity of u. The fact that μ∗ > μ̄(b) contradicts the 
definition of μ̄ (b). �

Note now that, because u is convex, it is absolutely continuous and hence differentiable almost 
everywhere. This means that

u (b) = u (0) +
b∫

0

μ̄ (s) ds. (16)

It is immediate from the agent’s problem that we must have u (0) ≤ 0; i.e., the agent cannot 
obtain a strictly positive payoff if the bonus is set to zero.

Consider now a project C with an equilibrium in which the principal offers bonus ̂b for project 
completion, the agent chooses completion probability μ̂, and therefore the principal’s payoff is 
given by ̂π = μ̂(1 − b̂). Note that, if 

(
C, b̂, μ̂

)
is an optimal outcome for the agent, then we must 

have μ̂ > 0. Incentive compatibility of the principal offering bonus ̂b requires that, for all b,

π̂ ≥ μ̄ (b) (1 − b)

= u′+ (b) (1 − b) . (17)

Hence, if the agent is to get positive rent in outcome 
(
C, b̂, μ̂

)
, we must have also ̂π > 0. Assume 

from now on that μ̂, ̂π > 0.
Now let us determine the highest agent value, across projects C, that can occur for an equi-

librium in which the principal offers bonus b̂ for completion and the agent chooses completion 
probability μ̂. Consider then the problem of maximizing the agent’s equilibrium payoff

u(̂b) = u (0) +
b̂∫
u′+ (b) db
0

20
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by choice of convex function u :R+ → R satisfying (i) u (0) ≤ 0, and (ii) ̂π ≥ u′+ (b) (1 − b) for 
all b. The first requirement reflects the above observation that the agent cannot obtain a positive 
payoff if the bonus is zero. The second condition is a re-statement of Condition (17). Any solution 
to this problem involves u (0) = 0 and

u′+ (b) = π̂

1 − b

for all b ∈ [0, ̂b]. In other words, the constraint (ii), or equivalently (17), holds with equality 
over b ∈ [0, ̂b] (in which case, the principal must obtain payoff π̂ from all such bonuses b). The 
agent’s value function is therefore given on [0, ̂b] by

u (b) =
b∫

0

π̂

1 − z
dz. (18)

Now, recall that π̂ = μ̂(1 − b̂), or b̂ = 1 − π̂
μ̂

. The agent’s equilibrium payoff can then be 
written as

1− π̂
μ̂∫

0

π̂

1 − z
dz = [−π̂ log (1 − z)

]1− π̂
μ̂

0 = π̂ (log (μ̂) − log (π̂)) (19)

which is the expression given in Equation (13) (hence establishing also the one in Equation (12)). 
As explained in the main text, this payoff is maximized across feasible equilibrium values of μ̂
and π̂ by μ̂ = 1 and π̂ = 1

e
. The corresponding equilibrium bonus must be ̂b = 1 − 1/e.

Note then that, if the project is C∗ as given in the proposition (with C∗ (0) = 0, as explained in 
the main text), and the principal offers any b ∈ [0,1 − 1/e], the agent best responds by choosing 
μ such that

b = 1 − 1

eμ
,

i.e. μ = 1
e(1−b)

. All such bonuses therefore generate profit 1/e for the principal. Hence, it is 
indeed an equilibrium of project C∗ for the principal to offer bonus b∗ = 1 −1/e, and the agent to 
choose completion probability equal to μ∗ = 1. This completes the proof of the proposition. �
Appendix B. Discussion of uniqueness of optimal projects

The optimal project, C∗, described in Proposition 2 is not unique. To see this, note that C∗
can be arbitrarily modified at completion probabilities strictly below 1/e. Since C∗ (1/e) = 0, 
any of these probabilities are weakly dominated by 1/e, so the modified project is still optimal. 
The goal of this appendix is to argue that optimal projects differ only in non-essential ways.

Uniqueness of the Optimal Binary Project.— Recall that the optimal project C∗ in Propo-
sition 2 is determined via the principal’s incentive constraint, (9), evaluated now at (C,μ) =
(C∗, μ∗) and taken to hold with equality for completion probabilities μ̃ above π∗. This means 
that the principal can also generate her equilibrium payoff by setting any bonus smaller than 
b∗. Appendix A showed that these conclusions are valid for each optimal binary project. We 
also showed that, in any optimal binary project, the agent’s optimal payoff is determined by an 
equilibrium which satisfies Parts (ii) and (iii) of the proposition. We now state formally these 
21
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observations. We abuse notation and write the players’ values, u and π , as functions of a binary 
outcome.

Remark 1. In any optimal binary project C,

(i) (b∗,μ∗) = (1 − 1/e,1) is an agent-optimal equilibrium,
(ii) for all b ∈ [0,1 − 1/e], u (C,b) = ∫ b

0 1/ [e (1 − z)]dz, and
(iii) for all b ∈ [0,1 − 1/e], π (C,b) = 1/e.

Proof of Remark 1. The proof of Remark 1 recalls the proof of Proposition 2 in Appendix A. 
Part (i) of the remark follows because the expression in Equation (19) represents the agent’s 
highest possible expected payoff in any project in which the completion probability is μ̂ and 
the principal’s expected payoff is π̂ . Moreover, it is uniquely maximized by μ̂ = μ∗ = 1 and 
π̂ = π∗ = 1/e. Part (ii) of Remark 1 then follows from Equation (18). Part (iii) of Remark 1
follows because the constraint (17) holds with equality in an optimal binary project over the 
relevant range of bonus payments. That is, because

π∗ = μ̄ (b) (1 − b)

for all b ∈ [0,1 − 1/e], where recall μ̄ (b) (1 − b) coincides with the principal’s value π (C,b)

in any subgame (C,b). �
We now argue that Remark 1 implies optimal binary projects are “close” to uniquely deter-

mined. We begin with a remark which compares any optimal binary project to the project C∗ of 
Proposition 2.

Remark 2. In any optimal binary project C,

(i) for all μ ∈ [0,1], C (μ) ≥ C∗ (μ), and
(ii) for all μ ∈ [1/e,1], there is a sequence (μn) with μn → μ and C (μn) → C∗ (μ).

Proof of Remark 2. To show Part (i) of Remark 2, consider the optimal project C∗ in Proposi-
tion 2. Notice that, as we reduce the bonus b from b∗ to zero, the agent’s best response in the 
subgame (C∗, b) decreases continuously from one to zero. Suppose now that C is a project with 
C

(
μ′) < C∗ (

μ′) for some μ′, and let b′ ∈ (0, b∗] be the bonus that implements μ′ in project C∗. 
Then we have

u
(
C,b′) ≥ b′μ′ − C

(
μ′) > b′μ′ − C∗ (

μ′) = u
(
C∗, b′) =

b′∫
0

1/ [e (1 − z)]dz.

The first equality follows because μ′ is a best response in the subgame 
(
C∗, b′). The second 

equality follows because C∗ is an optimal project, and by Part (ii) of Remark 1. Hence, by Part 
(ii) of Remark 1, C is not an optimal project.

To show Part (ii) of Remark 2, fix an optimal binary project C and consider a comple-
tion probability μ ∈ [1/e,1]. By Part (iii) of Remark 1, it can be attained by a bonus b =
1 − 1/ (μe) ∈ [0,1 − 1/e]. Formally, we mean that there exists a sequence (μn) convergent to μ
22
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with μnb − C (μn) → u (C,b). Note that the bonus b also implements μ in project C∗. By Part 
(ii) of Remark 1, the agent’s value in subgame (C, b) is the same as in subgame (C∗, b); that is, 
u(C, b) = u(C∗, b). In particular, considering the aforementioned sequence (μn), we have

μnb − C (μn) → u
(
C∗, b

) = μb − C∗ (μ) ,

implying limn→∞ C (μn) = C∗ (μ), which is what we wanted to show. �
We argue that, in spite of possible differences between any optimal binary project C and the 

project C∗ of Proposition 2, such projects can be viewed almost equivalently from the agent’s 
perspective. First, note that Remark 2 admits that some completion probabilities in [1/e,1] may 
be more costly under C than C∗. In this case, however, there are arbitrarily close probabilities 
which are as affordable to the agent as in C∗, or for which the difference in costs is negligible 
(this follows by Part (ii) of Remark 2). In addition, it turns out that, for any optimal binary project 
C, the specification of costs for probabilities below 1/e is irrelevant. The reason is that, using Part 
(ii) of Remark 2, the agent can generate a completion probability at least 1/e at negligible cost.20

Hence, the agent’s value can be approached by completion probabilities at least 1/e irrespective 
of the bonus.

We now formalize further the equivalence of optimal binary projects C on [1/e,1]. Note 
first that if C is restricted to be continuous, then C is unique on [1/e,1] and equal to C∗ on 
this interval by Part (ii) of Remark 2. For cost functions C that are not continuous, we now 
demonstrate formally that the completion probabilities μ that are relevant for the agent’s problem 
are only those for which the cost is close to the one given by C∗.

To achieve our goal we let, for any ε > 0,

P (ε) ≡ {
(μ,C (μ)) : μ ∈ [1/e,1] , C (μ) − C∗ (μ) ≤ ε

}
.

Suppose the agent can choose only probabilities μ with (μ,C (μ)) ∈ P (ε), and suppose the 
associated costs are C (μ). Then P (ε) describes the agent’s technology in project C but after 
removing his ability to choose probabilities μ that we anticipate being redundant, either because 
they are less than 1/e or because their costs exceed C∗ (μ) by more than ε. By Parts (i) and (ii) of 
Remark 2, for a fixed bonus payment b, the agent’s value is the same for the restricted technology 
P (ε) as if the agent could choose any completion probability with a cost specified by C. In fact, 
the feature of P (ε) that is relevant in determining the agent’s value is the lower boundary of its 
closure. For any ε > 0, any μ ∈ [1/e,1], we have

min {y : (μ,y) ∈ cl(P (ε))} = C∗ (μ) ,

which again can be seen directly from Parts (i) and (ii) of Remark 2.21 This demonstrates a 
further sense of equivalence between C and C∗.

Uniqueness beyond binary projects.— The above discussion describes a qualified sense in 
which optimal binary projects are uniquely determined. Still, the possibility of optimal but non-
binary projects may also be a source of non-uniqueness. Nonetheless, we show that properties 
analogous to those described above continue to hold, even among non-binary projects.

20 Formally, there is a sequence (μn) that approaches 1/e from above, and for which C (μn) → 0. This follows from 
Part (ii) of Remark 2 and the continuity of C∗ .
21 Here, “cl(·)” refers to the closure of the set.
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We first explain that output is one in any agent-optimal equilibrium of any optimal project. 
To this end, let c∗ be an optimal project and (w∗,F ∗) an agent-optimal equilibrium in c∗. 
Proposition 1 applied to the optimal outcome (c∗,w∗,F ∗) implies that the corresponding bi-
nary outcome 

(̃
c,wb∗ ,BμF∗

)
is also optimal. Then, Part (i) of Remark 1 implies that we must 

have μF ∗ = 1, and hence F ∗ = B1.
Next we argue that output realizations in (0,1) are redundant in the sense that replacing these 

realizations by output zero has no impact on equilibrium behavior. To this end, we first show 
that it can be assumed that w∗ (x) = 0 for all x < 1. The intuition is that if the principal wants 
to implement output one, she should not reward the agent for any other output realization by 
offering a positive payment. To state it formally, let us define the payments scheme, ρb, for each 
b such that ρb (1) = b and ρb (x) = 0 for x �= 1. Observe that replacing w∗ by ρw∗(1) makes 
choosing B1 no less attractive to the agent, so 

(
ρw∗(1),B1

)
is also an agent-optimal equilibrium 

in c∗.
Provided that the compensation scheme is ρw∗(1), when the agent is contemplating choos-

ing a distribution, all that matters is the probability that output is one. So, moving all the 
probability mass from (0,1) to zero has no impact on the agent’s choice of a distribution. 
Moreover, these new distributions generate smaller expected outputs, hence the principal still 
prefers to implement B1. To make these claims precise, let us define a binary project C̃ such 
that C̃ (μ) = inf {c∗ (F ) : �(F) = μ}, where � (F ) denotes the atom at one specified by F .22

Given the payment schedule ρw∗(1), the change in cost function from c∗ to C̃ does not affect the 
agent’s willingness to choose completion probability one. We conclude that the binary project C̃
is optimal and (w∗ (1) ,1) is an agent-optimal equilibrium in C̃.

To give a further sense in which the results in the previous section are robust to the consider-
ations of non-binary projects, we state the following.

Remark 3. If c∗ is an optimal project and (w∗,F ∗) is an agent-optimal equilibrium in c∗, then

(i) F ∗ = B1,
(ii) � (w∗,F ∗) = U (c∗,w∗,F ∗) = 1/e,

(iii) u (c∗, ρb) = ∫ b

0 1/ [e (1 − z)]dz for all b ∈ [0,1 − 1/e], and
(iv) π (c∗, ρb) = 1/e for all b ∈ [0,1 − 1/e].

We have already established Part (i) and that the binary outcome (C̃, w∗ (1) , 1) is agent-
optimal. So, by Part (iii) of Remark 1, w∗ (1) = 1 − 1/e, and the principal’s payoff in project 
c∗ must be 1/e, establishing Part (ii). By the construction of C̃, u(c∗, ρb) is equal to u(C̃, b)

for all b. Optimality of C̃ and Part (ii) of Remark 1 then imply Part (iii) of Remark 3. Part 
(iii) of Remark 1 implies π(C̃, b) = 1/e for any b ∈ [0,1 − 1/e] and hence π (c∗, ρb) ≥ 1/e. 
Part (ii) of Remark 3 then implies π (c∗, ρb) = 1/e for all b ∈ [0,1 − 1/e] establishing Part 
(iv).

An interpretation of Remark 3 is that the conclusions reached in Remark 1 remain valid even 
when projects are not restricted to be binary. For instance, consider any optimal project c∗ and an 
optimal binary project C. The players’ values are the same across both projects for any payment 
schedule ρb, b ∈ [0,1 − 1/e], as follows from Parts (iii) and (iv) of Remark 3. This can be 
compared to Parts (ii) and (iii) of Remark 1.

22 That is, � (F ) = F (1) − limx↗1 F (x).
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Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2023 .105621.
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