Module 3: Natural Monopolies

Market Organization & Public Policy (Ec 731) · George Georgiadis

Market Entry and Monopoly

- Consider the following two period game:
 - In t = 1, a "large" number of identical firms *sequentially* decide whether to pay an entry fee F > 0 to enter the market.
 - In t = 2, the firms that entered, engage in Cournot competition.
- Assume that
 - each firm has product cost c(q) = cq; and
 - the inverse demand function $P(Q) = \alpha \beta Q$.
- From the previous section, we know that if n firms have entered, in t = 1, each will set quantity

$$q = -\frac{P\left(Q\right) - c'\left(q\right)}{P'\left(Q\right)} = \frac{\alpha - \beta Q - c}{\beta}$$

and using that Q = nq yields that $q = \frac{a-c}{\beta(n+1)}$.

- This corresponds to price $P(Q) = \frac{a+cn}{n+1}$.
 - Observe that it decreases in n, and converges to c as $n \to \infty$.
- Each firm's profit is then

$$\pi_n = q \left(\alpha - \beta n q\right) - cq = \frac{1}{\beta} \left(\frac{\alpha - c}{n+1}\right)^2$$

- Observe that $n\pi_n$ decreases (monotonically) with n.

• Suppose n firms have already entered the market. Will the next firm choose to enter or not?

- Yes, if $\pi_{n+1} \ge F$ - No, if $\pi_{n+1} < F$

• Therefore, the equilibrium number of firms that will enter the market (denote n^*) is the largest n such that $\pi_n \geq F$, or equivalently

$$n^* = \left\lfloor \frac{\alpha - c}{\sqrt{\beta F}} - 1 \right\rfloor$$

- If $F > \frac{(\alpha - c)^2}{9\beta}$, then $n^* = 1$, and we have a monopoly. - As $F \to 0$ (*i.e.*, as entry costs vanish), $n^* \to \infty$ (perfect competition).

• Questions:

- What if firms engage in Bertrand competition?
- What if firms decide whether to enter simultaneously?

Monopoly Regulation

- How can a regulator restore the social optimum?
- \circ Suppose that a regulator taxes monopoly output at rate t.
 - -i.e., if the monopolist sets price p, then consumers must pay p + t.
- \circ The monopolist chooses p by solving

$$\max_{p} \left\{ pD(p+t) - c\left(D(p+t)\right) \right\}$$

• First order condition:

$$D(p+t) + D'(p+t)(p-c') = 0$$

$$\implies [D(p+t) - tD'(p+t)] + D'(p+t)(p+t-c') = 0$$

• To restore the social optimum, the price faced by consumers (i.e., p + t) must equal marginal cost c'.

- Therefore, we must set $t = \frac{D(p+t)}{D'(p+t)}$.
 - Denoting the competitive price by p_c , we can re-write $t = -\frac{p_c}{\epsilon}$, where $\epsilon = -\frac{p_c D'(p_c)}{D(p_c)}$.
- Observe that because D' < 0, t < 0; *i.e.*, the regulator must subsidize the monopolist. (Somewhat paradoxical!)
- Intuition:
 - The problem with monopoly pricing is that it induces consumers to consume too little.
 - In order to achieve efficiency, we must induce them to consume more, which requires to subsidize the good.
- *Problems:* Determining the proper subsidy requires that the regulator knows (i) the demand elasticity of the monopolist, and (ii) his entire cost curve.
 - Demand information can be obtained through sampling, but this is potentially expensive and inaccurate if the monopolist supplies only a few customers.
 - Cost information is harder to extract, because the monopolist will be reluctant to release accurate estimates of its cost structure.

Regulating a Monopolist with Unknown Costs

Baron and Myerson (Ecta, 1982)

- Setting where the firm has a privately known cost parameter; *i.e.*, its cost is $c(q, \theta)$, where $c_q > 0$ and $c_{\theta} > 0$.
- $\circ\,$ Regulator can choose (i) the price p that the firm can charge, and (ii) a subsidy s to be paid to the firm.
 - Solution Approach: the firm is asked to report $\tilde{\theta}$, and receives $p\left(\tilde{\theta}\right)$ and $s\left(\tilde{\theta}\right)$.
- Application of the revelation principle.

Laffont and Tirole (JPE, 1986)

- Argue that accounting costs are usually observable to the regulator.
- Study a problem with both moral hazard and adverse selection.

Setup

- Natural monopolist has exogenous cost parameter $\theta \in \{\theta_L, \theta_H\}$. (Define $\Delta \theta = \theta_H \theta_L > 0$.)
 - Assume that θ is private information of the monopolist.
 - The regulator has beliefs over θ : Pr { $\theta = \theta_L$ } = β .
- Production cost: $c = \theta e$, where e stands for "effort" (e.g., investment in cost reduction).
 - Effort has cost $\psi(e) = \frac{e^2}{2}$.
 - Assume that c is contractible.
- The objective of the regulator is to choose the smallest payment P = c + s such that the firm produces the good.
- The payoff of the firm is: $P c \psi(e) = P (\theta e) \frac{e^2}{2}$ (if it chooses to produce).

First Best

- Suppose that the regulator knows θ .
- The regulator's problem then is:

$$\min_{P,e} \quad P \\ \text{s.t.} \quad P - (\theta - e) - \frac{e^2}{2} \ge 0$$

- This problem has solution: $e^* = 1$ and $P^* = \theta + \frac{1}{2}$.
 - Let $s = P c = P \theta + e$ denote the subsidy. Observe that $s^* = \frac{3}{2}$ (independent of θ).
 - $P(\theta = \theta_H) > P(\theta = \theta_L)$: If the regulator does not know θ , then the firm would like "convince" the regulator that $\theta = \theta_H$ to elicit a larger payment.

Adverse Selection

- The regulator would like to design a "menu" of contracts $\{s_L, c_L\}$ and $\{s_H, c_H\}$ such that a firm with cost parameter θ_i will choose contract $\{s_i, c_i\}$ and exert effort $e_i = \theta_i - c_i$.
 - Implemented using a price $P_i = s_i + c_i$.
 - Then the firm's payoff is $P_i c_i(e_i) \frac{e_i^2}{2} = s_i \frac{e_i^2}{2}$.
- The regulator solves the following problem:

$$\min_{s_L,e_L,s_H,e_H} \quad \beta \left(s_L - e_L \right) + \left(1 - \beta \right) \left(s_H - e_H \right) + \left[\beta \theta_L + \left(1 - \beta \right) \theta_H \right]$$
s.t.
$$s_L - \frac{e_L^2}{2} \ge 0 \quad (IR_L)$$

$$s_H - \frac{e_H^2}{2} \ge 0 \quad (IR_H)$$

$$s_L - \frac{e_L^2}{2} \ge s_H - \frac{(e_H - \Delta \theta)^2}{2} \quad (IC_L)$$

$$s_H - \frac{e_H^2}{2} \ge s_L - \frac{(e_L + \Delta \theta)^2}{2} \quad (IC_H)$$

- The first two inequalities are participation constraints.
- The next two are incentive constraints: if a firm with θ_L reports θ_H , then it must exert effort $e = \theta_H - c_L = \Delta \theta - e_L$.
- First best has the same effort level and the same subsidy for both types (θ_L and θ_H), but a higher actual cost for $\theta = \theta_H$.
 - Incentive problem arises, because the efficient type $(i.e., \tilde{\theta} = \theta_L)$ wants to mimic the inefficient type to collect the same subsidy while expending only effort $e^* - \Delta \theta$, and achieving actual cost c_H .
- Claim: The (IR_L) and (IC_H) are obsolete, while (IR_H) and (IC_L) bind.
 - $-s_H \frac{e_H^2}{2} \ge 0 \Longrightarrow s_H \frac{(e_H \Delta \theta)^2}{2} \ge 0 \Longrightarrow s_L \frac{e_L^2}{2} \ge 0$, so (IR_L) is obsolete.
 - Add (IC_H) and (IC_L) to find $e_H \leq e_L + \Delta \theta$. So $s_H \frac{e_H^2}{2} > s_L \frac{e_H^2}{2} \geq s_L \frac{(e_L + \Delta \theta)^2}{2}$, so (IC_H) is obsolete.
 - Suppose (IR_H) is slack. Then decrease s_H to increase the regulator's payoff until it binds. Note also that this relaxes (IC_L)

- Suppose (IC_L) is slack. Then decrease s_L to increase the regulator's payoff until it binds.
- Therefore:

$$s_H - \frac{e_H^2}{2} = 0$$
 and $s_L - \frac{e_L^2}{2} = s_H - \frac{(e_H - \Delta\theta)^2}{2}$ (1)

• Re-writing the objective function using these equalities yields

$$\min\left\{\beta\left(\frac{e_{L}^{2}}{2} - e_{L} + \frac{e_{H}^{2}}{2} - \frac{(e_{H} - \Delta\theta)^{2}}{2}\right) + (1 - \beta)\left(\frac{e_{H}^{2}}{2} - e_{H}\right)\right\}$$

• First-order conditions:

$$- e_L = 1 = e^*$$

- $e_H = 1 - \frac{\beta}{1-\beta}\Delta\theta < e^*$
- *Note:* Assume that $\frac{\beta}{1-\beta}\Delta\theta < 1$.

- We can now solve for the subsidies s_L and s_H using (1).
- Intuition:
 - The "low" type would like to imitate the "high" type, but not vice verse.
 - So for IC, mechanism gives inefficient incentives to the "high" type and lower his payoff to make it undesirable to the "low" type to imitate him.
 - Give efficient incentives to the "low" type.

References

Bolton and Dewatripont, (2005), Contract Theory, MIT Press.

Tirole J., (1988), The Theory of Industrial Organization, MIT Press.

Whinston M.D., (2008), Lectures on Antitrust Economics (Cairoli Lectures), MIT Press.