
Module 3: Natural Monopolies
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Market Entry and Monopoly

� Consider the following two period game:

– In t = 1, a “large” number of identical firms sequentially decide whether to pay an

entry fee F > 0 to enter the market.

– In t = 2, the firms that entered, engage in Cournot competition.

� Assume that

– each firm has product cost c(q) = cq ; and

– the inverse demand function P (Q) = ↵� �Q.

� From the previous section, we know that if n firms have entered, in t = 1, each will set

quantity

q = �P (Q)� c0 (q)

P 0 (Q)
=
↵� �Q� c

�

and using that Q = nq yields that q = a�c
�(n+1) .

� This corresponds to price P (Q) = a+cn
n+1 .

– Observe that it decreases in n, and converges to c as n ! 1.

� Each firm’s profit is then

⇡n = q (↵� �nq)� cq =
1

�

✓
↵� c

n+ 1

◆2

– Observe that n⇡n decreases (monotonically) with n.

� Suppose n firms have already entered the market. Will the next firm choose to enter

or not?
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– Yes, if ⇡n+1 � F

– No, if ⇡n+1 < F

� Therefore, the equilibrium number of firms that will enter the market (denote n⇤) is

the largest n such that ⇡n � F , or equivalently

n⇤ =

�
↵� cp
�F

� 1

⌫

– If F > (↵�c)2

9� , then n⇤ = 1, and we have a monopoly.

– As F ! 0 (i.e., as entry costs vanish), n⇤ ! 1 (perfect competition).

� Questions:

– What if firms engage in Bertrand competition?

– What if firms decide whether to enter simultaneously?

Monopoly Regulation

� How can a regulator restore the social optimum?

� Suppose that a regulator taxes monopoly output at rate t.

– i.e., if the monopolist sets price p, then consumers must pay p+ t.

� The monopolist chooses p by solving

max
p

{pD(p+ t)� c (D(p+ t))}

� First order condition:

D(p+ t) +D0(p+ t) (p� c0) = 0

=) [D(p+ t)� tD0(p+ t)] +D0(p+ t) (p+ t� c0) = 0

� To restore the social optimum, the price faced by consumers (i.e., p + t) must equal

marginal cost c0.
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� Therefore, we must set t = D(p+t)
D0(p+t) .

– Denoting the competitive price by pc, we can re-write t = �pc
✏
, where ✏ = �pc D0(pc)

D(pc)
.

� Observe that because D0 < 0, t < 0; i.e., the regulator must subsidize the monopolist.

(Somewhat paradoxical!)

� Intuition:

– The problem with monopoly pricing is that it induces consumers to consume too

little.

– In order to achieve e�ciency, we must induce them to consume more, which re-

quires to subsidize the good.

� Problems: Determining the proper subsidy requires that the regulator knows (i) the

demand elasticity of the monopolist, and (ii) his entire cost curve.

– Demand information can be obtained through sampling, but this is potentially

expensive and inaccurate if the monopolist supplies only a few customers.

– Cost information is harder to extract, because the monopolist will be reluctant to

release accurate estimates of its cost structure.

Regulating a Monopolist with Unknown Costs

Baron and Myerson (Ecta, 1982)

� Setting where the firm has a privately known cost parameter; i.e., its cost is c (q, ✓),

where cq > 0 and c✓ > 0.

� Regulator can choose (i) the price p that the firm can charge, and (ii) a subsidy s to

be paid to the firm.

– Solution Approach: the firm is asked to report ✓̃, and receives p
⇣
✓̃
⌘
and s

⇣
✓̃
⌘
.

� Application of the revelation principle.

La↵ont and Tirole (JPE, 1986)

� Argue that accounting costs are usually observable to the regulator.

� Study a problem with both moral hazard and adverse selection.
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Setup

� Natural monopolist has exogenous cost parameter ✓ 2 {✓L, ✓H}. (Define�✓ = ✓H�✓L >

0.)

– Assume that ✓ is private information of the monopolist.

– The regulator has beliefs over ✓: Pr {✓ = ✓L} = �.

� Production cost: c = ✓ � e, where e stands for “e↵ort” (e.g., investment in cost reduc-

tion).

– E↵ort has cost  (e) = e2

2 .

– Assume that c is contractible.

� The objective of the regulator is to choose the smallest payment P = c + s such that

the firm produces the good.

� The payo↵ of the firm is: P � c�  (e) = P � (✓ � e)� e2

2 (if it chooses to produce).

First Best

� Suppose that the regulator knows ✓.

� The regulator’s problem then is:

min
P, e

P

s.t. P � (✓ � e)� e2

2
� 0

� This problem has solution: e⇤ = 1 and P ⇤ = ✓ + 1
2 .

– Let s = P � c = P � ✓ + e denote the subsidy. Observe that s⇤ = 3
2 (independent

of ✓).

– P (✓ = ✓H) > P (✓ = ✓L): If the regulator does not know ✓, then the firm would

like “convince” the regulator that ✓ = ✓H to elicit a larger payment.
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Adverse Selection

� The regulator would like to design a“menu”of contracts {sL, cL} and {sH , cH} such that

a firm with cost parameter ✓i will choose contract {si, ci} and exert e↵ort ei = ✓i � ci.

– Implemented using a price Pi = si + ci.

– Then the firm’s payo↵ is Pi � ci (ei)� e2i
2 = si � e2i

2 .

� The regulator solves the following problem:

min
sL,eL,sH ,eH

� (sL � eL) + (1� �) (sH � eH) + [�✓L + (1� �) ✓H ]

s.t. sL � e2L
2

� 0 (IRL)

sH � e2H
2

� 0 (IRH)

sL � e2L
2

� sH � (eH ��✓)2

2
(ICL)

sH � e2H
2

� sL � (eL +�✓)2

2
(ICH)

– The first two inequalities are participation constraints.

– The next two are incentive constraints: if a firm with ✓L reports ✓H , then it must

exert e↵ort e = ✓H � cL = �✓ � eL.

� First best has the same e↵ort level and the same subsidy for both types (✓L and ✓H),

but a higher actual cost for ✓ = ✓H .

– Incentive problem arises, because the e�cient type (i.e., ✓̃ = ✓L) wants to mimic

the ine�cient type to collect the same subsidy while expending only e↵ort e⇤��✓,

and achieving actual cost cH .

� Claim: The (IRL) and (ICH) are obsolete, while (IRH) and (ICL) bind.

– sH � e2H
2 � 0 =) sH � (eH��✓)2

2 � 0 =) sL � e2L
2 � 0, so (IRL) is obsolete.

– Add (ICH) and (ICL) to find eH  eL+�✓. So sH� e2H
2 > sL� e2H

2 � sL� (eL+�✓)2

2 ,

so (ICH) is obsolete.

– Suppose (IRH) is slack. Then decrease sH to increase the regulator’s payo↵ until

it binds. Note also that this relaxes (ICL)
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– Suppose (ICL) is slack. Then decrease sL to increase the regulator’s payo↵ until

it binds.

� Therefore:

sH � e2H
2

= 0 and sL � e2L
2

= sH � (eH ��✓)2

2
(1)

� Re-writing the objective function using these equalities yields

min

(
�

 
e2L
2

� eL +
e2H
2

� (eH ��✓)2

2

!
+ (1� �)

✓
e2H
2

� eH

◆)

� First-order conditions:

– eL = 1 = e⇤

– eH = 1� �
1��

�✓ < e⇤

– Note: Assume that �
1��

�✓ < 1.

� We can now solve for the subsidies sL and sH using (1).

� Intuition:

– The “low” type would like to imitate the “high” type, but not vice verse.

– So for IC, mechanism gives ine�cient incentives to the “high” type and lower his

payo↵ to make it undesirable to the “low” type to imitate him.

– Give e�cient incentives to the “low” type.
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