Module 1: Pricing Behavior

Market Organization & Public Policy (Ec 731) · George Georgiadis

Monopoly Pricing

- Consider a monopolist facing demand curve D(p), where D'(p) < 0.
 - -i.e., if the price is p, then demand for the good will be equal to q = D(p).
 - Write P(q) to denote the inverse demand function; *i.e.*, $p = D^{-1}(q)$.
- The cost of producing q units of the good is c(q), where c'(q) > 0.
- The monopolist wants to choose the price to maximize his profit. So he solves:

$$\max_{p} \left\{ pD(p) - c\left(D(p)\right) \right\}$$

• First order condition:

$$\underbrace{D(p) + pD'(p)}_{\text{marginal revenue}} = \underbrace{c'(D(p))D'(p)}_{\text{marginal cost}}$$

$$\Longrightarrow p - c'(D(p)) = -\frac{D(p)}{D'(p)}$$

$$\Longrightarrow \frac{p - c'(D(p))}{p} = \frac{1}{\epsilon}$$
(1)

where $\epsilon = -\frac{p D'(p)}{D(p)}$ denotes the demand elasticity at price p.

- Demand elasticity: % change in demand in response to a 1% price reduction.
- We usually denote this price p^m .
- Equation (1) tells us that the relative markup (*i.e.*, the ratio between the profit margin and the price), also called the *Lerner index*, is inversely proportional to the demand elasticity.

• Note: We assume that $D(\cdot)$ and $c(\cdot)$ are such that the monopolist's objective function is concave in p, so that the FOC is sufficient for a maximum.

- *i.e.*, we assume that $2D'(p) + pD''(p) - c''(D(p))[D'(p)]^2 \le 0$.

Cournot Competition

- Same setup as above with two changes:
 - 1. n instead of single firm compete in the market.
 - 2. Each firm *i* chooses a quantity q_i to produce, and the market price is determined by $p = P\left(\sum_{i=1}^{n} q_i\right)$.
- Firm *i* chooses q_i by solving

$$\max_{q_i} \left\{ q_i P\left(q_i + Q_{-i}\right) - c\left(q_i\right) \right\}$$

• First order condition:

$$P(Q) + qP'(Q) = c'(q)$$
$$\implies q = -\frac{P(Q) - c'(q)}{P'(Q)}$$

Assuming symmetry $(i.e., q = \frac{Q}{n})$, we obtain (in equilibrium):

$$\frac{Q}{n} = -\frac{P(Q) - c'\left(\frac{Q}{n}\right)}{P'(Q)}$$
$$\implies \frac{P(Q) - c'\left(\frac{Q}{n}\right)}{P(Q)} = -\frac{QP'(Q)}{nP(Q)}$$

- Recall that $P(Q) = D^{-1}(Q)$. Then $P'(Q) = [D^{-1}(Q)]' = \frac{1}{D'(D^{-1}(Q))} = \frac{1}{D'(p)}$. - Therefore, $\frac{QP'(Q)}{P(Q)} = \frac{D(p)\frac{1}{D'(p)}}{p} = \frac{D(p)}{pD'(p)}$, and the equilibrium price satisfies

$$\frac{p - c'\left(\frac{D(p)}{n}\right)}{p} = \frac{1}{n\epsilon}$$
(2)

where $\epsilon = -\frac{p D'(p)}{D(p)}$

• Remarks:

- 1. Sanity check: When n = 1, the price in (2) coincides with the monopoly price.
- 2. As n increases, the relative markup and the profit of each firm decreases. (In fact, the total profit of all firms decreases with n.)
- 3. At the limit as $n \to \infty$, the price equals marginal cost (*perfect competition*).

Bertrand Competition

- Two firms compete in a market.
- Each firm:
 - has constant marginal cost (so that c(q) = cq); and
 - faces market demand function q = D(p).
- Firm *i* sets a price p_i to maximize its equilibrium profit

$$\Pi_i (p_i, p_j) = (p_i - c) D_i (p_i, p_j)$$

where

$$D_{i}(p_{i}, p_{j}) = \begin{cases} D(p_{i}) & \text{if } p_{i} < p_{j} \\ \frac{1}{2}D(p_{i}) & \text{if } p_{i} = p_{j} \\ 0 & \text{if } p_{i} > p_{j} \end{cases}$$

- Interpretation:
 - If a firm undercuts the other firm's price, then it captures the entire market.
 - If both firms set the same price, then each captures half of the market.
- Claim: The unique equilibrium of this game has both firms charging the competitive price: $p_1^* = p_2^* = c$.

Proof.

- $\circ \text{ Suppose that } p_1^* > p_2^* > c.$
 - Then firm 1 has no demand, and its profit is 0.
 - If instead firm 1 sets $p_1^* = p_2^* \epsilon > c$, then it obtains the entire demand $D(p_2^* \epsilon)$, and has a positive profit margin of $p_2^* - \epsilon - c > 0$.
 - Therefore, setting p_1^* cannot be optimal.

- Now suppose that $p_1^* = p_2^* > c$.
 - The profit of firm i is $\frac{1}{2}D(p_i^*)(p_i^*-c) > 0$.
 - If firm *i* reduces its price to $p_i^* \epsilon$, then its profit becomes $D(p_i^* \epsilon)(p_i^* \epsilon c)$, which is greater for small ϵ .
 - Therefore, both firms setting some $p^* > c$ cannot be optimal either.
- Lastly, suppose that $p_1^* > p_2^* = c$.
 - Then firm 2, which makes no profit, could raise its price slightly, still supply all the demand, and make a positive profit - a contradiction.

- Therefore, in the unique equilibrium, it must be that $p_1^* = p_2^* = c$.
- *Takeaway:* Even with (only) two competing firms, firms price at marginal cost, and they do not make profits.
 - *Note:* Result extends to n > 2 competing firms.
 - This suggests that even a duopoly is enough to restore perfect competition.
 - We call this the *Bertrand paradox*. (Tough to believe!)

Solutions to the Bertrand Paradox:

- 1. Capacity constraints.
 - Suppose that firms can product at most γ units, where $D(c) > \gamma$.
 - Is $p_1^* = p_2^* = c$ still an equilibrium?
 - Suppose that firm 2 sets $p_2 > c$. Then firm 1 faces demand D(c), but can only satisfy up to γ .
 - In this case firm 1 makes 0 profit, while firm 2 makes a positive profit. Therefore, this is not an equilibrium.
 - Characterizing the equilibrium of this game requires assumptions about how consumers are rationed.
- 2. Product differentiation.

- Bertrand analysis assumes that the firms' products are perfect substitutes.
- This creates a pressure on price, which is relaxed when the products are not exactly identical.
- 3. Temporal dimension.
 - Bertrand analysis assumes that the firms set prices simultaneously.
 - In the real world, firms can observe their competitors' prices and react.
 - Think of a dynamic environment where firms set $p_1 = p_2 > c$. Does any one firm have an incentive to set $p_i < p_j$?
 - Not clear! Must trade off the benefit of capturing all the market share "today", and making no profits in the future.
 - This is called "tacit collusion".

References

Tirole J., (1988), The Theory of Industrial Organization, MIT Press.