
Module 9: Dynamic Principal-Agent Problems

Information Economics (Ec 515) · George Georgiadis

� E↵ects of dynamics:

1. Consumption smoothing

– Bad shocks can be smoothed over time.

– Agent becomes more risk-accepting, increasing surplus.

2. Statistical inference

– Repeated observations provide better information, increasing surplus.

3. Agents’ action set increases

– An agent can o↵set bad performance in one period by working harder in the

next.

4. Renegotiation

– Principal and agent may have an incentive to change their contract as time

evolves.

5. Formal contracts become less important

– Can use relational contracts to provide incentives (moral hazard).

– Use reputational concerns (implicit incentives) to motivate (adverse selection).

Examples of dynamic models:

1. One action, many outputs.

� Time t 2 {1, .., T}

� Agent takes action a at t = 0.

� Output qt = a+ ✏, where ✏ ⇠ N (0, �2).

– Then qT ⇠ N (na, n�2)
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� Optimal contract will punish heavily at the left tail: w (q) =

(
w⇤ if qT � q

�K otherwise.

– Achieves first best asymptotically (Mirrlees, 1975)

2. Many actions, one output.

� Agent chooses at at time t 2 {1, .., T}.

� Output qT is obtained at t = T .

� Just like the static problem where action is a =
PT

i=1 at at cost
PT

i=1 c (at).

3. Many actions, many outputs.

� Agents chooses at at time t 2 {1.., T}.

� Output qt = at + ✏ in each period t.

� In period t, agents receives wage wt that is a function of {q1, .., qt�1}.

A Two-period Principal-Agent Model

Rogerson (Econometrica, 1985)

� Time t 2 {1, 2}

� E↵ort at 2 A ✓ R at cost c (at)

� Output qt ⇠ f (q | at)

� Agent’s utility =
P

t [u (wt)� c (at)]

– i.e., preferences are time-separable.

– Reservation utility ū in each period.

� Contract: w1 (q1), w2 (q1, q2)

� Principal’s profit =
P

t (qt � wt) = [q1 � w1 (q1)] + [q2 � w2 (q1, q2)]

� Links between periods:

1. No technological link or changes in preferences of the agent.

2. Principal can use w2 to reward a1.
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� Agent has no access to credit markets (i.e., cannot borrow or save).

� Action at t = 2 will depend on q1; i.e., a2 (q1).

� Principal’s maximization problem:

max
w1, w2, a1, a2

E [q1 � w1 (q1) + q2 � w2 (q1, q2) | a]

s.t. {a1, a2} 2 argmax
ã1,ã2

E [u (w1 (q1))� c (ã1) + u (w2 (q1, q2))� c (ã2 (q1)) | ã1, ã2] (IC)

E [u (w1 (q1))� c (a1) + u (w2 (q1, q2))� c (a2 (q1)) | a1, a2] � 2ū (IR)

� Proposition: Along the optimal path:

1

u0 (w1 (q1))
= E


1

u0 (w2 (q1, q2))
| q1

�

Proof.

� Suppose w1 (q1) and w2 (q1, q2) is optimal.

� Consider modifying the contract such that u (ŵ1 (q1)) = u (w1 (q1))�✏ and u (ŵ2 (q1, q2)) =

u (w2 (q1, q2)) + ✏.

� The agent’s (IC) and (IR) are una↵ected.

� Increases principal’s profit by:

� = E [w1 (q1)� ŵ1 (q1) + w2 (q1, q2)� ŵ2 (q1, q2) | q1]

� For small ✏:

– w1 (q1)� ŵ1 (q1) =
✏

u0(w1(q1))

– w2 (q1, q2)� ŵ2 (q1, q2) = � ✏
u0(w2(q1,q2))

– Follows from applying the Taylor expansion u (ŵ) = u (w) + u0 (w) (ŵ � w) =)
ŵ � w = u(ŵ)�u(w)

u0(w) .

� Then:

� = ✏E


1

u0 (w1 (q1))
� 1

u0 (w2 (q1, q2))
| q1

�
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� Because we can pick ✏ ? 0, the optimal contract must satisfy 1
u0(w1(q1))

= E
h

1
u0(w2(q1,q2))

| q1
i
.

� Implications:

1. Contract has memory.

– Suppose w2 (q1, q2) = w2 (q2). Then E
h

1
u0(w2(q1,q2))

| q1
i
= constant (independent of q1).

– Hence 1
u0(w1(q1))

= constant =) no incentives in period 1.

2. The principal front-loads consumption.

– Jensen’s inequality =) E
h

1
u0(w2(q1,q2))

| q1
i
� 1

E[u0(w2(q1,q2)) | q1] =) u0 (w1 (q1)) 
E [u0 (w2 (q1, q2)) | q1].

– Intuition: The principal forces the agent to consume more in the first period to

keep his continuation wealth low, so that the marginal utility for money remains

high.

– The agent would like to save (not borrow).

� What does “front-loading consumption” mean?

– Suppose the agent has $W that he can consume over two periods. Then he solves

max
w1

{u (w1) + u (W � w1)}

The first order condition implies that u0 (w1) = u0 (W � w1), so that w1 =
W
2 .

– Because u0 (·) is decreasing, we say that consumption is front-loaded if u0 (w1) 
u0 (w2) (because w1 � w2), and back-loaded if u0 (w1) � u0 (w2) (because w1  w2).

Infinitely Repeated Principal-Agent Problem

� We now extend the previous model to an infinitely-repeated relationship between the

principal and the agent.

� It turns out that this model is easier to solve than the two-period model.
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Spear and Srivastava (REStud, 1987)

� Time t 2 N

� E↵ort at 2 {0, 1} at cost c (a) = c a.

� Output qt 2 {qL, qH}, where Pr {qt = qH | at = 1} = ⇡1, Pr {qt = qH | at = 0} = ⇡0, and

� = ⇡1 � ⇡0 > 0.

� Discount rate � 2 (0, 1).

� Agent’s utility:

Ut = E [u (wt)� c (at)]| {z }
expected payo↵ in t

+� E [Ut+1]| {z }
exp. continuation value in t+ 1

– Outside option ū = 0.

– Define h = u�1. Note that u0 > 0 and u00 < 0 =) h0 > 0 and h00 > 0.

� Principal’s profit: Vt = E [S (qt)� wt] + �E [Vt+1]

– S (qt) is the principal’s profit from qt. Denote SH = S (qH) and SL = S (qL)

– Assume the principal wants to implement at = 1 for all t.

� Contract specifies {wt, Ut+1} as a function of {qt, Ut}; i.e., it exhibits the Markov property.

– Given the agent’s utility Ut and his output qt in period t, the contract specifies

1. instantaneous utlity uH or uL (or equivalently wages w = h (u)); and

2. continuation utility for the agent UH or UL

if the output is qH or qL, respectively.

� Agent’s IC constraint:

⇡1 (uH + �UH) + (1� ⇡1) (uL + �UL)� c � ⇡0 (uH + �UH) + (1� ⇡0) (uL + �UL)

=) (uH + �UH)� (uL + �UL) � c

�

� Principal’s Problem: Given U , she solves

V (U) = maxuL,uH ,UL,UH
⇡1 [SH � h (uH)] + (1� ⇡1) [SL � h (uL)] + � [⇡1V (UH) + (1� ⇡1)V (UL)]

s.t. (uH + �UH)� (uL + �UL) �
c

�
⇡1 (uH + �UH) + (1� ⇡1) (uL + �UL)� c � U
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� Remarks:

– First constraint is the agent’s IC constraint.

– Second constraint is the principal’s “promise-keeping” (PK) constraint.

– Note uL, uH , UL, UH will be functions of U .

– We will assume that V (·) is concave.

� Write the Lagrangean:

V (U) = max {⇡1 [SH � h (uH)] + (1� ⇡1) [SL � h (uL)] + � [⇡1V (UH) + (1� ⇡1)V (UL)]

+�
h
(uH + �UH)� (uL + �UL)�

c

�

i

+µ [⇡1 (uH + �UH) + (1� ⇡1) (uL + �UL)� c� U ]}

� First order conditions w.r.t UH and UL:

⇡1V
0 (UH (U)) + �+ µ⇡1 = 0

(1� ⇡1)V
0 (UL (U))� �+ µ (1� ⇡1) = 0

– Note that we make the dependence on U explicit.

– Summing these equations gives µ = � [⇡1V 0 (UH (U)) + (1� ⇡1)V 0 (UL (U))]

� First order conditions w.r.t uH and uL:

⇡1h
0 (uH (U)) = �+ µ⇡1

(1� ⇡1)h
0 (uL (U)) = ��+ µ (1� ⇡1)

� Claim 1: (PK) binds.

Proof.

� Summing the FOC for uH and uL gives µ = ⇡1h0 (uH (U))+ (1� ⇡1)h0 (uL (U)) > 0 , and

by complementary slackness, (PK) binds.

� Claim 2: UH (U) � UL (U) and uH (U) � uL (U).

Proof.
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� From the FOC for UH and uH , and the expression for µ, we get:

� = ⇡1 (1� ⇡1) [h
0 (uH (U))� h0 (uL (U))]

= ⇡1 (1� ⇡1) [V
0 (UL (U)� V 0 (UH (U)))]

� Because h (·) is convex and V (·) is concave, this equation implies that uH (U) � uL (U)

if and only if UL (U)  UH (U).

� To satisfy (IC), we cannot have UH (U)  UL (U) and uH (U)  uL (U) simultaneously.

� Therefore, we have UH (U) � UL (U) and uH (U) � uL (U).

� Takeaways:

– The optimal contract (again) exhibits memory.

– Good performance today is rewarded by a higher wage today and a higher continu-

ation utility (and vice versa); i.e., dynamics provide consumption smoothing.

� Next Problem Set:

– Assume that u (w) = 1
r
ln (1 + rw). Then h (u) = 1

r
(erw � 1).

– Guess that the principal’s profit function has the form V (U) = ↵ � 1
�
e�U+�, whre

↵, � � 0, and � are constants to be determined.

– Solve for the constants {↵, �, �}, and characterize the optimal contract; i.e., UH (U),

UL (U), uH (U), and uL (U).

– How do UH (U)�UL (U) and uH (U)� uL (U) depend on �? Provide some intuition

for this result.
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