
Module 8: Multi-Agent Models of Moral Hazard

Information Economics (Ec 515) · George Georgiadis

Types of models:

1. No relation among agents.

� Can many agents make contracting easier?

2. Agents’ shocks are correlated.

� e.g., output of agent i is given by qi = ai + ✏i and ✏i’s are positively correlated.

� Output of agent i “contains” information about the e↵orts of all the other agents.

3. Joint production.

� Try to separate the agents’ performance given joint output.

4. Each agent may have information about the e↵ort choices of the other agents.

Problem Formulation (with 2 agents):

� 2 risk-neutral agents

� Agent i takes action ai at cost c (ai)

� Agent i’s utility: ui = wi � c (ai)

� Output of agent i: qi = ai + ✏i, where ✏1 is independent of ✏2, and E [✏i] = 0.

� First best:

max
ai , w(·)

E [q � w (q) | ai]

s.t. E [w (q)� c (ai) | ai] � ū (IR)
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� Straightforward that (IR) binds. Then E [w (q)] = c (ai) + ū.

� Then the maximization problem reduces to:

max
ai

{E [q � c (ai) | ai]� ū} = max
ai

{ai � c (ai)� ū}

– FOC: c0 (ai) = 1.

Implement with a Tournament

� Consider a two-player tournament where the winner is the player who produces the

highest q.

� Prizes wH and wL for the agent with the higher and lower output, respectively.

� Idea: Contestants pre-commit their investments early in life, knowing the prizes and

the rules of the game.

� Pr {i wins} = Pr {qi > qj} = Pr {ai + ✏i > aj + ✏j} = Pr {✏j � ✏i < ai � aj} = H (ai � aj),

where H (·) is the cdf of ✏j � ✏i.

� Agent i’s problem:

max
ai

wH H (ai � aj) + wL [1�H (ai � aj)]� c (ai)

� FOC: (wH � wL)h (ai � aj) = c0 (ai)

� Symmetric equilibrium =) ai = aj = a⇤ =) c0 (a⇤) = (wH � wL)h (0).

– Each agent “wins” with probability 1
2 .

(1) Equilibrium e↵ort is first best if (wH � wL)h (0) = 1.

(2) For (IR) to be satisfied, wH , wL must satisfy: wH+wL

2 � c (a⇤) = ū.

� Obtain wH , wL by solving (1) and (2).

� Advantages:
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– Simplicity

– Private evaluation robustness

⇤ With individual incentives, if explicit contracts cannot be written down, firms

may not pay the bonus. (May be solved by repeated interaction, but only

partially.)

⇤ If a prize must be given, might as well give it to the “best” performer.

� Disadvantages:

– Asymmetric equilibria

– Risk aversion causes problems

– Solution depends on the specification of h (·)

– Collusion

– Sabotage

– If uncertainty unfolds gradually and agents can change their e↵orts (after observing

the realization of shocks), e↵ort decreases as the gap between the leader and the

laggard increases: Tournaments can undermine incentives in a dynamic setting.

Holmstrom (Bell Journal, 1982)

� n risk-neutral agents, each with reservation utility ū.

� Agent i’s utility: ui = ti � c (ai)

� Action ai 2 Ai ✓ R, and c (·) is convex.

� Output (deterministic): q (a), where a = {a1, .., an}, q (·) is di↵erentiable and dq
dai

> 0.

– e.g., q =
Pn

i=1 ai

First best:

� a⇤ 2 argmax {q (a)�
P

i c (ai)}

– Any internal maximum satisfies dq(a⇤)
dai

= c0 (a⇤i ) for all i .

– Assume q (a⇤)�
P

i c (a
⇤
i ) �

P
i ūi.

– Split proceeds {t⇤i }i such that (i) t⇤i � c (a⇤i ) � ūi for all i and (ii)
P

i t
⇤
i = q (a⇤).
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Moral Hazard Problem:

� Use output sharing rule {ti (q)}i such that
P

i ti (q) = q (balanced budget).

– Assume that ti (q) is di↵erentiable.

� Agent i’s Problem:

max
ai

ti (q (ai, ã�i))� c (ai)

– FOC: t0i (q (ã))
dq(ã)
dai

= c0 (ãi)

– t0i (q) is agent i’s marginal pay per-unit of output.

� Can we implement first best a⇤?

– From the first best FOC and each agent’s FOC, it must be the case that t0i (q (a
⇤)) =

1 for all i =) ti (q) = q � Fi.

– But then, the budget balance constraint is violated; i.e.,
P

i ti (q) = nq�
P

i Fi = q

cannot hold for all q.

– To obtain first-best, every agent must get his marginal $, but this is impossible!)

=) there exists no budget balanced sharing rule that achieves first best.

� Intuition: Each agent must share the marginal benefit of his output, but he alone bears

its cost.

How to obtain First Best ?

1. Destroy output:

� Let:

ti (q) =

(
t⇤i if q = q (a⇤)

�K otherwise .

� Problems:

(a) Not “renegotiation proof”.

(b) What if output is random? (Multiple equilibria.)

2. Budget breaker:

� Introduce (n+ 1)th agent.
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� Let:

ti (q) = q � Fi for all i 2 {1, .., n}

tn+1 (q) = q �
nX

i=1

ti (q) =
X

i

Fi � (n� 1) q

where Fi are transfers from agent i to the (n+ 1)th agent.

� Choose {Fi}i such that tn+1 (q (a⇤)) = 0; i.e.,
P

i Fi = (n� 1) q (a⇤).

� Problems:

(a) How to interpret budget breaker? (Not a manager. Observe that BB pays

more, the lower the output.)

(b) BB has incentives to sabotage.

3. Spotting Individual Deviations:

� Suppose Ai is discrete: q (a) 6= q (a0) for all a 6= a0.

� Use the following scheme:

ti (q) =

8
>>>><

>>>>:

t⇤i if q = q (a⇤)

�K if q = q
�
ai, a

⇤
�i

�
6= q (a⇤)

q+K
n�1 if q = q (a⇤i , a�i) 6= q (a⇤)
q
n

otherwise .

Di↵erent Types of Implementation

� 2 agents

� E↵ort a 2 {L,H}; cost of e↵ort cL = 0 and cH = C > 0.

� Project succeeds or fails and Pr {success} = P (x), where x = # of agents who exert a = H.

– P (x) increases in x.

– Increasing returns: P (2)� P (1) > P (1)� P (0) (i.e., agents’ e↵orts are comple-

ments).

� What is the cheapest way for a principal to incentivize workers?

– Contract for worker i: wi1{success} (agent is protected by limited liability)
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1. Partial Implementation:

� Choose wi’s such that there exists an equilibrium in which both agents work.

� Assume agent i believes that agent �i will work. Then

(ICi) wiP (2)� C � wiP (1) =) wi �
C

P (2)� P (1)
= wP (1)

– The other agent faces the same constraint.

� Suppose that each agent receives wP when the project succeeds.

� What happens to contract given in (1) if agent i beliefs that agent �i will shirk?

– Write agent i’s IC:

wPP (1)� C � wPP (0)

=) P (1)

P (2)� P (1)
C � C � P (0)

P (2)� P (1)
C

=) P (1)� P (2) + P (1) � P (0)

=) P (2)� P (1)  P (1)� P (0)

– Contradicts the assumption that e↵orts are complements

– Therefore, if an agent believes that the other agent will shirk, then he will

also shirk (i.e., 2 Nash equilibria).

2. Full Implementation:

� How can we ensure that both agents exerting a = H is the unique equilibrium?

– One possibility is to set w1 = w2 =
C

P (1)�P (0) . Can we do better?

� Yes!

– Choose w1 such that agent 1 finds it optimal to exert a = H no matter what.

– Then set w2 = wP = C
P (2)�P (1) . Given that agent 1 exerts a = H, agent 2 will

also exert a = H.

� To ensure that agent 1 exerts a = H no matter what, we need:

w1P (1)� C � w1P (0)

=) w1 � C

P (1)� P (0)
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and w1 � wP . Because C
P (1)�P (0) > wP , we set wF

1 = C
P (1)�P (0) and wF

2 = C
P (2)�P (1) .

� Full implementation: Concerned with characterizing all Nash equilibria.

� Partial implementation: Characterizing one (of possibly many) Nash equilibria.

3. Sequential Implementation:

� Suppose agent 1 chooses a1.

� Agent 2 observes agent 1’s choice and chooses a2. (We assume that e↵ort is

observable but not contractible.)

� Working backwards:

wS
2 =

C

P (2)� P (1)
,

i.e., agent 2 finds it optimal to work when agent 1 works.

� We want to choose the wage of agent 1 such that he works, and as a consequence,

agent 2 also works.

– Agent 1’s IC constraint: wS
1P (2)� C � wS

1P (0) =) wS
1 = C

P (2)�P (0) .

� Because P (1) > P (0), wS
1 > wS

2 .

� There exists a unique equilibrium in which both agents work.

� Observe that 2wP < wS
1 + wS

2 < wF
1 + wF

2 .
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