Module 7: Debt Contracts & Credit Rationing

Information Economics (Ec 515) · George Georgiadis

Two Applications of the principal-agent model to credit markets

- \circ An entrepreneur (*E* borrower) has a project.
 - Project requires investment I > 0.
 - Entrepreneur has assets $A \in [0, I)$.
 - Requires to borrow I A from a Lender (L).
- If undertaken, project either succeeds and yields profits $\pi = R > 0$, or it fails and yields $\pi = 0$.
- Both E and L are risk-neutral.
- E privately chooses effort $e \in \{e_H, e_L\}$
 - Assume $c(e_H) = B > 0$ and $c(e_L) = 0$.
 - Let p(e) be the probability that project succeeds, where $\Delta = p(e_H) p(e_L) > 0$.
- Assumptions: The project has
 - positive NPV if E works: $p(e_H)R I B > 0$
 - negative NPV if E shirks: $p(e_L)R I < 0$
- L offers E a contract to lend him I A:
 - Contract specifies repayment z from E to L, as a function of the realized profits.
 - There is a competitive lending market, so lender earns zero expected profits.
- Assume E is protected by limited liability, so $z \leq \pi$.

- If $\pi = 0$, then repayment is zero \implies both E and L get zero profits.

- If $\pi = R$, then repayment is $z \in [0, R] \Longrightarrow E$ gets R - z and L gets z.

 $\circ~$ If E puts high effort:

- Lender's expected profits are: $p(e_H) z (I A)$.
- Entrepreneur's expected profits are: $p(e_H)(R-z) A B$.
- If Entrepreneur puts low effort:
 - L's expected profits are $p(e_L) z (I A)$.
 - E's expected profits are $p(e_L)(R-z) A$.
- Recall that project has positive NPV only if E puts effort:
 - Suppose L offers a contract that induces E to put low effort. Then:

$$\underbrace{\left[p\left(e_{L}\right)z-\left(I-A\right)\right]}_{\text{Profits to Lender}} + \underbrace{\left[p\left(e_{L}\right)\left(R-z\right)-A\right]}_{\text{Profits to Entrepreneur}} < 0.$$

- No loan that induces E to put low effort will ever be given out such a loan would give a negative payoff either to E or to L.
- Suppose that L offers a contract that induces E to put high effort.
 - If E puts high effort, L's expected profits are $p(e_H) z (I A)$.
 - Perfect competition among lenders implies that

$$z = \frac{I - A}{p\left(e_H\right)}$$

- L must provide incentives for E to put high effort.
 - Incentive compatibility constraint:

$$p(e_H)(R-z) - B - A \ge p(e_L)(R-z) - A$$
$$\implies \Delta (R-z) \ge B$$
$$\implies R - \frac{B}{\Delta} \ge z$$

• These two equations imply that

$$R - \frac{B}{\Delta} \geq \frac{I - A}{p(e_H)}$$
$$\implies A \geq I - p(e_H) \left(R - \frac{B}{\Delta}\right) = \bar{A}.$$

- $E \text{ will only get financing if } A \geq \overline{A}.$
- To provide incentives, E must have a high stake in the project (*i.e.*, enough "skin in the game").
- If the principal cannot provide incentives, then he will not finance the project.
- $\circ \ Case \ 1: \ A \geq \overline{A}$
 - E will get financing, and his repayment scheme is $z = \frac{I-A}{p(e_H)}$.
 - L earns zero profits (competitive lending market).
 - E's stake in the firm:

$$R - z = R - \frac{I - A}{p(e_H)} \ge R - \frac{I - \overline{A}}{p(e_H)} = \frac{B}{\Delta}.$$

- E has incentives to put effort.
- Case 2: $A < \overline{A}$
 - E must borrow a large amount, and hence repay a large amount to L.
 - This reduces his stake in the project, so he doesn't have incentives to put effort.
 - There is no loan agreement that induces effort and allows L to recover the investment.
 - There is credit rationing!
- Determinants of credit rationing:
 - Level of assets that E owns A.
 - How costly it is to provide incentives: how large B is relative to Δ .
 - How costly the investment is (i.e., how large I is).
- Crucial constraint for these results: limited liability constraint.

- Recall that in the general principal-agent problem, we could implement the optimal solution when the agent was risk-neutral.
 - * In that case, the optimal contract was to "sell the firm" to the agent.
 - * But this doesn't satisfy limited liability!
- In this problem, credit rationing wouldn't matter without limited liability.
 - * If we drop the limited liability constraint, we are assuming that E has enough money to fund the project herself!

Motivating Debt Contracts

• Debt contract: First \$D of profits go to investors.

Model:

- $\circ~{\rm Risk}{\rm -neutral}$ entrepreneur seeks funding from risk-neutral investor
- Output $q \sim f(q \mid a)$ satisfies MLR
- $\circ~$ Investor puts in funds I
- Entrepreneur makes a TIOLI offer to repay $r(q) \in [0, q]$ in state q.
- Entrepreneur's utility: w(q) c(a), where w(q) = q r(q).
- Entrepreneur's Problem:

$$\max_{r(q),a} \mathbb{E}[q - r(q) \mid a] - c(a)$$

s.t. $\mathbb{E}[r(q) \mid a] \ge I$ (IR)
 $a \in \arg\max_{a'} \mathbb{E}[q - r(q) \mid a'] - c(a')$ (IC)
 $0 \le r(q) \le q$ (feasibility)

• Straightforward that IR should bind.

• Ignore (feasibility) and write the Lagrangian:

$$\begin{split} L &= \int_{\mathbb{R}} \left[q - r(q) \right] dF(q \mid a) - c(a) + \lambda \left[\int_{\mathbb{R}} r(q) dF(q \mid a) - I \right] \\ &+ \mu \left\{ \int_{\mathbb{R}} \left[q - r(q) \right] \frac{f_a(q \mid a)}{f(q \mid a)} dF(q \mid a) - c'(a) \right\} \\ &= \int_{\mathbb{R}} q \left[1 + \mu \frac{f_a(q \mid a)}{f(q \mid a)} \right] dF(q \mid a) + \int_{\mathbb{R}} r(q) \left[-1 + \lambda - \mu \frac{f_a(q \mid a)}{f(q \mid a)} \right] dF(q \mid a) - \lambda I - \mu c'(a) \end{split}$$

- Second line follows from FOC approach.

• Take FOC with respect to r:

$$\frac{dL}{dr} = -1 + \lambda - \mu \frac{f_a\left(q \mid a\right)}{f\left(q \mid a\right)}$$

-r does not appear anywhere \implies solution will be "bang-bang".

 $\circ\,$ Optimal contract:

$$r(q) = \begin{cases} q & \text{if } \lambda \ge 1 + \mu \frac{f_a(q \mid a)}{f(q \mid a)} \\ 0 & \text{otherwise.} \end{cases}$$

- Optimal λ and μ will be such that (IR) binds.
- MLR $\implies \frac{f_a(q \mid a)}{f(q \mid a)}$ increases in q. Therefore (assuming $\mu > 0$), $\exists q^*$ such that r(q) = q for $q \leq q^*$.

(Can show that $\mu > 0$ using a similar approach as in standard principal-agent problem.)

• Intuition:

- Incentive problem: induce the agent to exert high effort.
- Must be rewarded when q is large.

- The entrepreneur's reward = q - r(q).

- *Problem:* Because r(q) decreases in q,
 - 1. the entrepreneur can borrow money (without the investor knowing), reduce payment, and repay the borrowed money later ; and
 - 2. the investor has incentives to sabotage the project if q is "large".
- Solution: Add the constraint $r'(q) \ge 0$.
- Then the optimal contract becomes a debt contract:

$$r(q) = \begin{cases} q & \text{if } q \le D \\ D & \text{otherwise.} \end{cases}$$

 \circ D is chosen such that the investor's IR constraint binds:

$$\mathbb{E}\left[r\left(q\right) \mid a^*\right] = I$$

where $a^* \in \arg \max_{a'} \mathbb{E}[q - r(q) \mid a'] - c(a').$

References

Board S., (2011), Lecture Notes.

Bolton and Dewatripont, (2005), Contract Theory, MIT Press.

- Innes R.D., (1990), "Limited Liability and Incentive Contracting with Ex-ante Action Choices", *Journal of Economic Theory*.
- MacLeod B., (2003), "Optimal Contracting with Subjective Evaluation", American Economic Review.

Ortner J., (2013), Lecture Notes.