Module 4: Moral Hazard - Linear Contracts

Information Economics (Ec 515) · George Georgiadis

• A principal employs an agent.

• Timing:

- 1. The principal offers a linear contract of the form $w(q) = \alpha + \beta q$.
 - $-\alpha$ is the salary, β is the bonus rate.
- 2. The agent chooses whether the accept or reject the contract.
 - If the agent accepts it, then go o t = 3.
 - If the agent rejects it, then he receives his outside option U, the principal receives profit 0, and the game ends.
- 3. The agent chooses action / effort $a \in A \equiv [0, \infty]$.
- 4. Output $q = a + \varepsilon$ is realized, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- 5. The principal pays the agent, and the parties' payoffs are realized.
- The principal is risk neutral. His profit function is

$$\mathbb{E}\left[q-w\left(q\right)\right]$$

• The agent is risk averse. His utility function is

$$U(w,a) = \mathbb{E}\left[-e^{-r(w(q)-c(a))}\right]$$

with

$$c\left(a\right) = c\frac{a^2}{2}$$

- Rationality assumptions:
 - 1. Upon observing the contract $w(\cdot)$, the agent chooses his action to maximize his expected utility.

2. The principal, anticipating (1), chooses the contract $w(\cdot)$ to maximize his expected profit.

First Best

- \circ Benchmark: Suppose the principal could choose the action a.
 - We call this benchmark the *first best* or the *efficient outcome*.
 - Equivalent to say that the agent's action is verifiable or contractible.
- Principal solves:

$$\max_{\substack{a,w(q)\\ \text{s.t.}}} \mathbb{E}\left[a + \epsilon - w\left(q\right)\right]$$

s.t.
$$\mathbb{E}\left[-e^{-r\left(w(q) - c(a)\right)}\right] \ge U \quad \text{Individual Rationality (IR)}$$

- Solution approach:
 - Jensen's inequality $\Longrightarrow \mathbb{E}_x \left[-e^{-rx} \right] \leq -e^{-r\mathbb{E}_x[x]}$
 - Because the principal chooses the action, optimal wage must be independent of q; *i.e.*, $w(q) = \alpha$
 - Because a higher w(q) decreases the principal's profit and increases the agent's payoff, (IR) must bind. So:

$$-e^{-r(\alpha-c(a))} = U$$

$$\implies \alpha = c(a) - \frac{\ln(-U)}{r}$$

- The last equation pins down the wage α as a function of the action a.
- We now substitute into the objective function. We have:

$$\max_{a} \left[a - c\frac{a^2}{2} - \frac{\ln\left(-U\right)}{r} \right]$$

- First order condition: 1 c a = 0
- Optimal solution:

$$a^* = \frac{1}{c}$$
 and hence $w(q) = -\frac{\ln(-U)}{r} + \frac{1}{2c}$

 \circ Notes:

- Intuitively, because the agent is risk averse and he does not choose the action, it is suboptimal to expose him to risk.
- In general, (IR) will bind at the optimum. Otherwise, the principal is leaving money on the table.

Moral Hazard

- Now suppose that the principal cannot choose the agent's action.
- Trade-offs:
 - 1. Because the agent is risk averse and the principal is risk neutral, the principal wants to *insure* the agent.
 - 2. Because the principal cannot enforce a particular action, she must provide *incentives* to the agent.
- Extreme cases:
 - Full insurance (but no incentives): Pay a flat wage; *i.e.*, $w(q) = \alpha$.
 - Full incentives (but no insurance): Agents pays a flat fee and "buys" the output; *i.e.*, $w(q) = \alpha + q$.

Solution Approach

• First, solve the agent's maximization problem for arbitrary w(q):

$$\max_{a} U = \max_{a} \mathbb{E} \left\{ -e^{-r[w(q)-c(a)]} \right\}$$
$$= \max_{a} \mathbb{E} \left\{ -e^{-r\left[\alpha+\beta(a+\varepsilon)-c\frac{a^{2}}{2}\right]} \right\}$$
$$= \max_{a} \left\{ -e^{-r\left[\alpha+\beta a-c\frac{a^{2}}{2}\right]} \right) \mathbb{E} \left[e^{-r\beta\varepsilon} \right] \right\}$$
$$= \max_{a} \left\{ -e^{-r\left[\alpha+\beta a-c\frac{a^{2}}{2}\right]} \right) e^{\frac{1}{2}r^{2}\beta^{2}\sigma^{2}} \right\}$$
$$= \max_{a} \left\{ -e^{-r(\alpha+\beta a-c\frac{a^{2}}{2}-\frac{1}{2}r\beta^{2}\sigma^{2})} \right\}$$

• Therefore, the agent's problem reduces to

$$\max_{a} \left\{ \alpha + \beta a - c\frac{a^2}{2} - \frac{1}{2}r\beta^2\sigma^2 \right\}$$

• The first-order condition for the agent's optimal effort choice is:

$$a\left(\beta\right) = \frac{\beta}{c}$$

- $\circ~$ Unless $\beta \geq 1,$ in equilibrium, effort is less than first best.
- The principal will then maximize

$$\max_{a,\alpha,\beta} \quad \mathbb{E}\left[a + \epsilon - \alpha - \beta \left(a + \epsilon\right)\right] = (1 - \beta) a - \alpha$$

s.t.
$$a = \frac{\beta}{c}$$
$$\alpha + \frac{\beta^2}{2} \left(\frac{1}{c} - r\sigma^2\right) \ge \frac{\overline{u}}{r}$$

- First equation is the incentive compatibility constraint (IC) and the second is the individual rationality (IR) with $\overline{u} = \ln(-\overline{U})$.
- The principal will choose $\alpha = \frac{\overline{u}}{r} \frac{\beta^2}{2} \left(\frac{1}{c} r\sigma^2\right)$ (s.t. IR binds).
- Substituting into the principal's objective function:

$$\max_{\beta} \left\{ \frac{(1-\beta)\beta}{c} + \frac{\beta^2}{2} \left(\frac{1}{c} - r\sigma^2 \right) - \frac{\overline{u}}{r} \right\}$$

 \circ Solution:

$$\beta^* = \frac{1}{1 + rc\sigma^2} \tag{1}$$

and

$$\alpha^* = \frac{\overline{u}}{r} - \frac{1 - rc\sigma^2}{2c^2 \left(1 + rc\sigma^2\right)^2},$$

- Because negative salaries are allowed, the IR constraint is binding.
- The equilibrium level of effort is

$$a^* = \frac{1}{c\left(1 + rc\sigma^2\right)}$$

which is always lower than the first-best level of effort, $a^{fb} = \frac{1}{c}$.

Comparative Statics

$$\beta^* = \frac{1}{1 + rc\sigma^2}$$

- Incentives are *lower powered* ; *i.e.*, β^* is lower when:
 - the agent is more risk-averse; *i.e.*, if r is larger
 - effort is more costly; *i.e.*, if c is larger
 - there is greater uncertainty; *i.e.*, if σ^2 is larger.
- Is a linear contract optimal (among all possible contracts)?
 - NO!
 - Mirrlees's "shoot-the-agent" contract is optimal here:

$$q^{*}(x) = \begin{cases} w_{H} & \text{if } x \ge q_{0} \\ w_{L} & \text{otherwise} \end{cases}$$

where $w_H > w_L$.

- By choosing w_H , w_L and q_0 appropriately, it is possible to implement first best (approximately).
 - * Agent receives w_H almost surely, yet has incentives from fear of w_L .
- But this result depends *crucially* on the assumption $\epsilon \sim N(0, \sigma^2)$.
- What to make of linear contracts
 - Even if linear contracts are not optimal here, they are attractive for their simplicity and for being easy to characterize and interpret.
 - Nonlinear models are often very sensitive to the particular assumptions of the model (*e.g.*, the distribution function of ϵ).
- Nonlinear contracts are also prone to "gaming".
 - Consider Mirrlees' "shoot-the-agent" contract in a dynamic world.
 - After output has reached q_0 , the agent has no incentive to exert effort.

References

Board S., (2011), Lecture Notes.

Bolton and Dewatripont, (2005), Contract Theory, MIT Press.

- Ederer F., (2011), Lecture Notes.
- Laffont J-J. and Martimont D., (2002), *The Theory of Incentives: The Principal-Agent Model*, Princeton University Press.

Segal and Tadelis, (2002), Lectures on Contract Theory, Stanford University (online link).