Module 3: Moral Hazard - Introduction

Information Economics (Ec 515) · George Georgiadis

- Moral hazard arises naturally in many settings.
- In general, these settings feature the following characteristics:
 - Agent's actions are not observable: asymmetric information.
 - Agent's actions affect the payoff (or welfare) of others.
 - It is costly for the agent to take the "right" action.
- Examples:
 - A CEO working for the firm's shareholders.
 - An entrepreneur who needs financing.
 - A firm deciding whether or not to invest in product "quality".
 - An individual who purchases health insurance.

Moral Hazard and Insurance

- Recall our insurance model:
 - Two possible outcomes (states of the world): good (G) outcome or bad (B) outcome.
 - * *Bad:* your house burns down.
 - * *Good:* your house doesn't burn.
 - * Good outcome occurs with probability $p \in (0, 1)$ (Bad outcome occurs with prob. 1 p).
 - We assumed that probability p was exogenous. What if p depends on homeowner's actions?

- \circ Suppose p depends on agent's "effort" level e.
 - Homeowner may take precautions or not.
 - * Insurance company cannot observe if owner takes precautions or not.
 - * Cost of effort e for homeowner: c(e) = e.
 - Suppose that p(e) satisfies
 - * p' > 0 and p'' < 0
 - * $p(0) = a \ge 0$: with zero effort, fire occurs with probability 1 a.

Case 1: No Insurance

- Suppose there is no insurance available.
 - Then, consumer's income at state of the world:
 - $* y_G = y$
 - * $y_B = y L$ (assume y > L)
 - Consumer's utility if he chooses effort e:
 - * u(y) e in good state.
 - * u(y-L) e in bad state.
 - We assume that u' > 0 and u'' < 0.
- \circ Consumer's problem is to choose effort level e.
 - Consumer chooses e to solve:

$$\max_{e} \left\{ p(e) u(y) + [1 - p(e)] u(y - L) - e \right\}.$$

 $\circ \ {\rm FOC}$

$$p'(e^*) u(y) - p'(e^*) u(y - L) - 1 = 0 \Rightarrow$$
$$p'(e^*) = \frac{1}{u(y) - u(y - L)}.$$

- SOCs?

- $-e^* > 0$ (as long as $p'(0) > \frac{1}{u(y) u(y L)}$).
 - * If there is no insurance available, consumer will put effort.

Case 2: Insurance Market

• Suppose now that consumer can purchase insurance (coverage C):

$$- y_G = y - \pi C$$

- $y_B = y - L - \pi C + C = y - L + (1 - \pi) C$

 \circ Assume that insurance market is competitive + firms expect consumer to put effort e.

- Zero profits implies that $\pi = 1 p(e)$.
- Consumer will buy coverage C = L:
- Consumer's income in both states is $y \pi L$.
- Given the price of coverage π , how much effort will consumer put?

$$\max_{e} \left\{ u \left(y - \pi L \right) - e \right\}.$$

- Consumer chooses e = 0, so $\pi = 1 p(0) = 1 a$.
- Everyone ends up paying a very high premium!
- If a = 0, then $\pi = 1$. Consumer's payoffs are u(y L).
 - * Consumer is better off without an insurance.
 - * Insurance market would shut down, since there is no demand!
 - * Same would be true if a is close to zero.

References

Board S., (2011), Lecture Notes.

Bolton and Dewatripont, (2005), Contract Theory, MIT Press.

Ortner J., (2013), Lecture Notes.