Module 2: Portfolio Choice & Insurance

Information Economics (Ec 515) · George Georgiadis

- Suppose an investor has initial wealth w and utility $u(\cdot)$.
 - Assume that u' > 0 > u''.
- $\circ\,$ Investor chooses between two assets:
 - safe asset, which yields a return 1 + r for every dollar invested with probability 1 (r > 0).
 - risky asset, which yields a return of 1 + R for every dollar invested
 - R takes values $R_1 < R_2 < ... < R_n$, with probabilities $p_1, ..., p_n$.
- Assume that: $R_1 < r$ and $\mathbb{E}[R] = \sum_{i=1}^n p_i R_i > r$.
- Investor's choice: how much to invest in each asset.
- \circ Let A be the amount of money she invests in the risky asset.
- Then, the investor's expected return is given by

$$A\sum_{i=1}^{n} p_i (1+R_i) + (w-A) (1+r)$$

• Investor's problem:

$$\max_{A} \sum_{i=1}^{n} p_{i} u \left(A \left(1 + R_{i} \right) + \left(w - A \right) \left(1 + r \right) \right)$$

• First order conditions:

$$\sum_{i=1}^{n} p_i u' \left(A^* \left(1 + R_i \right) + \left(w - A^* \right) \left(1 + r \right) \right) \left(R_i - r \right) = 0.$$

- Second order conditions?
 - Always satisfied! (Explain.)
- There is a unique A^* that solves this equation.

- If $\mathbb{E}[R] = \sum_{i=1}^{n} p_i R_i > r$, then $A^* > 0$.

- Proof by contradiction.
- If u has DARA, then A is increasing in w.

An Application: Insurance Problem

- A consumer buying insurance.
- Two possible outcomes (states of nature): good (G) and bad (B).
- Example:
 - Good outcome: your house doesn't burn down.
 - Bad outcome: your house burns down.
- Consumer's income:
 - Income at state G: y.
 - Income at state B: y L.
 - Assume y > L.
- $\circ~{\rm G}$ occurs with probability $p\in(0,1)$ (B with prob. 1-p)
- Consumer can buy coverage (insurance).
- \circ If consumers buys coverage C:
 - He receives C from insurance company if outcome is B.
 - He receives 0 from insurance company if outcome is G.
- Getting coverage C costs πC ($\pi = \text{cost of coverage}$).
- \circ Consumer chooses coverage level C.

- \circ Consumer's income if he purchases coverage C:
 - Income at state G: $y_G = y \pi C$
 - Income at state B: $y_B = y L \pi C + C = y L + (1 \pi)C$
- Note that $\pi < 1$: otherwise, the consumer will not purchase insurance.
- What effect does a marginal increase in C have on y_G and y_B ?

$$\frac{\partial y_G}{\partial C} = -\pi$$
$$\frac{\partial y_B}{\partial C} = 1 - \pi \Rightarrow$$
$$\frac{\partial y_B}{\partial C} / \frac{\partial y_G}{\partial C} = -\frac{1 - \pi}{\pi}$$

- By marginally increasing C, you trade off 1π units of consumption in bad state by π units of consumption in good state.
- $-\frac{1-\pi}{\pi}$ is called the "price-ratio".
- Given (y_G, y_B) , the consumer's utility is:

$$U(y_G, y_B) = pu(y_G) + (1-p)u(y_B).$$

- Assume that u' > 0 and u'' < 0: The consumer likes more income and he is risk averse.
- Consumer's problem

$$\max_{C} \left\{ pu \left(y - \pi C \right) + (1 - p) u \left(y - L - \pi C + C \right) \right\}.$$

• First order conditions:

$$pu'(\underbrace{y-\pi C^*}_{y_G^*})(-\pi) + (1-p)u'(\underbrace{y-L+(1-\pi)C^*}_{y_B^*})(1-\pi) = 0.$$

 $\circ\,$ This implies that:

$$(1-p) u'(y_B^*) (1-\pi) = p u'(y_G^*) \pi \Rightarrow \frac{1-\pi}{\pi} = \frac{p u'(y_G^*)}{(1-p) u'(y_B^*)}.$$

- \circ Solution: MRS = Price ratio
- Second order conditions?
- $\circ \text{ Suppose } 1-p \geq \pi. \text{ Then, } C^* > 0.$
 - If price of insurance is lower than probability of bad outcome, consumer will buy coverage.

Example: Suppose $u(y) = \ln y$, so $u'(y) = \frac{1}{y}$.

 $\circ\,$ In this case:

$$\frac{1-\pi}{\pi} = \frac{pu'(y_G)}{(1-p)u'(y_B)} \\ = \frac{py_B}{(1-p)y_G}.$$

• Since $y_G = y - \pi C$ and $y_B = y - L - \pi C + C$,

$$\frac{1-\pi}{\pi} = \frac{p}{1-p} \frac{y-L-\pi C+C}{y-\pi C}.$$

• This equation pins down the level of coverage C. Solving for C yields:

$$C = \frac{\frac{y}{\pi}(1 - \pi - p) + pL}{1 - \pi}.$$

- Assuming $1 \pi p > 0$, level of coverage is increasing in L and y.
- What about changes in p?

$$\frac{\partial C}{\partial p} = \frac{L - \frac{y}{\pi}}{1 - \pi} = \frac{\pi L - y}{\pi (1 - \pi)}.$$

- Since y > L, agent buys less coverage as p increases.
- As p increases, bad state becomes less likely.
- What about changes in π ?

$$\frac{\partial C}{\partial \pi} = \frac{\partial}{\partial \pi} \left(\frac{\frac{y}{\pi} \left(1 - \pi - p \right) + pL}{1 - \pi} \right).$$

- This derivative is negative:
- As price of coverage increases, agent buys less coverage.

Perfect Competition in the Insurance Sector

- What are the profits of the insurance company?
 - Insurance company earns πC on the consumer.
 - Insurance company pays consumer an amount C with probability 1 p.
- Total expected profits: $\pi C (1-p)C = (\pi + p 1)C$.
 - Suppose that there is perfect competition in the insurance sector.
 - Profits of the insurance company are zero, so $\pi = 1 p$.
- Recall FOCs:

$$\frac{1-\pi}{\pi} = \frac{pu'(y_G^*)}{(1-p)u'(y_B^*)}$$

• Under perfect competition in the insurance sector, $\pi = 1 - p$, so

$$1 = \frac{u'(y_G^*)}{u'(y_B^*)} \Rightarrow u'(y_G^*) = u'(y_B^*) \Rightarrow y_G^* = y_B^*.$$

• Consumer insures perfectly!

$$y_G = y - \pi C = y - L - \pi C + C = y_B \Rightarrow$$

 $C = L.$

References

Mas-Colell, Whinston and Green, (1995), *Microeconomic Theory*, Oxford University Press. Ortner J., (2013), Lecture Notes.