Module 17: Mechanism Design & Optimal Auctions

Information Economics (Ec 515) · George Georgiadis

Examples:

- Auctions
- Bilateral trade
- Production and distribution in society

General Setup

- \circ N agents
- Each agent has private information θ_i ; $\theta = \{\theta_i\}_{i=1}^N$.
- Outcomes $y \in Y$; often allocation plus transfers: $y = \{k, t_1, .., t_N\}$.
- Utility $u_i = u_i(y, \theta)$
 - Quasi-linear utility: $u_{i} = u_{i}^{k}(\theta) t_{i}$.
- Mechanism designer's objective: "Implement" a choice rule ψ : Θ → Y to maximize objective; *e.g.*,
 - Efficiency: maximize $\sum_{i} u_{i}^{k}(\theta)$
 - Revenue: maximize $\mathbb{E}_{\theta} \left[\sum_{i} t_{i} \left(\theta \right) \right]$

Definition. A choice rule $\psi : \Theta \to Y$ is incentive compatible with respect to an equilibrium concept "X" if each agent revealing his type truthfully (*i.e.*, reporting $\tilde{\theta}_i = \theta_i$) is an "X"-equilibrium.

Equilibrium Concepts

1. Dominant-strategy (strategy-proof) implementation: For all $i, \theta_i, \theta_i, \theta_{-i}$ and θ_{-i}

$$u_i\left(\psi\left(\theta_i, \tilde{\theta}_{-i}\right); \theta\right) \ge u_i\left(\psi\left(\tilde{\theta}_i, \tilde{\theta}_{-i}\right); \theta\right)$$

- Reporting truthfully is an optimal strategy for each agent irrespective of the others' strategies.
- Quite restrictive.
- 2. Bayesian Nash implementation:
 - There is a common prior π over θ , and the agents' beliefs $\pi_i(\cdot|\theta_i)$ over Θ_{-i} are given by Bayesian updating.
 - For all For all i, θ_i and $\tilde{\theta}_i$

$$\mathbb{E}_{\pi_{i}(\cdot|\theta_{i})}u_{i}\left(\psi\left(\theta_{i},\theta_{-i}\right);\theta\right) \geq \mathbb{E}_{\pi_{i}(\cdot|\theta_{i})}u_{i}\left(\psi\left(\tilde{\theta}_{i},\theta_{-i}\right);\theta\right)$$

- Reporting truthfully is an optimal strategy on expectation, given beliefs $\pi_i(\cdot|\theta_i)$.
- 3. Ex-post implementation: For all $i, \theta_i, \tilde{\theta}_i$ and θ_{-i}

$$u_{i}\left(\psi\left(\theta_{i},\theta_{-i}\right);\theta\right) \geq u_{i}\left(\psi\left(\tilde{\theta}_{i},\theta_{-i}\right);\theta\right)$$

- Ea. agent finds it optimal to report truthfully given that others also report truthfully
 after others' types are revealed ("no regret").
- Advantage: Robust against different priors and higher order beliefs.

Revelation Principle

- Set of all mechanisms has little structure.
- Focus on a particular class of mechanism: Revelation mechanism $S_i = \Theta_i$; *i.e.*, strategy is to state a type $\tilde{\theta}$.

Theorem. (Revelation Principle for Bayesian Nash implementation) A choice rule ψ is (partially) implementable by any mechanism if and only if it is incentive compatible.

• Proof: Skipped.

- $\circ\,$ Very robust result.
 - Holds for all standard implementation concepts.
- If agents control actions a_i on top of common decision ψ , then one can replace any mechanism with a centralized mechanism where
 - Each agent reports his type $\tilde{\theta}_i$; and
 - the mechanism designer recommends actions \tilde{a}_i .
 - In equilibrium, the agents are truthful $\tilde{\theta}_i = \theta_i$ and obedient $(a_i = \tilde{a}_i)$.
 - i.e., Moral hazard together with adverse selection (Myerson, Ecta '82)
- If agents can act sequentially and acquire further information, then one can replace any mechanism with a centralized mechanism where
 - Agents report everything they have learned so far ; and
 - the mechanism designer recommends actions \tilde{a}_i .
 - In equilibrium, the agents are truthful and obedient.
- $\circ\,$ Not robust to:
 - Communication costs
 - Bounded rationality.
- Full vs. Partial implementation:
 - Partial: $\psi(\theta)$ is an equilibrium.
 - Full: $\psi(\theta)$ is the only equilibrium.

Optimal Auctions

- $\circ~N$ bidders.
- $\circ \ \theta \in \left[\underline{\theta}, \overline{\theta}\right]$ with pdf f.
- $\circ\,$ Mechanism specifies:
 - 1. Allocation function $p_i : [\underline{\theta}, \overline{\theta}]^N \to [0, 1]$ for each agent *i* such that $p_i \ge 0$ and $\sum_i p_i \le 1$.
 - If the seller has n objects for sale, then $\sum_i p_i \leq n$.
 - 2. Transfer function $t_i : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$ for each agent *i*.
- $\circ~$ Independent private values (IPV) model: $u_{i}\left(\theta_{i}\right)=\theta_{i}p_{i}-t_{i}$
- Revenue: $\sum_{i} t_i + (1 \sum_{i} p_i) \theta_0$
 - $-\theta_0$: seller's value. Can be shown that the seller can disclose θ_0 wolog.

Examples of Auctions

- 1. First-Price Auction: $p_i(\theta) = 1$ if $\theta_i > \theta_{-i}$, and $t_i(\theta_i) = p_i(\theta) b(\theta_i)$.
 - $b(\theta_i)$ is the bid of type θ_i .
 - Under symmetry assumptions.
 - Otherwise: Maskin and Riley (REStud, 2000)
- 2. Second-Price Auction: $p_i(\theta) = 1$ if $\theta_i > \theta_{-i}$, and $t_i(\theta_i) = p_i(\theta) b(\theta_{(2)})$.

• $b(\theta_{(2)})$ is the second-highest bid.

- 3. All-pay Auction: $p_i(\theta) = 1$ if $\theta_i > \theta_{-i}$, and $t_i(\theta_i) = b(\theta_i)$.
- 4. Raffle: $n(\theta_i) = \#$ of tickets, $p(\theta) = \frac{n(\theta_i)}{\sum_j n(\theta_j)}$, and $t_i(\theta_i) = c n(\theta_i)$.

Revenue Maximization

$$\max \qquad \mathbb{E}_{\theta} \left[\sum_{i} t_{i} \left(\theta_{i} \right) + \left[1 - \sum_{i} p_{i} \left(\theta \right) \right] \theta_{0} \right]$$

s.t.
$$u_{i} \left(\theta_{i}; \theta_{i} \right) \geq 0$$
$$u_{i} \left(\theta_{i}; \theta_{i} \right) \geq u_{i} \left(\theta_{i}; \tilde{\theta}_{i} \right)$$

where $u_i\left(\theta_i; \tilde{\theta}_i\right) = \mathbb{E}_{\theta_{-i}}\left[p_i\left(\tilde{\theta}_i, \theta_{-i}\right)\theta_i - t\left(\tilde{\theta}_i, \theta_{-i}\right)\right].$

Proposition. is IC if and only if

- 1. $u_i(\theta_i; \theta_i) = u_i(\underline{\theta}; \underline{\theta}) + \int_{\underline{\theta}}^{\theta_i} \mathbb{E}_{\theta_{-i}}[p_i(s, \theta_{-i})] ds (IC-FOC)$
- 2. $\mathbb{E}_{\theta_{-i}}\left[p_{i}\left(\theta_{i}, \theta_{-i}\right)\right]$ increases in θ_{i} (Monotonicity)
- (IR) can be replaced by $u(\underline{\theta};\underline{\theta}) = 0$.
- *Proof:* Similar to the single-agent case.
- Re-write objective function:

Revenue =
$$\mathbb{E}_{\theta} \left[\sum_{i} p_{i}(\theta) \theta_{i} + \left[1 - \sum_{i} p_{i}(\theta) \right] \theta_{0} - \sum_{i} u_{i}(\theta_{i}; \theta_{-i}) \right]$$

• Calculate expected rent:

$$\begin{split} \mathbb{E}_{\theta_{i}}\left[u_{i}\left(\theta_{i};\theta_{-i}\right)\right] &= \underbrace{u_{i}\left(\underline{\theta};\underline{\theta}\right)}_{=0} + \int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\theta}}^{\theta_{i}} \mathbb{E}_{\theta_{-i}}\left[p_{i}\left(s,\theta_{-i}\right)\right] ds \underbrace{dF\left(\theta_{i}\right)}_{-\left[1-F\left(\theta_{i}\right)\right]'d\theta_{i}} \\ &= -\underbrace{\left[\mathbb{E}_{\theta_{-i}}\left[p\left(\theta_{i},\theta_{-i}\right)\right]\left[1-F\left(\theta_{i}\right)\right]\right]_{\underline{\theta}}^{\overline{\theta}}}_{=0} + \int_{\underline{\theta}}^{\overline{\theta}} \mathbb{E}_{\theta_{-i}}\left[p_{i}\left(\theta_{i},\theta_{-i}\right)\right]\left[1-F\left(\theta_{i}\right)\right] d\theta_{i} \\ &= \mathbb{E}_{\theta}\left[p_{i}\left(\theta\right)\frac{1-F\left(\theta_{i}\right)}{f\left(\theta_{i}\right)}\right] \end{split}$$

 \circ Compile:

Revenue =
$$\mathbb{E}_{\theta} \left[\sum_{i} p_{i}(\theta) \left[\underbrace{\theta_{i} - \frac{1 - F(\theta_{i})}{f(\theta_{i})}}_{MR(\theta_{i})} - \theta_{0} \right] \right] + \theta_{0}$$

Proposition. (Revenue Equivalence): Any auction that has the same allocation function, generates the same revenue.

Proof.

• Revenue depends on $p(\cdot)$, but not on $t(\cdot)$.

- Implication: What matters is allocations; not "how you get there".
- Optimal Auction:
 - Award good to agent *i* if $MR(\theta_i) > \max{\{\theta_0, MR(\theta_{-i})\}}$.
 - If $MR(\theta)$ increases in θ , then (Monotonicity) is satisfied, and we have an optimal auction. Otherwise, we need to "iron it".

Implementation:

- First-price auction with reserve price $r = MR^{-1}(\theta_0)$.
- Second-price auction with entry fee $e = MR^{-1}(\theta_0) F^{N-1}(MR^{-1}(\theta_0))$.

Example:

- N bidders, $\theta_i \sim U[0,1], \theta_0 = 0.$
- $\circ \ MR(\theta) = 2\theta 1.$
- Award good to agent with highest value if $\theta \geq \frac{1}{2}$; *i.e.*, reserve price $r = \frac{1}{2}$.
- Note: $r > \theta_0$. Why? (By increasing the reserve price, the seller can reduce information rents.)

Deriving bidding strategies:

- Assume that bidding functions are (i) monotone, and (ii) symmetric.
- First-price auction:

$$u_{i}(\theta_{i},\theta_{i}) = \mathbb{E}_{\theta_{-i}}\left[\left(\theta_{i}-b\left(\theta_{i}\right)\right)p_{i}\left(\theta\right)\right] = F^{N-1}\left(\theta_{i}\right)\left[\theta_{i}-b\left(\theta_{i}\right)\right]$$
$$u_{i}\left(\theta_{i},\theta_{i}\right) = \int_{\underline{\theta}}^{\theta_{i}}\mathbb{E}_{\theta_{-i}}\left[p\left(s,\theta_{-i}\right)\right]ds = \int_{\underline{\theta}}^{\theta_{i}}F^{N-1}\left(s\right)ds$$

• Equating the two expressions, we obtain

$$b(\theta) = \theta - \frac{\int_{\underline{\theta}}^{\theta} F^{N-1}(s) \, ds}{F^{N-1}(\theta)}$$

Asymmetries:

- Suppose $\theta_i \sim F_i(\cdot)$ (*i.e.*, valuations come from different distributions).
- Define: $MR_i(\theta_i) = \theta_i \frac{1 F_i(\theta_i)}{f_i(\theta_i)}$
- Revenue = $\mathbb{E}_{\theta} \left[\sum_{i} p_{i} \left(\theta \right) \left[MR \left(\theta_{i} \right) \theta_{0} \right] \right] + \theta_{0}$
- If bidder j has ex-ante higher valuation than bidder i (i.e., if $\frac{1-F_j(\theta)}{f_j(\theta)} > \frac{1-F_i(\theta)}{f_i(\theta)}$), then bias auction in favor of θ_i . (Formally, we say that $\theta_j >_{HRO} \theta_i$.)
 - If $\theta_i = \theta_j \epsilon$, then still allocate good to bidder *i*.
 - Favor weak bidders to induce the stronger bidders to bid higher.

Welfare Maximization (First Best)

$$\max_{p_{i}(\cdot)} \left\{ \mathbb{E}_{\theta} \left[\sum_{i} p_{i}\left(\theta\right) \theta_{i} + \left[1 - \sum_{i} p_{i}\left(\theta\right) \right] \theta_{0} \right] \right\}$$

- Solution: Allocate the good to the agent with the highest valuation (incl. seller)
 - $-p_i(\theta) = 1$ if and only if $\theta_i > \theta_j$ for all $j \neq i$ (otherwise 0).
- Implementation:
 - 1. First-price auction with reserve price θ_0 .
 - 2. Second-price auction with reserve price θ_0 .
 - 3. All-pay auction with reserve price θ_0 .

References

Bolton and Dewatripont, (2005), Contract Theory, MIT Press.

Ortner J., (2013), Lecture Notes.