Module 16: Signaling

Information Economics (Ec 515) · George Georgiadis

• Players with private information can take some action to "signal" their type.

- Taking this action would distinguish them from other types.

• Privately informed agents credibly convey information about themselves to another party.

• Spence (QJE, 1973): Job Market Signaling.

- Studied signaling in the labor market.

- Workers can signal their type by obtaining education.

- In equilibrium: high ability workers get more education, so employers can learn the agent's type by observing their education level.

- Signal is credible: only high ability workers will be willing to get more years of education.

Setup

 $\circ~$ Two types of workers: $\theta_{H} > \theta_{L}$ (high ability and low ability)

- A worker of type θ produces output which is worth θ to the employer.

There is a fraction $\lambda \in (0, 1)$ of low type-workers in the market.

 \circ A worker can obtain education level e, which is perfectly observable.

- Assume that e does not affect the worker's productivity θ .

• Cost of getting education $e \ge 0$ for a type θ worker is $c(e, \theta)$.

 $\circ\,$ We assume that:

 $-c(0,\theta) = 0, \ c_e(e,\theta) > 0, \ c_{ee}(e,\theta) \ge 0 \text{ for } \theta \in \{\theta_L, \theta_H\}.$

- $-c_e(e,\theta_H) < c_e(e,\theta_L)$ for all e.
- Second condition implies that getting more education is more costly for low ability workers than for high ability workers.
- *Goal:* Can high types credibly signal to employers their quality by getting more education than low types.
- If a type θ worker gets a wage w and education e, her utility is

$$w-c(e,\theta)$$
.

• Assume that

- 1. the outside option of both types of workers is zero; and
- 2. there is perfect competition among employers (and so they earn zero profits in expectation).

Benchmark

- Suppose first that workers cannot get education.
 - In this case there is no signaling.
- Equilibrium in this case:

$$w = \mathbb{E}\left[\theta\right] = \lambda \theta_L + (1 - \lambda) \,\theta_H$$

- All workers accept this wage (recall that outside option is 0).
- Firms earn zero profits.
- High types get a low wage, and low types get a high wage (relative to their productivity).

Education

- Suppose now that workers can get education to signal their type.
- $\circ\,$ We consider the following game:
 - The worker first learns her type. (Worker is type θ_H w.p 1λ and type θ_L w.p λ .)

- After learning her type, worker chooses education level $e \geq 0.$
- All firms then observe e but not θ . Then they make wage offers to the worker.
- Worker accepts (at most) one offer.
- In equilibrium, a worker who chooses e cannot gain by choosing a different $e' \neq e$.
- Let $\mu(e) = \Pr(\theta = \theta_H | e)$.
 - $-\mu(e)$ is the belief of the firms when they observe a worker with education level e.
 - These beliefs are derived from the workers' strategies.
- Let w(e) be the wage that firms offer when they see a worker with education e.
 - Zero profit condition implies that $w(e) = \mu(e) \theta_H + [1 \mu(e)] \theta_L$.
 - Wages depend solely on beliefs.
 - If $\mu(e)$ is not constant in e, then workers with different education level will get different wages.
- Let $e(\theta)$ be the education level chosen by a worker with type θ .
- Two types of equilibria:
 - Separating equilibria: $e(\theta_H) \neq e(\theta_L)$.
 - Pooling equilibria: $e(\theta_H) = e(\theta_L)$.
- We will focus mainly on separating equilibria (but we will discuss pooling equilibria at the end).

Separating equilibria

- Recall that $e(\theta_H) \neq e(\theta_L)$ and $\mu(e) = \Pr(\theta = \theta_H|e)$.
- In a separating equilibrium, $\mu(e(\theta_H)) = 1$ and $\mu(e(\theta_L)) = 0$.
 - If firms observe $e(\theta_i)$, they know that worker has type θ_i .
 - Thus, workers signal their types through their education level.
- This implies that $w(e(\theta_H)) = \theta_H$ and $w(e(\theta_L)) = \theta_L$.

- This follows since $w(e) = \mu(e) \theta_H + [1 - \mu(e)] \theta_L$.

- We shall show that $e(\theta_L) = 0$.
 - Towards a contradiction, suppose that $e(\theta_L) > 0$.
 - If a type θ_L worker deviates and chooses e = 0, she gets wage

$$w(0) = \mu(0) \theta_{H} + [1 - \mu(e)] \theta_{L} \ge \theta_{L}$$

- The utility she gets from doing so is

$$w(0) - c(0, \theta_L) \ge \theta_L - c(0, \theta_L) > \theta_L - c(e(\theta_L), \theta_L),$$

so this worker strictly prefers to choose e = 0 than to choose $e = e(\theta_L) > 0$.

- Therefore, in a separating equilibrium, it must be that $e(\theta_L) = 0$.
- What about $e(\theta_H)$?
- This education level has to satisfy two constraints:

$$\theta_{H} - c \left(e \left(\theta_{H} \right), \theta_{L} \right) \leq \theta_{L} - c \left(0, \theta_{L} \right) = \theta_{L}$$

$$\theta_{H} - c \left(e \left(\theta_{H} \right), \theta_{H} \right) \geq \theta_{L} - c \left(0, \theta_{H} \right) = \theta_{L}$$

- First constraint guarantees that a worker with type θ_H prefers to get education level $e(\theta_H)$ than $e(\theta_L)$.
- Second constraint guarantees that a worker with type θ_L prefers to get education level $e(\theta_L)$ than $e(\theta_H)$.

$$\implies c(e(\theta_H), \theta_L) \ge \theta_H - \theta_L \ge c(e(\theta_H), \theta_H)$$

- Recall that $c(e, \theta_L) > c(e, \theta_L)$ for all e.

• There is a range $[\underline{e}, \overline{e}]$ of values of $e(\theta_H)$ that satisfy these two inequalities:

 $-\underline{e}$ is such that $c(\underline{e}, \theta_L) = \theta_H - \theta_L$.

 $-\overline{e}$ is such that $c(\overline{e}, \theta_H) = \theta_H - \theta_L$.

- Any $e(\theta_H) \in [\underline{e}, \overline{e}]$ can be supported as an equilibrium.
- One thing left: what values does $\mu(e)$ take for $e \neq \{e(\theta_H), e(\theta_L)\}$?
 - We cannot derive these beliefs from the workers actions.
 - If employers observe $e \neq \{e(\theta_H), e(\theta_L)\}$, what should they believe?
- Recall that $w(e) = \mu(e) \theta_H + [1 \mu(e)] \theta_L$.
- For this to be an equilibrium, both types of workers must prefer to take their equilibrium actions:
 - type θ_H must prefer to get education $e(\theta_H)$ than any $e \neq e(\theta_H)$.
 - type θ_L must prefer to get education $e(\theta_L)$ than any $e \neq e(\theta_L)$.
- We specify $\mu(e)$ so that workers don't want to deviate:
 - Different ways in which we can do this.
 - *Idea:* "punish" workers with $e \neq \{e(\theta_H), e(\theta_L)\}$ by making $\mu(e)$ small.

Pooling Equilibria

- In a pooling equilibrium, $e(\theta_H) = e(\theta_L) = e^*$.
 - All workers get the same education level.
- Zero profits by firms imply that $w(e^*) = (1 \lambda) \theta_H + \lambda \theta_L$.
 - This implies that $\mu(e^*) = 1 \lambda$.
- In an equilibrium, no type of worker must benefit from choosing $e \neq e^*$.
 - Need to specify $\mu(e)$ so that neither high types nor low types have a profitable deviation.

References

Bolton and Dewatripont, (2005), Contract Theory, MIT Press.

Ortner J., (2013), Lecture Notes.