Module 12: Holdup Problem

Information Economics (Ec 515) · George Georgiadis

Standard Holdup Problem

- Canonical model by Hart and Moore (1988)
- 2 contracting parties: A buyer and seller can trade a quantity $q \in [0, 1]$ at a price P.
- \circ Buyer's valuation v and seller's production cost c are uncertain when contracting takes place and can be influenced by investments

Buyer: $v \in \{v_L, v_H\}$ and $\Pr(v_H) = j$ at cost $\psi(j)$ Seller: $c \in \{c_L, c_H\}$ and $\Pr(c_L) = i$ at cost $\phi(i)$

- For example:
 - Buyer invests in marketing to increase price that he can sell the good at.
 - Seller invests in modern infrastructure to reduce production cost.
- Ex-post payoff levels are

Buyer:
$$vq - P - \psi(j)$$

Seller: $P - cq - \phi(i)$

• Timing:

- 1. The buyer and the seller contract.
 - Contract specifies quantity q to be traded at price P.
- 2. Each party simultaneously chooses his investment level i and j.
- 3. Both parties learn state of nature $\theta = (v, c)$.
- 4. The contract is executed (possibly after renegotiation).

First Best

• Assume that

$$c_H > v_H > c_L > v_L$$

• *Ex-post efficient* level of trade is

$$-q = 1$$
 if $\theta = (v_H, c_L)$

- -q=0 otherwise
- The total expected surplus is given by

$$\max_{i,j} \left\{ ij \left(v_H - c_L \right) - \psi \left(j \right) - \phi \left(i \right) \right\}$$

so the first best investment levels satisfy

$$i^{fb} (v_H - c_L) = \psi' (j^{fb})$$
$$j^{fb} (v_H - c_L) = \phi' (i^{fb})$$

Nash Equilibrium

- θ is observable to both parties ex-post, but it is not contractable ex-ante, nor are the investment levels *i* and *j*.
- Assume that ex-post bargaining gives each party half of the surplus.
- $\circ~$ The buyer solves

$$\max_{j} \left\{ \frac{1}{2} i^* j \left(v_H - c_L \right) - \psi \left(j \right) \right\}$$

while the seller solves

$$\max_{i} \left\{ \frac{1}{2} i j^{*} \left(v_{H} - c_{L} \right) - \phi \left(i \right) \right\}$$

• So in equilibrium, they choose

$$\frac{1}{2}i^{*}(v_{H} - c_{L}) = \psi'(j^{*}) \quad \text{and} \quad \frac{1}{2}j^{*}(v_{H} - c_{L}) = \phi'(j^{*})$$

- $\circ\,$ Clearly, $i^* < i^{fb}$ and $j^* < j^{fb},$ due to "moral-hazard-in-teams".
- Solutions ?
 - Can we formulate an optimal long-term contract *independent of* θ that mitigates underinvestment?

Default Options

 $\circ~$ Define level of trade \tilde{q} such that

$$\tilde{q}\left(c_H - c_L\right) = \phi'\left(i^{fb}\right)$$

- Consider the following contractual mechanism (after the state of nature θ is revealed):
 - 1. Buyer makes a take-it-or-leave-it offer (P, q).
 - 2. Seller accepts (P,q), or rejects it, in which case \tilde{q} is traded at price \tilde{P} .
 - \tilde{P} chosen to share the ex-ante surplus according to bargaining weights.
- We will show that this mechanism implements first best!
- Buyer will offer (P,q) such that seller is indifferent between accepting the offer and rejecting it.
- Seller always expects to obtain the default option payoff so he solves

$$\max_{i} \left\{ \tilde{P} - ic_{L}\tilde{q} - (1-i)c_{H}\tilde{q} - \phi(i) \right\}$$

First order condition: $\tilde{q}(c_H - c_L) = \phi'(i)$, so that $i = i^{fb}$.

• Buyer maximizes

$$\max_{j} \left\{ \underbrace{i^{fb} j \left(v_{H} - c_{L} \right)}_{\text{total surplus}} - \underbrace{\left[\tilde{P} - i^{fb} c_{L} \tilde{q} - \left(1 - i^{fb} \right) c_{H} \tilde{q} \right]}_{\text{seller's payoff}} - \psi \left(j \right) \right\}$$

First order condition: $i^{fb}(v_H - c_L) = \psi'(j)$, so that $j = j^{fb}$.

- Lesson: By choosing \tilde{q} appropriately, it is possible to induce (i^{fb}, j^{fb}) .
- Comments:

- Investment efficiency for the buyer since he's the residual claimant ...
- ... but why is there investment efficiency for the seller who has no bargaining power at all?
- Incentive to invest comes from availability of default option, which becomes more attractive when cost is c_L and this can be influenced through *i*.

References

- Che Y.K. and Hausch D.B., (1999), "Cooperative Investments and the Value of Contracting", American Economic Review.
- Ederer F., (2011), Lecture Notes.

Hart O. and Moore J., (1988), "Incomplete Contracts and Renegotiation", Econometrica.