Module 1: Decision Making Under Uncertainty

Information Economics (Ec 515) · George Georgiadis

- Today, we will study settings in which decision makers face uncertain outcomes.
 - Natural when dealing with asymmetric information.
 - Need to have a model of how agents make choices / behave when they face uncertainty.
 - Prevalent theory: Expected utility theory.
- States of the world (or states of nature):
 - Relevant pieces of information that are mutually exclusive.
 - The state of the world affects your payoff (or utility, or welfare).

An Example: Will Greece default on its debt or not?

- Two possible "states of nature": default (D), or no default (N).
 - An investor's return may be affected by the state of nature.
 - This may affect whether you invest in stocks or cash.
- Agent has two options: invest in cash or in stocks.
- If the agent invests in stocks:
 - Return equal to 5% under state N.
 - Return equal to -10% under state D.
- If he invests in cash:
 - Return equal to 0% under either state.
- In which assets should the agent invest?
 - Need a model of decision making under uncertainty.

Preferences over lotteries

- Let X be a set of "prizes".
 - For instance, X could be monetary payoffs (returns). In this case $X = \mathbb{R}$.
- A "lottery" is a function $p: X \to [0,1]$ such that $\sum_{x \in X} p(x) = 1$.

-p(x) is the probability with which lottery p pays $x \in X$.

- Example: $X = \{1, 10, 100\}, p(1) = 0.4, p(10) = 0.2, p(100) = 0.4.$
- Let $\mathcal{L}(X)$ denote the set of all lotteries on X.
- A lottery $p \in \mathcal{L}(X)$ is non-trivial if it has at least two distinct prizes with positive probability.

Expected utility

- Let \succeq be a "preference relation" over lotteries in $\mathcal{L}(X)$.
 - The preference relation \succeq tells us how the agent whose decisions we are studying ranks the lotteries in $\mathcal{L}(X)$.
 - For two lotteries $p, q, p \succeq q$ means that p is preferred to q.
 - $p \succ q$ means p is strictly preferred to $q \ (p \succeq q \text{ and } q \not\succeq p)$.
- $\circ~$ We would like there to be a utility function function $u:\,X\to\mathbb{R}$ such that $p\succeq q$ if and only if

$$\sum_{x \in X} p(x)u(x) \ge \sum_{x \in X} q(x)u(x)$$

- In this case, we can evaluate lotteries by computing their expected payoffs.
- Under *certain conditions* such a utility function exists.
 - 1. \succeq is complete and transitive:
 - For any pair of lotteries p, q, either $p \succeq q$, or $q \succeq p$ (or both).
 - If $p \succeq q$ and $q \succeq r$, then $p \succeq r$.
 - 2. \succeq satisfies the independence axiom:

- For any lotteries p, q, r, and any $a \in (0, 1)$, if $p \succeq q$ then

$$ap + (1-a)r \succeq aq + (1-a)r.$$

3. \succeq satisfies continuity:

- For any p, q, r, if $p \succ q \succ r$, then there exists $a, b \in (0, 1)$ such that

$$ap + (1-a)r \succ q \succ bp + (1-b)r$$

• From now on, we will work directly with expected utility.

• Suppose that an agent's preferences are represented by $u: X \to \mathbb{R}$.

- This agent's preferences satisfy the conditions of expected utility.

- Let $v(x) = \alpha u(x) + \beta$ for some $\alpha > 0$ and β .
- Then, for all $p, q \in \mathcal{L}(X)$,

$$\begin{split} &\sum_{x\in X} p(x)v(x) &\geq \sum_{x\in X} q(x)v(x) \\ \Longleftrightarrow &\sum_{x\in X} p(x)u(x) &\geq \sum_{x\in X} q(x)u(x). \end{split}$$

• The utility function v(x) also represents the preferences of this agent.

Monetary Consequences

- Suppose that $X = \mathbb{R}$; think of elements in X as money.
- In this case, natural to assume that u(x) is increasing in x:

- If $x_1 \ge x_2$, then $u(x_1) \ge u(x_2)$.

Attitudes towards risk

- Suppose that $X = \mathbb{R}$ (monetary outcomes).
- \circ Let *u* be the utility function of the agent.

Definition 1. The certainty equivalent of a lottery p is the value x_p^c such that $u(x_p^c) = \sum_{x \in X} p(x)u(x)$.

• The agent is indifferent between facing a lottery p or obtaining x_p^c for sure.

- For any lottery p, let $\overline{x}_p = \sum_{x \in X} p(x)x$ be the expected payment of lottery p.
- An agent is risk-averse if, for all non-trivial lotteries $p \in \mathcal{L}(X), x_p^c < \overline{x}_p$.
- An agent is risk-neutral if, for all non-trivial lotteries $p \in \mathcal{L}(X)$, $\overline{x}_p = x_p^c$.
- An agent is risk-loving if, for all non-trivial lotteries $p \in \mathcal{L}(X), x_p^c > \overline{x}_p$.
- \circ Jensen's inequality: if u is strictly concave and p is a non-trivial lottery, then

$$\sum_{x \in X} p(x)u(x) < u(\overline{x}_p)$$

- If $u(\cdot)$ is strictly convex, the opposite inequality holds.
- If u is linear, then $\sum_{x \in X} p(x)u(x) = u(\overline{x}_p)$.
- An agent with utility function $u(\cdot)$ is:
 - risk-averse iff $u(\cdot)$ is strictly concave (u''(x) < 0 for all x).
 - risk-neutral iff $u(\cdot)$ is linear (u''(x) = 0 for all x).
 - risk-loving iff $u(\cdot)$ is strictly convex (u''(x) > 0 for all x).
- The risk premium of lottery p is $\overline{x}_p x_p^c$.
- The following statements are equivalent:
 - An agent is risk-averse.
 - $-\sum_{x\in X} p(x)u(x) < u(\overline{x}_p)$ for all non-trivial lotteries $p \in \mathcal{L}(X)$.
 - $-x_p^c < \overline{x}_p$ for all non-trivial lotteries $p \in \mathcal{L}(X)$.
 - The risk premium of lottery p is positive for all non-trivial lotteries $p \in \mathcal{L}(X)$.
 - -u is strictly concave (u'').

Measuring risk aversion

Absolute risk aversion

- \circ Suppose an individual has wealth w.
- This individual faces the following choice: a sure gain of z or a lottery p.
 - In first case, he gets u(w+z) for sure.
 - In second case, he gets an expected payoff of $\sum_{x \in X} p(x)u(w+x)$.
- \circ How does this agent's choice depends on his wealth w?
- If the agent's willingness to take the lottery increases with wealth, we say that he has decreasing absolute risk aversion (ARA).
 - If agent has decreasing ARA, then if he is willing to take lottery when his wealth is w_1 , he will also be willing to take the lottery when his wealth is $w_2 > w_1$.
- Analogous definitions for increasing ARA and constant ARA.
- Coefficient of absolute risk aversion: $A(x) = -\frac{u''(x)}{u'(x)}$:
 - If A(x) is decreasing (or constant, or increasing), then agent with utility u has decreasing (or constant, or increasing) absolute risk aversion.
- Examples:
 - $u(x) = -e^{-\alpha x} \Rightarrow A(x) = \alpha \text{ (CARA)}.$ $u(x) = \sqrt{x} \Rightarrow A(x) = \frac{1}{2x} \text{ (decreasing ARA)}.$
- Let $u_1(x)$ be a utility function, and let $u_2(x) = g(u_1(x))$ (with g' > 0, g'' < 0). Then, $A_1(x) < A_2(x)$ for all x.

- If $A_1(x) < A_2(x)$, then agent 1 is less risk-averse than agent 2.

Relative risk aversion

- \circ Suppose again that agent has wealth w.
- Agent faces two assets: one pays return z for sure, and the other pays a random return r.
- Agent considers investing all his wealth in either of these assets.
 - If he invests all wealth in safe asset, he earns u(w(1+z)) for sure.
 - If he invests all wealth in risky asset, he earns expected payoff $\sum p(r) u(w(1+r))$.
- \circ How does this agent's choice depends on his wealth w?
- If an agent's willingness to invest in risky asset increases with wealth, we say that he has decreasing relative risk aversion (RRA).
 - If agent has decreasing RRA, if he is willing to invest in risky asset when his wealth is w_1 , he will also be willing to invest in risky asset when his wealth is $w_2 > w_1$.
- Similar definitions for increasing RRA and constant RRA.
- Coefficient of relative risk aversion: $R(x) = -\frac{xu''(x)}{u'(x)}$.
 - If R(x) is decreasing (or constant, or increasing), then agent with utility u has decreasing (or constant, or increasing) relative risk aversion.
- Examples:

$$- u(x) = x^{1-\alpha} \Rightarrow R(x) = \alpha \text{ (CRRA)}.$$
$$- u(x) = -e^{-\alpha x} \Rightarrow R(x) = \alpha x.$$

References

Mas-Colell, Whinston and Green, (1995), *Microeconomic Theory*, Oxford University Press. Ortner J., (2013), Lecture Notes.