
Robust Contracts: A Revealed Preference Approach

Nemanja Antic and George Georgiadis

Northwestern Kellogg

Antic and Georgiadis Robust Contracts Northwestern Kellogg 1 / 23



Introduction

Virtually every firm has an incentive program for at least some employees

Proper design of incentive programs is crucial

In the management practices literature high scores in the “incentives”

category correlate with better performance (Bloom et al., 2007)

At Safelite Autoglass, switching from hourly wages to piece rates led

to a 44% productivity increase (Lazear, 2000)

Many other success stories—see the references in Lazear (2018)

But poorly designed incentives can have dire consequences

e.g., multitask problems incl. gaming (Jensen, 2002), excessive

risk-taking (Rajan, 2011), fraud (Wells Fargo & VW scandals), etc
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Motivation

Imagine designing an incentive plan for a dealership’s salespeople

To simplify matters, focus on the pay-for-performance relationship

One approach is to adopt industry best practices (Zoltners et al, ’06)

Another option is to take guidance from contract theory.

Std. models are difficult to operationalize as they impose implausible

assumptions about principal’s knowledge of production environment

Misra and Nair (2011) offer (and implement) the following approach:

i. Make parametric assumptions about the production environment

ii. Exploit variation in offered incentives to recover unknown parameters

iii. Find an optimal contract
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A Simple Approach (“A/B Contracts”, Georgiadis & Powell)

If you restrict to linear contracts, you can write expected profit as

Π = (m − α)a

where m is profit margin, α is piece rate, and a are mean sales (effort)

⇒ First-order condition: ε(α∗) =∶ α
∗

Q

dQ

dα
= α∗

m − α∗

Given an A/B test of contracts, you can estimate ε and compute α∗

Angrist et al. (2021) estimate at UBER, ε ≃ 1.2 implying α∗ ≃ 0.55m

This implicitly assumes that (1) the agent’s action is one-dimensional, (2)

elasticity is constant, and (3) the agent has specific preferences over money

This paper.

What if the principal is reluctant to make such (strong) assumptions?
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Framework in a Nutshell

We consider a contracting game between a principal and an agent

The principal is oblivious to the agent’s action set and their costs

▸ An “action” is a probability distribution over outcomes

The principal however knows the agent’s best response to K contracts

▸ E.g., has outcome data under each of these K exogenous contracts

The principal’s objective is to maximize her worst-case profit

▸ As if nature chooses agent’s set of actions and their costs to minimize

the principal’s profit subject to a set of revealed preference constraints
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Overview of Takeaways

i. Either the most profitable of the known contracts or a mixture of

the known contracts and a linear one is optimal.

ii. Straightforward to implement given outcome data, which we

demonstrate using data from an experiment of diff. incentive schemes

iii. Practically the best of known contracts provides max. profit guarantee

* Optimality of linear contracts with maxmin preferences (Carroll, 2015)

relies on the principal knowing the costs of some of the agent’s actions
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Model – The Setting

Timing:

1 A principal offers a “contract” w ∶ [0, x]→ R+ to an agent

2 The agent chooses an “action” F ∈ F ⊆ ∆([0, x])

3 Output x ∼ F is drawn and payoffs are realized

Agent’s payoff (for a given action):

∫ w(x)dF(x) − C(F)

Principal’s profit (for a given contract and action):

∫ [mx −w(x)]dF(x),

where m > 0 is the marginal gross profit
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Model – Principal’s Knowledge

The principal does NOT know the agent’s action set F or any costs C(F)

However, she knows the agent’s best response to K “known”contracts; i.e.,

for each k ∈ {1, . . . ,K}, she knows that

Fk ∈ arg max
F∈F ∫ wk(x)dF(x) − C(F)

In addition, the agent is known to be able to costlessly produce 0 output

She also does not have a prior over F or C

Instead, she aims to maximize her worst-case profit

This is as if, after offering a contract, an adversarial 3rd party chooses

F ⊇ {F0, . . . ,FK} and C subject to the K revealed preference constraints
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Problem Formulation

Given a contract w , the adversarial 3rd party, nature solves

Π(w) ∶= inf ∫ [mx −w(x)]dF(x)

s.t. F ∈ arg max
F̃∈F ∫

w(x)dF̃(x) − C(F̃) (IC)

Fk ∈ arg max
F̃∈F ∫

wk(x)dF̃(x) − C(F̃) (RP)

F ⊇ {F ,F0, . . . ,FK} and C(F̃) ≥ 0 ∀F̃ ∈ F with C(F0) = 0.

The principal solves

sup Π(w)
s.t. w ∶ [0, x]→ R+
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Assumptions

We impose 3 assumptions on the K known contract–action pairs:

A.1. At least one contract delivers a strictly positive profit. Without loss,

we adopt the convention that w1 delivers the largest profit.

A.2. Each contract has wk(0) = 0 and the makes smallest payment at x = 0

▸ If wk(0) > 0, the contract can trivially be improved by a downward shift

A.3. The agent’s best responses can be rationalized; i.e., for all i and j

∫ wi(x)dFi(x)+∫ wj(x)dFj(x) ≥ ∫ wi(x)dFj(x)+∫ wj(x)dFi(x)

Otherwise, the revealed preference constraints cannot be met
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Simplifying the Problem

Consider the following simpler max-min problem:

sup
wK+1

inf
FK+1,c

∫ [mx −wK+1(x)]dFK+1(x) (P)

s.t. ∫ wi(x)dFi(x) − ci ≥ ∫ wi(x)dFj(x) − cj for all i , j

wK+1(⋅) ≥ 0 , FK+1 ∈ ∆([0, x]), and c ∈ RK+1
+

where ci ∶= C(Fi) and c = {c1, . . . , cK+1}.

Here nature, instead of F , chooses one action and the corresponding costs

Lemma 1.

A contract wK+1 solves the principal’s problem if and only if it solves (P)

Adding extra actions increases the #(RP) constraints to principal’s benefit
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Connection to Carroll (AER, 2015)

Our problem is conceptually similar to Carroll (2015)

In his model, principal knows some of agent’s actions and their costs

In that setting, a linear contract is optimal

In our model, the principal does not know the cost of any action, but

the revealed preference constraints bound the rationalizable costs

The motivation is that practically, costs are not observable

And the upshot is that in general, the optimal contract is not linear
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One known contract (K = 1): A Benchmark

Theorem 1.

With one known contract, w1 maximizes the principal’s worst-case profit

With only one known contract it’s a case of better the devil you know,

no matter how irregular w1 is; e.g., non-monotone, kinks, etc!

Proof Sketch: Consider any w ≠ w1

If ∫ wdF1 < ∫ w1dF1, then nature can induce the agent to choose F0

by setting c1 > ∫ wdF1, delivering a negative profit to the principal

If ∫ wdF1 > ∫ w1dF1, then nature can induce the agent to choose F1,

in which case the principal’s profit decreases vis-a-vis w1

If ∫ wdF1 = ∫ w1dF1 yet w(⋅) ≠ w1(⋅), then nature can ensure that

the principal obtains a vanishingly small profit
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Two known contracts: Characterization

For each i and j define

vij ∶= ∫ wi(x)dFj(x) and µj ∶= ∫ xdFj(x),

let φ ∶= v11 + v22 − v12 − v21 (≥ 0 by A.3), and for each j define

w∗
j (x) ∶= ρjwj(x) + (1 − ρj)mx where ρj ∶= 1 −

√
φ/(mµ−j − vj ,−j)

Note: w∗
j is a mixture of wj and the “residual claimant” contract

Theorem 2. Suppose there are two known contracts; i.e., K = 2.

i. If
√

mµ2 − v12 −
√
φ > √

mµ1 − v11, then w∗
1 is optimal;

ii. Else if
√

mµ1 − v21 −
√
φ > √

mµ1 − v11, then w∗
2 is optimal;

iii. Otherwise, w1 is optimal.
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Two known contracts: The agent’s best response

Corollary 1. Suppose the new contract w∗
j is optimal

In response, the agent chooses action F ∗
j (x) = ρjF−j(x) + (1 − ρj)F0(x).

Moreover, C(F ∗
j ) ≤ ρjC(F−j)

e.g., if w∗
1 is optimal, then the agent chooses a mixture of F2 and F0

Note that the agent prefers F ∗
j to randomizing between F−j and F0

If w1 is optimal, then the agent best-responds with action F1
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Two known contracts: Some Intuition

Suppose condition (i) of Theorem 2:

Theorem 2. Suppose there are two known contracts; i.e., K = 2.

i. If
√

mµ2 − v12 −
√
φ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=
√

Π(w∗

j )

> √
mµ1 − v11

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=
√

Π(w1)

, then w∗
1 is optimal;

Here, the principal prefers that the agent chooses F2 in response to w1

Of course this is not IC so she must adjust incentives appropriately

φ relates to the profit she must give up to appropriately adjust

incentives (since by RP, the agent prefers F1 when w1 is offered)

Corollary 2.

If both known contracts are linear, then w1 is optimal.
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K ≥ 3 known contracts

A full characterization of optimal contract doesn’t appear feasible for K ≥ 3

Theorem 3.

Every optimal contract takes the form

w∗(x) =
K

∑
k=1

ρkwk(x) + (1 −
K

∑
k=1

ρk)mx

i.e., it is a mixture of the known contracts and the residual claimant one

Obtaining the optimal contact entails solving a non-convex program

As long as K is not too large, this is achievable numerically
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Dataset (DellaVigna and Pope, 2018)

Goal: Demonstrate the applicability of our methodology

Real-effort experiment on M-Turk: Subjects press a-b keys for 10 min

7 treatments with different monetary incentives (+participation fee):

Contract (in ¢) Avg. #points (x) N

No incentives π1(x) = 0 1521 540

Piece-rate

π2(x) = 0.001x 1883 538
π3(x) = 0.01x 2029 558
π4(x) = 0.04x 2132 566
π5(x) = 0.10x 2175 538

Bonus
π6(x) = 40 I{x≥2000} 2136 545
π7(x) = 80 I{x≥2000} 2187 532

Each subject participated in a single treatment, once.
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Empirical Exercise

For each subset W ⊆ {π1, . . . , π7} take this to be the “known” contracts

i. Letting K = ∣W ∣, define the known contracts w1, . . . ,wK

ii. For each k, use the outcome data to compute the ecdf Fk

⋆We abstract away from statistical error & unobserved heterogeneity

iii. Compute the optimal contract (given an assumption about m)
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Optimal Contract (K = 1,2)

Case 1: K = 1 (7 combinations)

Theorem 1: The single known contract provides max. profit guarantee

Case 2: K = 2 (21 combinations)

Check which of the conditions in Theorem 2 are met

We did so for m ∈ [0.05, 1] on a fine grid

In every instance, the more profitable of the known contracts delivers

the largest profit guarantee

Antic and Georgiadis Robust Contracts Northwestern Kellogg 20 / 23



Optimal Contract (K = 1,2)

Case 1: K = 1 (7 combinations)

Theorem 1: The single known contract provides max. profit guarantee

Case 2: K = 2 (21 combinations)

Check which of the conditions in Theorem 2 are met

We did so for m ∈ [0.05, 1] on a fine grid

In every instance, the more profitable of the known contracts delivers

the largest profit guarantee

Antic and Georgiadis Robust Contracts Northwestern Kellogg 20 / 23



Optimal Contract (K ≥ 3)

Case 3: K ∈ {3, . . . ,7} (99 combinations)

Per Theorem 3, it suffices to solve the dual program

max
λ≥0

∑K
j=1 λK+1,j (mµj +∑K

k=1 λk,K+1vkj)
1 +∑K

j=0 λK+1,j

+ linear terms(λ)

s.t. Linear constraints(λ)

where λkj is the dual multiplier corresp. to kj th IC/RP constraint

We solve this (non-convex) program in two steps:

i. Fix {λK+1,0, . . . , λK+1,K}, solve LP, and denote objective by Π̃(λK+1)

ii. Maximize w.r.t remaining multipliers (using simulated annealing)

Again, most profitable of the known contracts is always optimal!
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Summary & Takeaways

Agency model with minimal assumptions about the prod. environment

The principal knows only the agent’s best response to K contracts,

and designs a contract to maximize worst-case profit

What to take away?

i. Theoretically, it is sometimes possible to improve the profit guarantee

with a mixture of the known contracts and a linear one

ii. Straightforward to implement given outcome data

iii. Practically, best of known contracts provides max. profit guarantee

▸ Explains firms’ aversion to experimenting with incentive schemes

▸ Predicts path dependence—firms find smth that works and stick to it

* Opt. of linear contracts relies on principal knowing some actions’ costs
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Further Robustness

Our principal still makes some assumptions about the prod. environment:

a. Agent has additively separable preferences with known utility functions

b. Ignores unobserved heterogeneity—in practice, outcome data would be

aggregated across several agents, who may choose different actions

Allowing robustness along these dimensions as well would make it only

more likely that one of the known contracts is optimal

On the other hand, incorporating estimation error would make it more

likely that a new contract provides a larger profit “guarantee”
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