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Introduction

Risk-Taking & the Financial Crisis

“History is littered with examples of firms that got what they paid for.”

A particularly insidious form of gaming is by taking on (left-tail) risk.

Difficult to prevent via monitoring & enormously costly

In 2009, Fed chairman Ben Bernanke stated that:

“compensation practices at some banking organizations have
led to misaligned incentives and excessive risk-taking,
contributing to bank losses and financial instability”

Rajan (2011) argued risk-taking exarcebated the 2008 financial crisis.

Garicano and Rayo (2016) argued that AIG took massive left-tail risks

in response to poorly designed incentives.
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Introduction

Gaming via Risk-Taking is Widespread

Portfolio managers adjust the riskiness of their investments

Chevalier & Ellison (1997), de Figueiredo et al. (2016)

Executives may cut maintenance to meet earnings targets

Repenning & Henderson (2015), Garicano & Rayo (2016) and references

Entrepreneurs pursue unproven technologies or incremental progress

Vereshchagina and Hopenhayn (2008)

Salespeople can accelerate or delay sales to meet their quotas

Oyer (1998), Jensen (2001), Larkin (2014)
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Introduction

What is this paper about?

Optimal contracting when

the agent can game the contract it by gambling
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Introduction

Framework

Model in a Nutshell. Canonical principal-agent framework, in which:

1 The agent chooses effort, which determines intermediate output.

2 He gambles by choosing any mean-preserving spread of interm. output.

3 This mean-preserving spread determines final, contractible output.

Mechanism. The agent gambles to game convex incentives.

His payoff equals the concave closure of his utility under the contract.

Prop. 1. Optimal contract makes agent’s utility concave in output.

“Classic” principal-agent problem + no-gaming constraint
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Introduction

Rough Intuition: Risk-averse Agent

No-gaming constraint: agent’s utility must be concave in output.

If agent is risk-averse, optimal incentives may be strictly concave.

We develop a set of tools to characterize the optimal contract.

Where no-gaming binds, contract makes agent’s utility linear in output.

Where it is slack, contract resembles “classic” optimal contract.

Two notable cases:

1 If LL is slack, under mild conditions, optimal incentives are linear below

a threshold, and coincide with the “classic” contract above threshold.

2 If IR is slack, optimal incentives are linear below a threshold.
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Introduction

Extensions and Reinterpretations

Three extensions with risk-neutral players.

1 What if agent gambles before the exogenous uncertainty is resolved?

Leads to different but related constraints on contracts.

A linear contract is optimal under mild conditions.

2 What if gambling is costly?

Tools extend (for our formulation of risk-taking costs)

Optimal contract is convex, and converges to linear as costs vanish.

3 What if the agent can game by shifting output over time?

Reinterpret model as intertemporal gaming of stationary contracts.

A linear contract is optimal.
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Introduction

Related Literature

Large empirical literature on risk-taking and intertemporal gaming.

Brown, Harlow & Starks (1996), Chevalier & Ellison (1997), Brav et al.
(2005), Matta & Beamish (2008), Rajan (2010), de Figueiredo et al.
(2014), Repenning & Henderson (2015), Shue & Townsend (2017)

Oyer (1998), Larkin (2014), Repenning & Henderson (2015)

Some theory on agents using risk-taking to game contracts:

Diamond (1998) and Garicano & Rayo (2016)

Palomino & Pratt (2003)

DeMarzo et al. (2014), Hébert (2015), Makarov & Plantin (2016)

Theory on the optimality of simple (linear) contracts:

Holmström & Milgrom (1987) and Edmans & Gabaix (2011)

Chassang (2013), Carroll (2015), Antic (2016)
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Model

Model

Set of possible outcomes Y =
[
y , ȳ

]
.

Players:

Weakly risk-averse principal

Weakly risk-averse agent with liability M and outside option u0

Timing:
1 Principal offers a contract s (y).

2 Agent accepts / rejects contract, and chooses effort a.

3 Intermediate output x ∼ F (·|a) is privately observed by the agent.

F satisfies strict MLRP, some regularity conditions, and EF (·|a) [x ] = a.

4 Agent chooses distribution Gx ∈ ∆ (Y) subject to EGx [y ] = x .

5 Final output y ∼ Gx is realized and the agent is paid s (y).

Payoffs:

Principal: π (y − s (y)), where π′′ ≤ 0 < π′.

Agent: u (s (y))− c (a), where u′′ ≤ 0 < u′ and c ′, c ′′ > 0.
Barron, Georgiadis, and Swinkels Risk-Taking & Optimal Contracts Northwestern Kellogg 10 / 29



The Economics of Risk-Taking

Problem Formulation and a Simplifying Result

Principal solves the following constrained maximization problem:

max
a,G∈G,v(·)

EF (·|a)
[
EGx

[
π
(
y − u−1 (v (y))

)]]
(ObjF )

s.t. a,G ∈ arg max
ã, G̃∈G

{
EF (·|ã)

[
EG̃x

[v (y)]
]
− c(ã)

}
(ICF )

EF (·|a) [EGx [v (y)]]− c(a) ≥ u0 (IRF )

v (·) ≥ u(−M) , (LLF )

where v(y) = u(s(y)), G = {Gx}x∈Y .

Proposition 1:

Suppose {a,G , v(·)} solves (ObjF ) - (LLF ).

Then
{

a,GDegenerate , v c(·)
}

, where v c denotes concave closure of v ,

satisfies (ICF ) - (LLF ), and gives the principal weakly higher profit.
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The Economics of Risk-Taking

Intuition for Concave Incentives
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The Economics of Risk-Taking

Reformulating the Problem

Therefore, the principal’s problem can be simplified to:

max
a,v(·)

EF (·|a)
[
π
(
y − u−1(v(y))

)]
(Obj)

s.t. a ∈ arg max
ã

{
EF (·|ã) [v(y)]− c(ã)

}
(IC)

EF (·|a) [v(y)]− c(a) ≥ u0 (IR)

v(y) ≥ u for all y ∈ Y (LL)

v(·) weakly concave. (Conc)

Lemma 1:

Fix a ≥ 0 and assume u > −∞. A profit-maximizing contract exists.

It is unique if at least one party is strictly risk averse.
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Risk Neutral Agent

Risk-Neutral Agent: A Linear Contract is Optimal

Define

sLa (y) = c ′(a)(y − y)−min
{

M, c ′(a)(a− y)− c(a)− u0
}︸ ︷︷ ︸

constant to satisfy (IR) and (LL)

Cheapest linear contract that satisfies (IC), (IR) and (LL) for effort a.

Define aFB such that c ′(aFB) = 1. This is the first-best effort level.

Proposition 2: Risk-neutral agent

Assume u(s) ≡ s.

If a∗ is optimal, then a∗ ≤ aFB and sLa∗(·) is optimal.
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Intuition
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Risk Neutral Agent

If the Principal is loves risk...

Rajan (2011) argues that anticipating bailouts, financial institutions

may have had an incentive to encourage excessive risk-taking.

Corollary 1.

Assume π(·) is strictly increasing with concave closure πc(·).

If a∗ is optimal, then a∗ ≤ aFB , and sLa∗(·) is optimal.

The principal wants the agent to choose

Gp
x ∈ ∆(Y) such that EGp

x
[π (y − s(y))] = πc (x − s(x)) .

From Prop. 2, sLa∗(·) maximizes πc(y − s(y)) subject to (IC)-(Conc).

Given sLa∗(·), the agent is indifferent across all G .
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Risk Averse Agent

Problem Formulation with a Risk Averse Agent

Assume the principal is risk-neutral.

Contract v(·) implements a ≥ 0 at max. profit / min. cost if it solves:

min
v(·)

EF (·|a)
[
u−1(v(y))

]
s.t. EF (·|a) [v(y)]− c(a) ≥ u0 (IR)

a ∈ arg max
ã

EF (·|ã) [v (y)]− c(ã) (IC)

v(y) ≥ u for all y ∈ Y (LL)

v(·) weakly concave. (NG)

Replace (IC) with weaker condition that local incentives are slack:∫
v(y)fa(y |a)dy ≥ c ′(a) (IC-FOC)
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Risk Averse Agent

Building Blocks

Ignoring (LL) and (NG) for now, we can write the Lagrangian as

L(λ, µ) = min
v(·)

∫ [
u−1(v(y))− λv(y)− µv(y)

fa(y |a)

f (y |a)

]
f (y |a)dy + ... ,

where λ and µ are shadow values on (IR) and (IC-FOC).

Differentiating with respect to v(y) yields

n(y) ,
1

u′ (u−1(v(y)))︸ ︷︷ ︸
,ρ−1(v(y))

−λ− µ fa(y |a)

f (y |a)︸ ︷︷ ︸
,l(y |a)

Note: n(y) can be interpreted as net cost of marginally increasing v(y).

Holmström (1979): v(·) optimal iff n(y) ≡ 0 (for some λ, µ).
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Risk Averse Agent

Rough Intuition for our Characterization (LL slack)

If for some y , setting n(y) = 0 violates (NG), then v(y) locally linear.

Linear segments are “ironed” in the sense that E[n(y)] = 0 on interval.

Outside linear segments, (NG) is slack, and n(y) = 0 at such y .
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Risk Averse Agent

Implication #1 of No-Gaming Constraint – (LL) Slack

Proposition 3.

Let v∗(·) implement a at max. profit, and assume (LL) is slack.

Suppose ρ(λ+ µl(·|a)) is convex for y < yI , and concave otherwise.

Then there exist ŷ > yI , v , and α > 0 such that

v∗(y) =

{
v + α(y − y) if y < ŷ , and

ρ(λ+ µl(y |a)) otherwise,

where
∫ ŷ
y n(y)f (y |a)dy = 0.

ρ(λ+ µl(·|a)) is convex-concave ∀λ and µ if, for example,

ly (·|a) is strictly log-concave, and

u(w) = log w , or for a range of utilities that exhibit HARA.
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Risk Averse Agent

Implication #2 of No-Gaming Constraint – (IR) Slack

Proposition 4.

Let v∗(·) implement a at max. profit, and assume (IR) is slack.

Then v∗(·) is linear on [y , y0], where l(y0|a) = 0.

For any y such that l(y |a) < 0, principal wants to reduce pay.

If v(·) is strictly concave, then it is profitable to flatten it.

Cannot rule out linear segments on (y0, y ].
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Extensions (Risk-neutral parties) Ex-ante Risk-Taking

Risk-Taking before Intermediate Output is Realized Summary

What if the agent gambles before exogenous uncertainty is resolved?

Timing:

1 Principal offers a contract s(y).

2 Agent chooses effort a ≥ 0 and distribution G ∈ ∆(Y) s.t EG [x ] = a.

3 Outcome of gamble x ∼ G , and final output y ∼ F (·|x) are realized.

F (·|x) satisfies strict MLRP in x and EF (·|x) [y ] = x .

Can interpret x as profitability conditional on economic conditions,

and F (·|x) as capturing residual uncertainty.

Intuitively, a more dispersed G leads to more “risky” output.
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Extensions (Risk-neutral parties) Ex-ante Risk-Taking

Analysis

For fixed s(·), denote agent’s expected pay conditional on x by

Vs(x) = EF (·|x) [s(y)]

The agent will choose his risk profile G such that

max
G
{EG [Vs (x)] s.t. EG [x ] = a} = V c

s (a) ,

where V c
s (·) denotes the concave closure of Vs(·).
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Extensions (Risk-neutral parties) Ex-ante Risk-Taking

Results

The principal’s problem can be written as:

max
a , s(·)≥−M

a− V c
s (a)

s.t. a ∈ arg max
ã
{V c

s (ã)− c(ã)}

V c
s (a)− c(a) ≥ u0

and note that s(·) determines Vs(·), which in turn determines V c
s (·).

Proposition 6.

For optimal effort a∗, s(y) = c ′(a∗)
(
y − y

)
+ constant is optimal

If principal could choose V c
s (·) directly, this boils down to baseline

problem with a degenerate F (·|a). Hence, a linear V c
s (·) is optimal.

But EF (·|x) [y ] = x ensures that V c
s (·) is linear iff s(·) is linear.
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Extensions (Risk-neutral parties) Costly Gaming

Costly Gaming

Identifying ways to game a given contract often requires effort.

Assume that to choose distribution Gx , the agent incurs cost

EGx [d (y)]− d (x)

where d (·) is some smooth, increasing, convex function.

Example: If d(y) = y2, then agent’s cost equals the variance of Gx .

Idea: A more dispersed distribution is costlier to implement.
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Extensions (Risk-neutral parties) Costly Gaming

Optimal Contract

Conditional on the realization of the final output y , payoffs are:

Agent: s (y)− d (y)︸ ︷︷ ︸
≡ṽ(y)

−
(
c (a)− EF (·|a) [d (x)]

)︸ ︷︷ ︸
≡c̃(a) (assume incr. & convex)

Principal: y − s(y) = y − d(y)︸ ︷︷ ︸
≡π̃(y) (concave)

−ṽ(y)

For every x , agent optimally chooses Gx s.t EGx [ṽ(y)] = ṽ c (x).

Proposition 7.

For optimal a∗, s(y) = c̃ ′(a∗)
(
y − y

)
+ d(y) + constant is optimal.

Following Prop. 2, optimal ṽ(·) is linear & s(y) = ṽ(y) + d(y).
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Extensions (Risk-neutral parties) A Re-interpretation of the Model

A Model for Intertemporal Gaming

Principal and agent contract during [0, 1] and do not discount time.

Timing:

1 Principal offers a stationary contract s (y).

Agent receives s (y (t)) dt if output during (t, t + dt) is y (t).

2 Agent chooses effort a ≥ 0.

3 Total output x ∼ F (·|a) is privately observed by the agent.

4 Agent chooses flow output yx (t) subject to
∫ 1

0
yx (t) dt = x .

5 Final output {yx (t)}t∈[0,1] and payoffs are realized.

Payoffs:

Principal: π =
∫ 1

0
[yx (t)− s (yx (t))] dt

Agent: v =
∫ 1

0
s (yx (t)) dt − c (a)
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Extensions (Risk-neutral parties) A Re-interpretation of the Model

Analysis

Given any x and contract s(·), the agent solves:

max
yx

{
E
∫ 1

0
s(yx(t))dt s.t.

∫ 1

0
yx(t)dt = x

}
= sc (x)

Agent will exploit convex incentives by bunching output, and concave

incentives by smoothing output over time.

Equivalently, one can think of the agent choosing

Gx(y) = fraction of time for which yx(t) ≤ y s.t. EGx [y ] = x

By Lemma 1, agent will optimally choose Gx s.t EGx [s(y)] = sc(x).

Proposition 8.

This problem coincides with the original risk-taking problem.

Hence, if a∗ is optimal, then a∗ ≤ aFB and sLa∗(·) is optimal.
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Summary

Takeaways

Tractable model of gaming by risk taking.

Linear contracts are optimal if the agent is risk neutral.

Characterization if the agent is risk averse.

Why might risk-taking occur?

Principal may be unable to commit, or might benefit from risk-taking

Competition?

Dynamics?
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