Optimal Contracts with a Risk-Taking Agent

George Georgiadis

Joint with Daniel Barron and Jeroen Swinkels (Northwestern Kellogg)

Kellogg School of Management, Northwestern University

- "History is littered with examples of firms that got what they paid for."
- A particularly insidious form of gaming is by taking on (left-tail) risk.
 Difficult to prevent via monitoring & enormously costly
- In 2009, Fed chairman Ben Bernanke stated that:

- Rajan (2011) argued risk-taking exarcebated the 2008 financial crisis.
- Garicano and Rayo (2016) argued that AIG took massive left-tail risks in response to poorly designed incentives.

- "History is littered with examples of firms that got what they paid for."
- A particularly insidious form of gaming is by taking on (left-tail) risk.
 - Difficult to prevent via monitoring & enormously costly
- In 2009, Fed chairman Ben Bernanke stated that:

- Rajan (2011) argued risk-taking exarcebated the 2008 financial crisis.
- Garicano and Rayo (2016) argued that AIG took massive left-tail risks in response to poorly designed incentives.

- "History is littered with examples of firms that got what they paid for."
- A particularly insidious form of gaming is by taking on (left-tail) risk.
 - Difficult to prevent via monitoring & enormously costly
- In 2009, Fed chairman Ben Bernanke stated that:

- Rajan (2011) argued risk-taking exarcebated the 2008 financial crisis.
- Garicano and Rayo (2016) argued that AIG took massive left-tail risks in response to poorly designed incentives.

- "History is littered with examples of firms that got what they paid for."
- A particularly insidious form of gaming is by taking on (left-tail) risk.
 - Difficult to prevent via monitoring & enormously costly
- In 2009, Fed chairman Ben Bernanke stated that:

- Rajan (2011) argued risk-taking exarcebated the 2008 financial crisis.
- Garicano and Rayo (2016) argued that AIG took massive left-tail risks in response to poorly designed incentives.

- "History is littered with examples of firms that got what they paid for."
- A particularly insidious form of gaming is by taking on (left-tail) risk.
 - Difficult to prevent via monitoring & enormously costly
- In 2009, Fed chairman Ben Bernanke stated that:

- Rajan (2011) argued risk-taking exarcebated the 2008 financial crisis.
- Garicano and Rayo (2016) argued that AIG took massive left-tail risks in response to poorly designed incentives.

- "History is littered with examples of firms that got what they paid for."
- A particularly insidious form of gaming is by taking on (left-tail) risk.
 - Difficult to prevent via monitoring & enormously costly
- In 2009, Fed chairman Ben Bernanke stated that:

- Rajan (2011) argued risk-taking exarcebated the 2008 financial crisis.
- Garicano and Rayo (2016) argued that AIG took massive left-tail risks in response to poorly designed incentives.

Gaming via Risk-Taking is Widespread

- **Portfolio managers** adjust the riskiness of their investments Chevalier & Ellison (1997), de Figueiredo et al. (2016)
- Executives may cut maintenance to meet earnings targets Repenning & Henderson (2015), Garicano & Rayo (2016) and references
- Entrepreneurs pursue unproven technologies or incremental progress Vereshchagina and Hopenhayn (2008)
- **Salespeople** can accelerate or delay sales to meet their quotas Oyer (1998), Jensen (2001), Larkin (2014)

Gaming via Risk-Taking is Widespread

- **Portfolio managers** adjust the riskiness of their investments Chevalier & Ellison (1997), de Figueiredo et al. (2016)
- Executives may cut maintenance to meet earnings targets Repenning & Henderson (2015), Garicano & Rayo (2016) and references
- Entrepreneurs pursue unproven technologies or incremental progress Vereshchagina and Hopenhayn (2008)
- Salespeople can accelerate or delay sales to meet their quotas Oyer (1998), Jensen (2001), Larkin (2014)

Gaming via Risk-Taking is Widespread

- **Portfolio managers** adjust the riskiness of their investments Chevalier & Ellison (1997), de Figueiredo et al. (2016)
- Executives may cut maintenance to meet earnings targets Repenning & Henderson (2015), Garicano & Rayo (2016) and references
- Entrepreneurs pursue unproven technologies or incremental progress Vereshchagina and Hopenhayn (2008)
- Salespeople can accelerate or delay sales to meet their quotas Oyer (1998), Jensen (2001), Larkin (2014)

What is this paper about?

Optimal contracting when

the agent can game the contract it by gambling

Barron, Georgiadis, and Swinkels

Risk-Taking & Optimal Contracts

Northwestern Kellogg 4 / 29

Framework

- Model in a Nutshell. Canonical principal-agent framework, in which:
 - **1** The agent chooses effort, which determines *intermediate output*.
 - 2 He gambles by choosing *any* mean-preserving spread of interm. output.
 - S This mean-preserving spread determines final, contractible output.
- Mechanism. The agent gambles to game convex incentives.
 - His payoff equals the *concave closure* of his utility under the contract.
- **Prop. 1.** Optimal contract makes agent's utility *concave* in output.
 - "Classic" principal-agent problem + *no-gaming constraint*

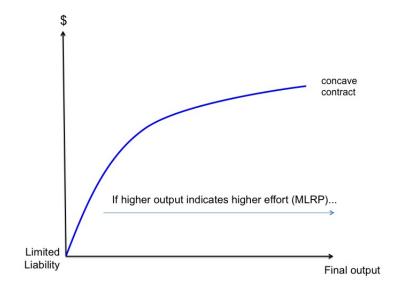
Framework

- Model in a Nutshell. Canonical principal-agent framework, in which:
 - **9** The agent chooses effort, which determines *intermediate output*.
 - 2 He gambles by choosing *any* mean-preserving spread of interm. output.
 - S This mean-preserving spread determines final, contractible output.
- Mechanism. The agent gambles to game convex incentives.
 - His payoff equals the *concave closure* of his utility under the contract.
- **Prop. 1.** Optimal contract makes agent's utility *concave* in output.
 - "Classic" principal-agent problem + no-gaming constraint

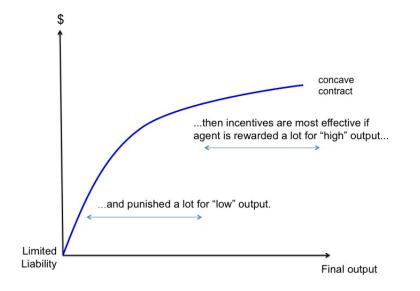
Framework

- Model in a Nutshell. Canonical principal-agent framework, in which:
 - **9** The agent chooses effort, which determines *intermediate output*.
 - 2 He gambles by choosing *any* mean-preserving spread of interm. output.
 - 3 This mean-preserving spread determines final, contractible output.
- Mechanism. The agent gambles to game convex incentives.
 - His payoff equals the *concave closure* of his utility under the contract.
- **Prop.** 1. Optimal contract makes agent's utility *concave* in output.
 - "Classic" principal-agent problem + no-gaming constraint

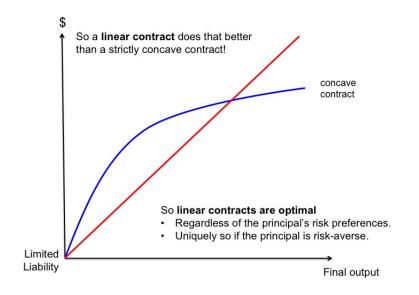
Optimal Contract with a Risk-neutral Agent



Optimal Contract with a Risk-neutral Agent



Optimal Contract with a Risk-neutral Agent



Rough Intuition: Risk-averse Agent

- No-gaming constraint: agent's *utility* must be concave in output.
 - If agent is risk-averse, optimal incentives may be strictly concave.
- We develop a set of tools to characterize the optimal contract.
 - Where no-gaming binds, contract makes agent's utility linear in output.
 - Where it is *slack*, contract resembles "classic" optimal contract.
- Two notable cases:
 - If LL is slack, under mild conditions, optimal incentives are linear below a threshold, and coincide with the "classic" contract above threshold.
 - 2) If IR is slack, optimal incentives are linear below a threshold.

Rough Intuition: Risk-averse Agent

- No-gaming constraint: agent's *utility* must be concave in output.
 - If agent is risk-averse, optimal incentives may be strictly concave.
- We develop a set of tools to characterize the optimal contract.
 - Where no-gaming binds, contract makes agent's utility linear in output.
 - Where it is *slack*, contract resembles "classic" optimal contract.
- Two notable cases:
 - If LL is slack, under mild conditions, optimal incentives are linear below a threshold, and coincide with the "classic" contract above threshold.
 - 2) If IR is slack, optimal incentives are linear below a threshold.

Rough Intuition: Risk-averse Agent

- No-gaming constraint: agent's *utility* must be concave in output.
 - If agent is risk-averse, optimal incentives may be strictly concave.
- We develop a set of tools to characterize the optimal contract.
 - Where no-gaming binds, contract makes agent's utility linear in output.
 - Where it is *slack*, contract resembles "classic" optimal contract.
- Two notable cases:
 - If LL is slack, under mild conditions, optimal incentives are linear below a threshold, and coincide with the "classic" contract above threshold.
 - If IR is slack, optimal incentives are linear below a threshold.

• Three extensions with risk-neutral players.

What if agent gambles before the exogenous uncertainty is resolved?

- Leads to different but related constraints on contracts.
- A linear contract is optimal under mild conditions.
- What if gambling is costly?
 - Tools extend (for our formulation of risk-taking costs)
 - Optimal contract is convex, and converges to linear as costs vanish.
- What if the agent can game by shifting output over time?
 - Reinterpret model as intertemporal gaming of stationary contracts.
 - A linear contract is optimal.

- Three extensions with risk-neutral players.
- What if agent gambles *before* the exogenous uncertainty is resolved?
 - Leads to different but related constraints on contracts.
 - A linear contract is optimal under mild conditions.
- What if gambling is costly?
 - Tools extend (for our formulation of risk-taking costs)
 - Optimal contract is convex, and converges to linear as costs vanish.
- What if the agent can game by shifting output over time?
 - Reinterpret model as intertemporal gaming of stationary contracts.
 - A linear contract is optimal.

Risk-Taking & Optimal Contracts

- Three extensions with risk-neutral players.
- What if agent gambles *before* the exogenous uncertainty is resolved?
 - Leads to different but related constraints on contracts.
 - A linear contract is optimal under mild conditions.
- What if gambling is costly?
 - Tools extend (for our formulation of risk-taking costs)
 - Optimal contract is convex, and converges to linear as costs vanish.
- What if the agent can game by shifting output over time?
 - Reinterpret model as intertemporal gaming of stationary contracts.
 - A linear contract is optimal.

- Three extensions with risk-neutral players.
- What if agent gambles *before* the exogenous uncertainty is resolved?
 - Leads to different but related constraints on contracts.
 - A linear contract is optimal under mild conditions.
- What if gambling is costly?
 - Tools extend (for our formulation of risk-taking costs)
 - Optimal contract is convex, and converges to linear as costs vanish.
- What if the agent can game by shifting output over time?
 - Reinterpret model as intertemporal gaming of stationary contracts.
 - A linear contract is optimal.

Related Literature

- Large empirical literature on risk-taking and intertemporal gaming.
 - Brown, Harlow & Starks (1996), Chevalier & Ellison (1997), Brav et al. (2005), Matta & Beamish (2008), Rajan (2010), de Figueiredo et al. (2014), Repenning & Henderson (2015), Shue & Townsend (2017)
 - Oyer (1998), Larkin (2014), Repenning & Henderson (2015)
- Some theory on agents using risk-taking to game contracts:
 - Diamond (1998) and Garicano & Rayo (2016)
 - Palomino & Pratt (2003)
 - DeMarzo et al. (2014), Hébert (2015), Makarov & Plantin (2016)
- Theory on the optimality of simple (linear) contracts:
 - Holmström & Milgrom (1987) and Edmans & Gabaix (2011)
 - Chassang (2013), Carroll (2015), Antic (2016)

Model

Model

- Set of possible outcomes $\mathcal{Y} = [\underline{y}, \, \overline{y}].$
- Players:
 - Weakly risk-averse principal
 - Weakly risk-averse agent with liability M and outside option u_0
- Timing:
 - Principal offers a contract s(y).
 - Agent accepts / rejects contract, and chooses effort a.
 - Solution Intermediate output $x \sim F(\cdot|a)$ is privately observed by the agent.
 - *F* satisfies strict MLRP, some regularity conditions, and $\mathbb{E}_{F(\cdot|a)}[x] = a$.
 - **(**) Agent chooses distribution $G_x \in \Delta(\mathcal{Y})$ subject to $\mathbb{E}_{G_x}[y] = x$.
 - Similar output $y \sim G_x$ is realized and the agent is paid s(y).
- Payoffs:
 - Principal: $\pi (y s(y))$, where $\pi'' \le 0 < \pi'$.
 - Agent: u(s(y)) c(a), where $u'' \le 0 < u'$ and c', c'' > 0.

Barron, Georgiadis, and Swinkels

Risk-Taking & Optimal Contracts

Problem Formulation and a Simplifying Result

• Principal solves the following constrained maximization problem:

$$\max_{a, G \in \mathcal{G}, v(\cdot)} \mathbb{E}_{F(\cdot|a)} \left[\mathbb{E}_{G_{x}} \left[\pi \left(y - u^{-1} \left(v \left(y \right) \right) \right) \right] \right]$$
(Obj_F)
s.t. $a, G \in \arg \max_{\tilde{a}, \tilde{G} \in \mathcal{G}} \left\{ \mathbb{E}_{F(\cdot|\tilde{a})} \left[\mathbb{E}_{\tilde{G}_{x}} \left[v \left(y \right) \right] \right] - c(\tilde{a}) \right\}$ (IC_F)
 $\mathbb{E}_{F(\cdot|a)} \left[\mathbb{E}_{G_{x}} \left[v \left(y \right) \right] \right] - c(a) \ge u_{0}$ (IR_F)
 $v(\cdot) \ge u(-M),$ (LL_F)

where
$$v(y) = u(s(y))$$
, $G = \{G_x\}_{x \in \mathcal{Y}}$.

Proposition 1:

- Suppose $\{a, G, v(\cdot)\}$ solves $(Obj_F) (LL_F)$.
- Then $\{a, G^{Degenerate}, v^{c}(\cdot)\}$, where v^{c} denotes concave closure of v, satisfies (IC_{F}) (LL_{F}) , and gives the principal weakly higher profit.

Problem Formulation and a Simplifying Result

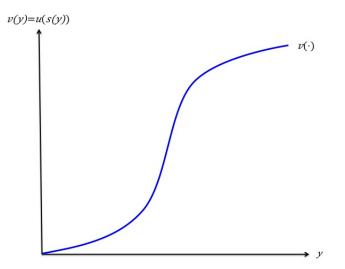
• Principal solves the following constrained maximization problem:

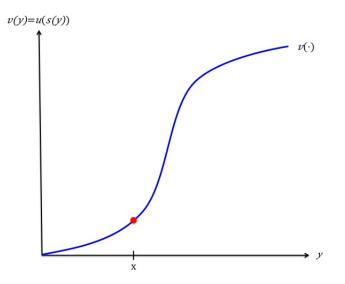
$$\max_{a, G \in \mathcal{G}, v(\cdot)} \mathbb{E}_{F(\cdot|a)} \left[\mathbb{E}_{G_{x}} \left[\pi \left(y - u^{-1} \left(v \left(y \right) \right) \right) \right] \right]$$
(Obj_F)
s.t. $a, G \in \arg \max_{\tilde{a}, \tilde{G} \in \mathcal{G}} \left\{ \mathbb{E}_{F(\cdot|\tilde{a})} \left[\mathbb{E}_{\tilde{G}_{x}} \left[v \left(y \right) \right] \right] - c(\tilde{a}) \right\}$ (IC_F)
 $\mathbb{E}_{F(\cdot|a)} \left[\mathbb{E}_{G_{x}} \left[v \left(y \right) \right] \right] - c(a) \ge u_{0}$ (IR_F)
 $v(\cdot) \ge u(-M),$ (LL_F)

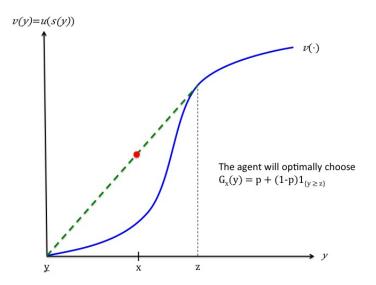
where
$$v(y) = u(s(y))$$
, $G = \{G_x\}_{x \in \mathcal{Y}}$.

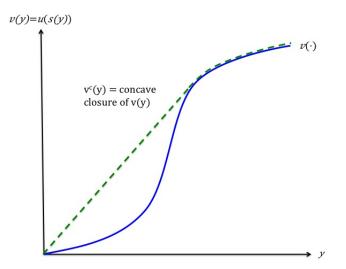
Proposition 1:

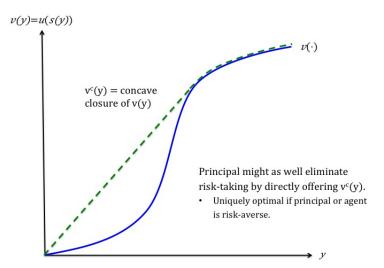
- Suppose $\{a, G, v(\cdot)\}$ solves $(Obj_F) (LL_F)$.
- Then $\{a, G^{Degenerate}, v^{c}(\cdot)\}$, where v^{c} denotes concave closure of v, satisfies (IC_{F}) (LL_{F}) , and gives the principal weakly higher profit.











Reformulating the Problem

• Therefore, the principal's problem can be simplified to:

$$\begin{array}{ll} \max_{a,v(\cdot)} & \mathbb{E}_{F(\cdot|a)} \left[\pi \left(y - u^{-1}(v(y)) \right) \right] & (\text{Obj}) \\ \text{s.t.} & a \in \arg \max_{\tilde{a}} \left\{ \mathbb{E}_{F(\cdot|\tilde{a})} \left[v(y) \right] - c(\tilde{a}) \right\} & (\text{IC}) \\ & \mathbb{E}_{F(\cdot|a)} \left[v(y) \right] - c(a) \geq u_0 & (\text{IR}) \\ & v(y) \geq \underline{u} \text{ for all } y \in \mathcal{Y} & (\text{LL}) \\ & v(\cdot) \text{ weakly concave.} & (\text{Conc}) \end{array}$$

Lemma 1:

- Fix $a \ge 0$ and assume $\underline{u} > -\infty$. A profit-maximizing contract exists.
- It is unique if at least one party is strictly risk averse.

Risk-Taking & Optimal Contracts

Reformulating the Problem

• Therefore, the principal's problem can be simplified to:

$$\begin{array}{ll} \max_{a,v(\cdot)} & \mathbb{E}_{F(\cdot|a)} \left[\pi \left(y - u^{-1}(v(y)) \right) \right] & (\text{Obj}) \\ \text{s.t.} & a \in \arg \max_{\tilde{a}} \left\{ \mathbb{E}_{F(\cdot|\tilde{a})} \left[v(y) \right] - c(\tilde{a}) \right\} & (\text{IC}) \\ & \mathbb{E}_{F(\cdot|a)} \left[v(y) \right] - c(a) \geq u_0 & (\text{IR}) \\ & v(y) \geq \underline{u} \text{ for all } y \in \mathcal{Y} & (\text{LL}) \\ & v(\cdot) \text{ weakly concave.} & (\text{Conc}) \end{array}$$

Lemma 1:

- Fix $a \ge 0$ and assume $\underline{u} > -\infty$. A profit-maximizing contract exists.
- It is unique if at least one party is strictly risk averse.

Risk-Neutral Agent: A Linear Contract is Optimal

Define

$$s_a^L(y) = c'(a)(y - \underline{y}) - \underbrace{\min \left\{ M, c'(a)(a - \underline{y}) - c(a) - u_0 \right\}}_{\text{constant to satisfy (IR) and (LL)}}$$

• Cheapest *linear contract* that satisfies (IC), (IR) and (LL) for effort *a*.

• Define a^{FB} such that $c'(a^{FB}) = 1$. This is the first-best effort level.

Proposition 2: Risk-neutral agent

- Assume $u(s) \equiv s$.
- If a^* is optimal, then $a^* \leq a^{FB}$ and $s_{a^*}^L(\cdot)$ is optimal.

Risk-Neutral Agent: A Linear Contract is Optimal

• Define

$$s_a^L(y) = c'(a)(y - \underline{y}) - \underbrace{\min \left\{ M, c'(a)(a - \underline{y}) - c(a) - u_0 \right\}}_{\text{constant to satisfy (IR) and (LL)}}$$

• Cheapest *linear contract* that satisfies (IC), (IR) and (LL) for effort *a*.

• Define a^{FB} such that $c'(a^{FB}) = 1$. This is the first-best effort level.

Proposition 2: Risk-neutral agent

- Assume $u(s) \equiv s$.
- If a^* is optimal, then $a^* \leq a^{FB}$ and $s_{a^*}^L(\cdot)$ is optimal.

Risk-Neutral Agent: A Linear Contract is Optimal

• Define

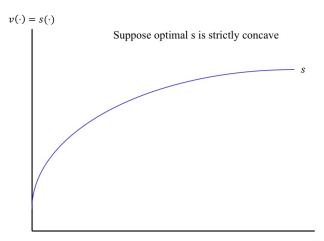
$$s_a^L(y) = c'(a)(y - \underline{y}) - \underbrace{\min \left\{ M, c'(a)(a - \underline{y}) - c(a) - u_0 \right\}}_{\text{constant to satisfy (IR) and (LL)}}$$

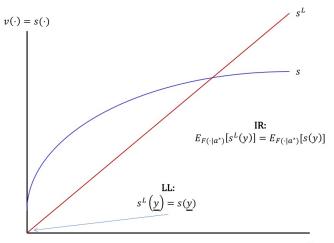
• Cheapest linear contract that satisfies (IC), (IR) and (LL) for effort a.

• Define a^{FB} such that $c'(a^{FB}) = 1$. This is the first-best effort level.

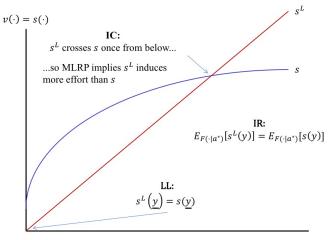
Proposition 2: Risk-neutral agent

- Assume $u(s) \equiv s$.
- If a^* is optimal, then $a^* \leq a^{FB}$ and $s_{a^*}^L(\cdot)$ is optimal.

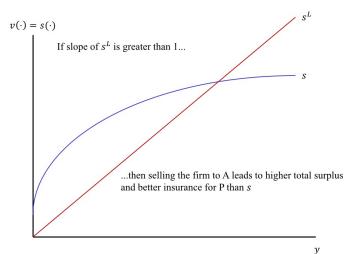


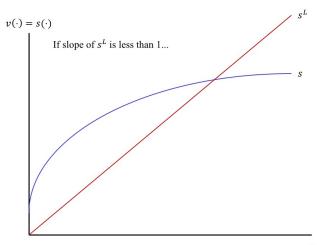


y

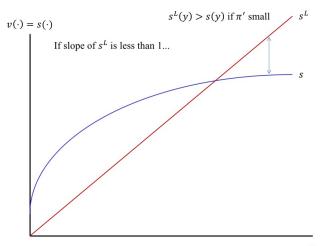


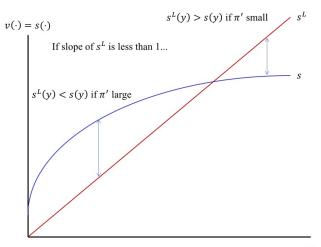
y

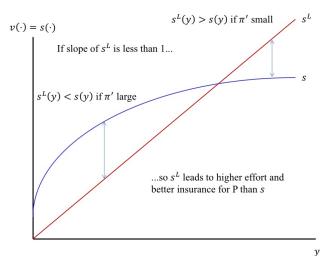




y







If the Principal is loves risk...

• Rajan (2011) argues that anticipating bailouts, financial institutions may have had an incentive to encourage excessive risk-taking.

Corollary 1.

- Assume $\pi(\cdot)$ is strictly increasing with concave closure $\pi^{c}(\cdot)$.
- If a^* is optimal, then $a^* \leq a^{FB}$, and $s_{a^*}^L(\cdot)$ is optimal.

The principal wants the agent to choose

 $\mathcal{G}_x^p\in\Delta(\mathcal{Y})$ such that $\mathbb{E}_{\mathcal{G}_x^p}\left[\pi\left(y-s(y)
ight)
ight]=\pi^{ extsf{c}}\left(x-s(x)
ight)$.

- From Prop. 2, $s_{a^*}^{L}(\cdot)$ maximizes $\pi^{c}(y s(y))$ subject to (IC)-(Conc).
- Given $s_{a^*}^L(\cdot)$, the agent is indifferent across all G.

If the Principal is loves risk...

• Rajan (2011) argues that anticipating bailouts, financial institutions may have had an incentive to encourage excessive risk-taking.

Corollary 1.

- Assume $\pi(\cdot)$ is strictly increasing with concave closure $\pi^{c}(\cdot)$.
- If a^* is optimal, then $a^* \leq a^{FB}$, and $s_{a^*}^L(\cdot)$ is optimal.

• The principal wants the agent to choose

 $G_x^p \in \Delta(\mathcal{Y})$ such that $\mathbb{E}_{G_x^p}\left[\pi\left(y-s(y)
ight)
ight] = \pi^c\left(x-s(x)
ight)$.

- From Prop. 2, $s_{a^*}^L(\cdot)$ maximizes $\pi^c(y s(y))$ subject to (IC)-(Conc).
- Given $s_{a^*}^L(\cdot)$, the agent is indifferent across all G.

If the Principal is loves risk...

• Rajan (2011) argues that anticipating bailouts, financial institutions may have had an incentive to encourage excessive risk-taking.

Corollary 1.

- Assume $\pi(\cdot)$ is strictly increasing with concave closure $\pi^{c}(\cdot)$.
- If a^* is optimal, then $a^* \leq a^{FB}$, and $s_{a^*}^L(\cdot)$ is optimal.
- The principal wants the agent to choose

 $\mathcal{G}^{p}_{x} \in \Delta(\mathcal{Y})$ such that $\mathbb{E}_{\mathcal{G}^{p}_{x}}\left[\pi\left(y-s(y)
ight)
ight]=\pi^{c}\left(x-s(x)
ight)$.

- From Prop. 2, $s_{a^*}^L(\cdot)$ maximizes $\pi^c(y s(y))$ subject to (IC)-(Conc).
- Given $s_{a^*}^{L}(\cdot)$, the agent is indifferent across all G.

Problem Formulation with a Risk Averse Agent

• Assume the principal is risk-neutral.

• Contract $v(\cdot)$ implements $a \ge 0$ at max. profit / min. cost if it solves:

$$\begin{split} \min_{v(\cdot)} & \mathbb{E}_{F(\cdot|a)} \left[u^{-1}(v(y)) \right] \\ \text{s.t.} & \mathbb{E}_{F(\cdot|a)} \left[v(y) \right] - c(a) \ge u_0 \qquad (\text{IR}) \\ & a \in \arg \max_{\tilde{a}} \mathbb{E}_{F(\cdot|\tilde{a})} \left[v(y) \right] - c(\tilde{a}) \qquad (\text{IC}) \\ & v(y) \ge \underline{u} \text{ for all } y \in \mathcal{Y} \qquad (\text{LL}) \\ & v(\cdot) \text{ weakly concave.} \qquad (\text{NG}) \end{split}$$

• Replace (IC) with weaker condition that local incentives are slack:

$$\int v(y)f_a(y|a)dy \ge c'(a) \tag{IC-FOC}$$

Problem Formulation with a Risk Averse Agent

- Assume the principal is risk-neutral.
- Contract $v(\cdot)$ implements $a \ge 0$ at max. profit / min. cost if it solves:

$$\begin{array}{ll} \min_{v(\cdot)} & \mathbb{E}_{F(\cdot|a)} \left[u^{-1}(v(y)) \right] \\ \text{s.t.} & \mathbb{E}_{F(\cdot|a)} \left[v(y) \right] - c(a) \ge u_0 \qquad (\text{IR}) \\ & a \in \arg \max_{\widetilde{a}} \mathbb{E}_{F(\cdot|\widetilde{a})} \left[v(y) \right] - c(\widetilde{a}) \qquad (\text{IC}) \\ & v(y) \ge \underline{u} \text{ for all } y \in \mathcal{Y} \qquad (\text{LL}) \\ & v(\cdot) \text{ weakly concave.} \qquad (\text{NG}) \end{array}$$

• Replace (IC) with weaker condition that local incentives are slack:

$$\int v(y)f_a(y|a)dy \ge c'(a)$$
 (IC-FOC)

Problem Formulation with a Risk Averse Agent

- Assume the principal is risk-neutral.
- Contract $v(\cdot)$ implements $a \ge 0$ at max. profit / min. cost if it solves:

$$\begin{array}{ll} \min_{v(\cdot)} & \mathbb{E}_{F(\cdot|a)} \left[u^{-1}(v(y)) \right] \\ \text{s.t.} & \mathbb{E}_{F(\cdot|a)} \left[v(y) \right] - c(a) \ge u_0 & (\text{IR}) \\ & a \in \arg \max_{\tilde{a}} \mathbb{E}_{F(\cdot|\tilde{a})} \left[v(y) \right] - c(\tilde{a}) & (\text{IC}) \\ & v(y) \ge \underline{u} \text{ for all } y \in \mathcal{Y} & (\text{LL}) \\ & v(\cdot) \text{ weakly concave.} & (\text{NG}) \end{array}$$

• Replace (IC) with weaker condition that local incentives are slack:

$$\int v(y) f_a(y|a) dy \ge c'(a)$$
 (IC-FOC)

 \bullet Ignoring (LL) and (NG) for now, we can write the Lagrangian as

$$L(\lambda,\mu) = \min_{v(\cdot)} \int \left[u^{-1}(v(y)) - \lambda v(y) - \mu v(y) \frac{f_a(y|a)}{f(y|a)} \right] f(y|a) dy + \dots,$$

- where λ and μ are shadow values on (IR) and (IC-FOC).
- Differentiating with respect to v(y) yields

$$n(y) \triangleq \underbrace{\frac{1}{u'\left(u^{-1}(v(y))\right)}}_{\triangleq \rho^{-1}(v(y))} - \lambda - \mu \underbrace{\frac{f_a(y|a)}{f(y|a)}}_{\triangleq l(y|a)}$$

- Note: n(y) can be interpreted as net cost of marginally increasing v(y)
- Holmström (1979): $v(\cdot)$ optimal iff $n(y) \equiv 0$ (for some λ, μ)

 \bullet Ignoring (LL) and (NG) for now, we can write the Lagrangian as

$$L(\lambda,\mu) = \min_{v(\cdot)} \int \left[u^{-1}(v(y)) - \lambda v(y) - \mu v(y) \frac{f_a(y|a)}{f(y|a)} \right] f(y|a) dy + \dots,$$

where λ and μ are shadow values on (IR) and (IC-FOC).

• Differentiating with respect to v(y) yields

$$\mathsf{n}(y) \triangleq \underbrace{\frac{1}{u'\left(u^{-1}(v(y))\right)}}_{\triangleq \rho^{-1}(v(y))} - \lambda - \mu \underbrace{\frac{f_a(y|a)}{f(y|a)}}_{\triangleq l(y|a)}$$

- Note: n(y) can be interpreted as net cost of marginally increasing v(y).
- Holmström (1979): $v(\cdot)$ optimal iff $n(y) \equiv 0$ (for some λ, μ).

 \bullet Ignoring (LL) and (NG) for now, we can write the Lagrangian as

$$L(\lambda,\mu) = \min_{v(\cdot)} \int \left[u^{-1}(v(y)) - \lambda v(y) - \mu v(y) \frac{f_a(y|a)}{f(y|a)} \right] f(y|a) dy + \dots,$$

where λ and μ are shadow values on (IR) and (IC-FOC).

• Differentiating with respect to v(y) yields

$$\mathsf{n}(y) \triangleq \underbrace{\frac{1}{u'\left(u^{-1}(v(y))\right)}}_{\triangleq \rho^{-1}(v(y))} - \lambda - \mu \underbrace{\frac{f_a(y|a)}{f(y|a)}}_{\triangleq l(y|a)}$$

- Note: n(y) can be interpreted as net cost of marginally increasing v(y).
- Holmström (1979): $v(\cdot)$ optimal iff $n(y) \equiv 0$ (for some λ, μ).

 \bullet Ignoring (LL) and (NG) for now, we can write the Lagrangian as

$$L(\lambda,\mu) = \min_{v(\cdot)} \int \left[u^{-1}(v(y)) - \lambda v(y) - \mu v(y) \frac{f_a(y|a)}{f(y|a)} \right] f(y|a) dy + \dots,$$

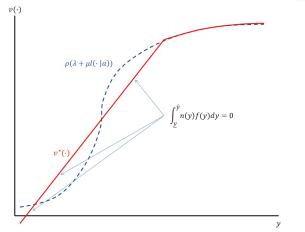
where λ and μ are shadow values on (IR) and (IC-FOC).

• Differentiating with respect to v(y) yields

$$\mathsf{n}(y) \triangleq \underbrace{\frac{1}{u'\left(u^{-1}(v(y))\right)}}_{\triangleq \rho^{-1}(v(y))} - \lambda - \mu \underbrace{\frac{f_a(y|a)}{f(y|a)}}_{\triangleq l(y|a)}$$

- Note: n(y) can be interpreted as net cost of marginally increasing v(y).
- Holmström (1979): $v(\cdot)$ optimal iff $n(y) \equiv 0$ (for some λ, μ).

Rough Intuition for our Characterization (LL slack)



• If for some y, setting n(y) = 0 violates (NG), then v(y) locally linear.

- Linear segments are "ironed" in the sense that $\mathbb{E}[n(y)] = 0$ on interval.
- Outside linear segments, (NG) is slack, and n(y) = 0 at such y.

Barron, Georgiadis, and Swinkels

Risk-Taking & Optimal Contracts

Northwestern Kellogg

Implication #1 of No-Gaming Constraint – (LL) Slack

Proposition 3.

- Let $v^*(\cdot)$ implement *a* at max. profit, and assume (LL) is slack.
- Suppose $\rho(\lambda + \mu I(\cdot | a))$ is convex for $y < y_I$, and concave otherwise.
- Then there exist $\hat{y} > y_I$, \underline{v} , and $\alpha > 0$ such that

$$v^*(y) = egin{cases} rac{
u}{
ho(\lambda+\mu I(y|a))} & ext{if } y < \hat{y} ext{, and} \
ho(\lambda+\mu I(y|a)) & ext{otherwise,} \end{cases}$$

where
$$\int_{y}^{\hat{y}} n(y) f(y|a) dy = 0.$$

- $\rho(\lambda + \mu l(\cdot|a))$ is convex-concave $\forall \lambda$ and μ if, for example,
 - $l_y(\cdot|a)$ is strictly log-concave, and
 - $u(w) = \log w$, or for a range of utilities that exhibit HARA.

Barron, Georgiadis, and Swinkels

Implication #1 of No-Gaming Constraint – (LL) Slack

Proposition 3.

- Let $v^*(\cdot)$ implement *a* at max. profit, and assume (LL) is slack.
- Suppose $\rho(\lambda + \mu I(\cdot | a))$ is convex for $y < y_I$, and concave otherwise.
- Then there exist $\hat{y} > y_I$, \underline{v} , and $\alpha > 0$ such that

$$m{v}^*(y) = egin{cases} rac{
u}{
ho(\lambda+\mu l(y|a))} & ext{if } y < \hat{y}, ext{ and} \
ho(\lambda+\mu l(y|a)) & ext{otherwise}, \end{cases}$$

where
$$\int_{y}^{\hat{y}} n(y) f(y|a) dy = 0.$$

- $\rho(\lambda + \mu l(\cdot | a))$ is convex-concave $\forall \lambda$ and μ if, for example,
 - $l_y(\cdot|a)$ is strictly log-concave, and
 - $u(w) = \log w$, or for a range of utilities that exhibit HARA.

Barron, Georgiadis, and Swinkels

Implication #2 of No-Gaming Constraint – (IR) Slack

- Let $v^*(\cdot)$ implement *a* at max. profit, and assume (IR) is slack.
- Then $v^*(\cdot)$ is linear on $[y, y_0]$, where $l(y_0|a) = 0$.
- For any y such that I(y|a) < 0, principal wants to reduce pay.
 - If $v(\cdot)$ is strictly concave, then it is profitable to *flatten* it.
- Cannot rule out linear segments on $(y_0, \overline{y}]$.

Implication #2 of No-Gaming Constraint – (IR) Slack

- Let $v^*(\cdot)$ implement *a* at max. profit, and assume (IR) is slack.
- Then $v^*(\cdot)$ is linear on $[y, y_0]$, where $l(y_0|a) = 0$.
- For any y such that I(y|a) < 0, principal wants to reduce pay.
 - If $v(\cdot)$ is strictly concave, then it is profitable to *flatten* it.
- Cannot rule out linear segments on $(y_0, \overline{y}]$.

Implication #2 of No-Gaming Constraint – (IR) Slack

- Let $v^*(\cdot)$ implement *a* at max. profit, and assume (IR) is slack.
- Then $v^*(\cdot)$ is linear on $[y, y_0]$, where $l(y_0|a) = 0$.
- For any y such that I(y|a) < 0, principal wants to reduce pay.
 - If $v(\cdot)$ is strictly concave, then it is profitable to *flatten* it.
- Cannot rule out linear segments on $(y_0, \overline{y}]$.

Risk-Taking before Intermediate Output is Realized • summa

• What if the agent gambles before exogenous uncertainty is resolved?

Timing:

- I Principal offers a contract s(y).
- ⓐ Agent chooses effort *a* ≥ 0 and distribution *G* ∈ $\Delta(\mathcal{Y})$ s.t $\mathbb{E}_G[x] = a$.
- If \mathbb{O} Outcome of gamble $x \sim G$, and final output $y \sim F(\cdot|x)$ are realized.

• $F(\cdot|x)$ satisfies strict MLRP in x and $\mathbb{E}_{F(\cdot|x)}[y] = x$.

- Can interpret x as profitability conditional on economic conditions, and F(·|x) as capturing residual uncertainty.
- Intuitively, a more dispersed G leads to more "risky" output.

Risk-Taking before Intermediate Output is Realized •••••••

• What if the agent gambles *before* exogenous uncertainty is resolved?

Timing:

- Principal offers a contract s(y).
- **2** Agent chooses effort $a \ge 0$ and distribution $G \in \Delta(\mathcal{Y})$ s.t $\mathbb{E}_G[x] = a$.
- **③** Outcome of gamble $x \sim G$, and final output $y \sim F(\cdot|x)$ are realized.
 - $F(\cdot|x)$ satisfies strict MLRP in x and $\mathbb{E}_{F(\cdot|x)}[y] = x$.
- Can interpret x as profitability conditional on economic conditions, and F(·|x) as capturing residual uncertainty.
- Intuitively, a more dispersed G leads to more "risky" output.

Ex-ante Risk-Taking

Risk-Taking before Intermediate Output is Realized

• What if the agent gambles *before* exogenous uncertainty is resolved?

Timing:

- Principal offers a contract s(y).
- **2** Agent chooses effort $a \ge 0$ and distribution $G \in \Delta(\mathcal{Y})$ s.t $\mathbb{E}_G[x] = a$.
- **③** Outcome of gamble $x \sim G$, and final output $y \sim F(\cdot|x)$ are realized.
 - $F(\cdot|x)$ satisfies strict MLRP in x and $\mathbb{E}_{F(\cdot|x)}[y] = x$.
- Can interpret x as profitability conditional on economic conditions, and F(·|x) as capturing residual uncertainty.
- Intuitively, a more dispersed G leads to more "risky" output.

• For fixed $s(\cdot)$, denote agent's expected pay conditional on x by $V_s(x) = \mathbb{E}_{F(\cdot|x)} \left[s(y)
ight]$

• The agent will choose his risk profile G such that

$$\max_{C} \{ \mathbb{E}_{G} [V_{s}(x)] \text{ s.t. } \mathbb{E}_{G} [x] = a \} = V_{s}^{c}(a) ,$$

where $V_s^c(\cdot)$ denotes the concave closure of $V_s(\cdot)$.

• For fixed $s(\cdot)$, denote agent's expected pay conditional on x by

$$V_{s}(x) = \mathbb{E}_{F(\cdot|x)}[s(y)]$$

• The agent will choose his risk profile G such that

$$\max_{G} \{ \mathbb{E}_{G} [V_{s}(x)] \text{ s.t. } \mathbb{E}_{G} [x] = a \} = V_{s}^{c}(a) ,$$

where $V_s^c(\cdot)$ denotes the concave closure of $V_s(\cdot)$.

Results

The principal's problem can be written as:

$$\begin{array}{ll} \max_{a,\,s(\cdot)\geq -M} & a-V_s^c(a)\\ \text{s.t.} & a\in \arg\max_{\widetilde{a}}\left\{V_s^c(\widetilde{a})-c(\widetilde{a})\right\}\\ & V_s^c(a)-c(a)\geq u_0 \end{array}$$

and note that $s(\cdot)$ determines $V_s(\cdot)$, which in turn determines $V_s^c(\cdot)$. position 6.

• For optimal effort a^* , $s(y) = c'(a^*)(y - y) + constant$ is optimal

 If principal could choose V^c_s(·) directly, this boils down to baseline problem with a degenerate F(·|a). Hence, a linear V^c_s(·) is optimal.

• But $\mathbb{E}_{F(\cdot|x)}[y] = x$ ensures that $V_s^c(\cdot)$ is linear iff $s(\cdot)$ is linear.

Results

The principal's problem can be written as:

$$\begin{array}{ll} \max_{a,\,s(\cdot)\geq -M} & a-V_s^c(a) \\ \text{s.t.} & a\in \arg\max_{\widetilde{a}}\left\{V_s^c(\widetilde{a})-c(\widetilde{a})\right\} \\ & V_s^c(a)-c(a)\geq u_0 \end{array}$$

and note that $s(\cdot)$ determines $V_s(\cdot)$, which in turn determines $V_s^c(\cdot)$.

Proposition 6.

• For optimal effort a^* , $s(y) = c'(a^*)(y - \underline{y}) + constant$ is optimal

 If principal could choose V^c_s(·) directly, this boils down to baseline problem with a degenerate F(·|a). Hence, a linear V^c_s(·) is optimal.

• But $\mathbb{E}_{F(\cdot|x)}[y] = x$ ensures that $V_s^c(\cdot)$ is linear iff $s(\cdot)$ is linear.

Barron, Georgiadis, and Swinkels

Results

• The principal's problem can be written as:

$$\begin{array}{ll} \max_{a,\,s(\cdot)\geq -M} & a-V_s^c(a)\\ \text{s.t.} & a\in \arg\max_{\widetilde{a}}\left\{V_s^c(\widetilde{a})-c(\widetilde{a})\right\}\\ & V_s^c(a)-c(a)\geq u_0 \end{array}$$

and note that $s(\cdot)$ determines $V_s(\cdot)$, which in turn determines $V_s^c(\cdot)$.

Proposition 6.

- For optimal effort a^* , $s(y) = c'(a^*)(y \underline{y}) + constant$ is optimal
- If principal could choose V^c_s(·) directly, this boils down to baseline problem with a degenerate F(·|a). Hence, a linear V^c_s(·) is optimal.

• But $\mathbb{E}_{F(\cdot|x)}[y] = x$ ensures that $V_s^c(\cdot)$ is linear iff $s(\cdot)$ is linear.

Costly Gaming

- Identifying ways to game a given contract often requires effort.
- Assume that to choose distribution G_x , the agent incurs cost

 $\mathbb{E}_{G_{x}}\left[d\left(y\right)\right]-d\left(x\right)$

where $d(\cdot)$ is some smooth, increasing, convex function.

- Example: If $d(y) = y^2$, then agent's cost equals the variance of G_x .
- Idea: A more dispersed distribution is costlier to implement.

Costly Gaming

- Identifying ways to game a given contract often requires effort.
- Assume that to choose distribution G_x , the agent incurs cost

$$\mathbb{E}_{G_{x}}\left[d\left(y\right)\right]-d\left(x\right)$$

where $d(\cdot)$ is some smooth, increasing, convex function.

- Example: If $d(y) = y^2$, then agent's cost equals the variance of G_x .
- Idea: A more dispersed distribution is costlier to implement.

Optimal Contract

• Conditional on the realization of the final output y, payoffs are:

Agent:

$$\underbrace{s(y) - d(y)}_{\equiv \tilde{v}(y)} - \underbrace{(c(a) - \mathbb{E}_{F(\cdot|a)}[d(x)])}_{\equiv \tilde{c}(a) \text{ (assume incr. }\& \text{ convex})}$$
Principal:

$$y - s(y) = \underbrace{y - d(y)}_{\equiv \tilde{\pi}(y) \text{ (concave)}} - \tilde{v}(y)$$

• For every x, agent optimally chooses G_x s.t $\mathbb{E}_{G_x} [\tilde{v}(y)] = \tilde{v}^c(x)$.

Proposition 7.

• For optimal a^* , $s(y) = \tilde{c}'(a^*)(y - \underline{y}) + d(y) + constant$ is optimal.

• Following Prop. 2, optimal $\tilde{v}(\cdot)$ is linear & $s(y) = \tilde{v}(y) + d(y)$.

Optimal Contract

• Conditional on the realization of the final output y, payoffs are:

Agent:

$$\underbrace{s(y) - d(y)}_{\equiv \tilde{v}(y)} - \underbrace{(c(a) - \mathbb{E}_{F(\cdot|a)}[d(x)])}_{\equiv \tilde{c}(a) \text{ (assume incr. }\& \text{ convex})}$$
Principal:

$$y - s(y) = \underbrace{y - d(y)}_{\equiv \tilde{\pi}(y) \text{ (concave)}} - \tilde{v}(y)$$

• For every x, agent optimally chooses G_x s.t $\mathbb{E}_{G_x} [\tilde{v}(y)] = \tilde{v}^c(x)$.

Proposition 7.

• For optimal a^* , $s(y) = \tilde{c}'(a^*)(y - \underline{y}) + d(y) + constant$ is optimal.

• Following Prop. 2, optimal $\tilde{v}(\cdot)$ is linear & $s(y) = \tilde{v}(y) + d(y)$.

Optimal Contract

• Conditional on the realization of the final output y, payoffs are:

Agent:

$$\underbrace{s(y) - d(y)}_{\equiv \tilde{v}(y)} - \underbrace{(c(a) - \mathbb{E}_{F(\cdot|a)}[d(x)])}_{\equiv \tilde{c}(a) \text{ (assume incr. }\& \text{ convex})}$$
Principal:

$$y - s(y) = \underbrace{y - d(y)}_{\equiv \tilde{\pi}(y) \text{ (concave)}} - \tilde{v}(y)$$

• For every x, agent optimally chooses G_x s.t $\mathbb{E}_{G_x} [\tilde{v}(y)] = \tilde{v}^c(x)$.

Proposition 7.

• For optimal
$$a^*$$
, $s(y) = \tilde{c}'(a^*)(y - \underline{y}) + d(y) + constant$ is optimal.

• Following Prop. 2, optimal $\tilde{v}(\cdot)$ is linear & $s(y) = \tilde{v}(y) + d(y)$.

A Model for Intertemporal Gaming

- $\bullet\,$ Principal and agent contract during [0,1] and do not discount time.
- Timing:
 - **D** Principal offers a stationary contract s(y).
 - Agent receives s(y(t)) dt if output during (t, t + dt) is y(t).
 - 2 Agent chooses effort $a \ge 0$.
 - Interpretation of the second state is a second structure of the second str
 - Agent chooses flow output $y_x(t)$ subject to $\int_0^1 y_x(t) dt = x$.
 - **5** Final output $\{y_x(t)\}_{t \in [0,1]}$ and payoffs are realized.

• Payoffs:

- Principal: $\pi = \int_{0}^{1} [y_{x}(t) s(y_{x}(t))] dt$
- Agent: $v = \int_{0}^{1} s(y_{x}(t)) dt c(a)$

A Model for Intertemporal Gaming

- $\bullet\,$ Principal and agent contract during [0,1] and do not discount time.
- Timing:
 - **1** Principal offers a stationary contract s(y).
 - Agent receives s(y(t)) dt if output during (t, t + dt) is y(t).
 - 2 Agent chooses effort $a \ge 0$.
 - Solution Total output $x \sim F(\cdot|a)$ is privately observed by the agent.
 - Solution Agent chooses flow output $y_x(t)$ subject to $\int_0^1 y_x(t) dt = x$.
 - Sinal output $\{y_x(t)\}_{t\in[0,1]}$ and payoffs are realized.

Payoffs:

- Principal: $\pi = \int_{0}^{1} \left[y_{x}(t) s(y_{x}(t)) \right] dt$
- Agent: $v = \int_0^1 s(y_x(t)) dt c(a)$

• Given any x and contract $s(\cdot)$, the agent solves:

$$\max_{y_{x}}\left\{\mathbb{E}\int_{0}^{1}s(y_{x}(t))dt \text{ s.t.}\int_{0}^{1}y_{x}(t)dt=x\right\}=s^{c}(x)$$

- Agent will exploit convex incentives by bunching output, and concave incentives by smoothing output over time.
- Equivalently, one can think of the agent choosing

 $G_{x}(y) =$ fraction of time for which $y_{x}(t) \leq y$ s.t. $\mathbb{E}_{G_{x}}[y] = x$

• By Lemma 1, agent will optimally choose G_x s.t $\mathbb{E}_{G_x}[s(y)] = s^c(x)$.

- This problem coincides with the original risk-taking problem.
- Hence, if a^* is optimal, then $a^* \leq a^{FB}$ and $s^L_{a^*}(\cdot)$ is optimal.

• Given any x and contract $s(\cdot)$, the agent solves:

$$\max_{y_{x}}\left\{\mathbb{E}\int_{0}^{1}s(y_{x}(t))dt \text{ s.t.}\int_{0}^{1}y_{x}(t)dt=x\right\}=s^{c}(x)$$

- Agent will exploit convex incentives by bunching output, and concave incentives by smoothing output over time.
- Equivalently, one can think of the agent choosing

 $G_x(y) =$ fraction of time for which $y_x(t) \le y$ s.t. $\mathbb{E}_{G_x}[y] = x$

• By Lemma 1, agent will optimally choose G_x s.t $\mathbb{E}_{G_x}[s(y)] = s^c(x)$.

- This problem coincides with the original risk-taking problem.
- Hence, if a^* is optimal, then $a^* \leq a^{FB}$ and $s_{a^*}^L(\cdot)$ is optimal.

• Given any x and contract $s(\cdot)$, the agent solves:

$$\max_{y_{x}}\left\{\mathbb{E}\int_{0}^{1}s(y_{x}(t))dt \text{ s.t.}\int_{0}^{1}y_{x}(t)dt=x\right\}=s^{c}(x)$$

- Agent will exploit convex incentives by bunching output, and concave incentives by smoothing output over time.
- Equivalently, one can think of the agent choosing

 $G_x(y) =$ fraction of time for which $y_x(t) \le y$ s.t. $\mathbb{E}_{G_x}[y] = x$

• By Lemma 1, agent will optimally choose G_x s.t $\mathbb{E}_{G_x}[s(y)] = s^c(x)$.

- This problem coincides with the original risk-taking problem.
- Hence, if a^* is optimal, then $a^* \leq a^{FB}$ and $s^L_{a^*}(\cdot)$ is optimal.

• Given any x and contract $s(\cdot)$, the agent solves:

$$\max_{y_{x}}\left\{\mathbb{E}\int_{0}^{1}s(y_{x}(t))dt \text{ s.t.}\int_{0}^{1}y_{x}(t)dt=x\right\}=s^{c}(x)$$

- Agent will exploit convex incentives by bunching output, and concave incentives by smoothing output over time.
- Equivalently, one can think of the agent choosing

 $G_x(y) =$ fraction of time for which $y_x(t) \le y$ s.t. $\mathbb{E}_{G_x}[y] = x$

• By Lemma 1, agent will optimally choose G_x s.t $\mathbb{E}_{G_x}[s(y)] = s^c(x)$.

- This problem coincides with the original risk-taking problem.
- Hence, if a^* is optimal, then $a^* \leq a^{FB}$ and $s^L_{a^*}(\cdot)$ is optimal.

• Given any x and contract $s(\cdot)$, the agent solves:

$$\max_{y_{x}}\left\{\mathbb{E}\int_{0}^{1}s(y_{x}(t))dt \text{ s.t.}\int_{0}^{1}y_{x}(t)dt=x\right\}=s^{c}(x)$$

- Agent will exploit convex incentives by bunching output, and concave incentives by smoothing output over time.
- Equivalently, one can think of the agent choosing

 $G_x(y) =$ fraction of time for which $y_x(t) \le y$ s.t. $\mathbb{E}_{G_x}[y] = x$

• By Lemma 1, agent will optimally choose G_x s.t $\mathbb{E}_{G_x}[s(y)] = s^c(x)$.

- This problem coincides with the original risk-taking problem.
- Hence, if a^* is optimal, then $a^* \leq a^{FB}$ and $s^L_{a^*}(\cdot)$ is optimal.

Takeaways

- Tractable model of gaming by risk taking.
- Linear contracts are optimal if the agent is risk neutral.
- Characterization if the agent is risk averse.
- Why might risk-taking occur?
 - Principal may be unable to commit, or might benefit from risk-taking
 - Competition?
 - Dynamics?