000 00 000		
	00000	00

The Retail Planning Problem Under Demand Uncertainty

George Georgiadis

joint work with Kumar Rajaram

UCLA Anderson School of Management

Introduction ●00	Model 00	Heuristics & Lower Bound	Computational Results	Summary 00
Introductio	on			

• Many retail store chains carry private label products.

Examples:

- Macy's carries Alfani, Club Room, and others.
- GAP and Zara: Exclusively private labels.
- In addition to deciding inventory levels, the retailer must
 - Choose suppliers / establish production facilities.
 - 2 Make production and distribution decisions.

We develop a framework to address the retailer's supplier choice, as well as her production, distribution and inventory decisions.

Introduction 00●	Model 00	Heuristics & Lower Bound	Computational Results	Summary 00
Related Lit	erature			

- Facility Location under Uncertain Demand:
 - Reviews by Aikens (1985), Snyder (2006), and Shen (2007).
- Integrated Supply Chain Models:
 - Balachandran and Jain (1976).
 - Le Blanc (1977).
 - Daskin et al. (2002).
 - Shen et al. (2003).
- Retailing: Fisher and Raman (2010).

Introduction	Model ●○	Heuristics & Lower Bound	Computational Results	Summary 00
Model Ea	ormulatio	n		

i : suppliers || j : stores || k : products

$$\begin{aligned} Z_P = \min\left\{\sum_i f_i z_i + \sum_{i,j,k} c_{ijk} x_{ijk} + \sum_{i,k} d_{ik} w_{ik} + \sum_{i,j} e_{ij} v_{ij} + \sum_{j,k} S_{jk} \left(y_{jk}\right)\right\} \\ \sum_i x_{ijk} = y_{jk} \text{ for all } j \text{ and } k \\ L_i z_i \leq \sum_j \sum_k \alpha_{ijk} x_{ijk} \leq U_i z_i \text{ for all } i \\ \sum_j \alpha_{ijk} x_{ijk} \leq U_i w_{ik} \text{ and } \sum_k \alpha_{ijk} x_{ijk} \leq U_i v_{ij} \text{ for all } i, j, \text{ and } k \\ x_{ijk} \geq 0, y_{jk} \geq 0, w_{ik} \in \{0, 1\}, v_{ij} \in \{0, 1\}, z_i \in \{0, 1\} \text{ for all } i, j, \text{ and } k \end{aligned}$$

• $S_{jk}(y)$: Inventory cost (newsvendor model).

• Fashion industry: short product lifecycles relative to lead times.

Introduction 000	Model ○●	Heuristics & Lower Bound	Computational Results	Summary 00
A Basic Re	sult and	a Roadmap		

- The RPP is strongly NP-hard.
 - Reduction to CPLP (Cornuejols et. al. (1991)).
 - Large-sized instances unlikely to be solvable to optimality.

How to proceed?

- Construct heuristics to obtain a feasible solution.
- Obtain a lower bound on Z_P using a Lagrangean relaxation.
- Evaluate how close the feasible solution is to the lower bound.
 - CVX Heuristic: Average suboptimality gap = 3.4%.
- Analyze the computational results to draw insights.

- 1: Solves a convex programming relaxation.
 - w_{ik} 's, v_{ij} 's and the *unfixed* z_i 's relaxed to lie in [0,1].
- 2: Permanently fix any $z_i \in \{0, 1\}$.
- 3: Temporarily fixes largest fractional z_i to 1.
 - Solves remaining problem and rounds to 1 fract. *w_{ik}* and *v_{ij}*. Temporarily fixes smallest fractional *z_i* to 0.
 - Solves remaining problem and rounds to 1 fract. w_{ik} and v_{ij}.
- 4: Permanently fix the z_i that yielded lowest total cost.
 - Return to 1 until all z_i 's have been fixed.
- *LP-based version*: Uses *Lagrangean* inventory levels to solve a sequence of linear programs.

Introduction	Model	Heuristics & Lower Bound	Computational Results	Summary
000	00	○●○		00
Lagrangea	n Relaxa	tion		

- Relax $\sum_{i} x_{ijk} = y_{jk}$. Decomposes problem into:
 - / Facility Location Subproblems:

$$L_{i}^{milp}(\lambda) = \min\left\{f_{i}z_{i} + \sum_{k}\left[d_{ik}w_{ik} + \sum_{j}\left(c_{ijk} - \lambda_{jk}\right)x_{ijk}\right]\right\}$$

• $J \times K$ Inventory Subproblems:

$$L_{jk}^{cvx}\left(\lambda\right) = \min\left\{\lambda_{jk}y_{jk} + S_{jk}\left(y_{jk}\right)\right\}$$

•
$$L(\lambda) = \sum_{i} L_{i}^{milp}(\lambda) + \sum_{j} \sum_{k} L_{jk}^{cvx}(\lambda)$$

• For any $\lambda \in \mathbb{R}^{J \times K}$, $L(\lambda)$ is a lower bound for Z_P .

Introduction	Model	Heuristics & Lower Bound	Computational Results	Summary
000	00	००●		00
Some Anal	vtical Re	esults		

Proposition 1

Lagrangean Relaxation solved in closed form for any given λ .

- Lagrangean bound = $\max_{\lambda} \{L(\lambda)\}$.
- $L(\lambda)$ in closed form \Rightarrow Can solve max. problem *directly*.

Lemma 1

Lagrangean problem does not possess the integrality property.

• Lagrangean lower bound \geq convex relaxation lower bound.

Proposition 2

• Conditions so that λ_{ik}^* can be characterized analytically.

Introduction	Model	Heuristics & Lower Bound	Computational Results	Summary
000	00		•0000	00
Computati	onal Exp	eriments		

- 500 randomly generated problem instances.
 - 5-20 candidate facility locations.
 - 10-40 stores.
 - 1-25 products.
- We evaluate:
 - Objective functions of CVX heuristic, and LP variation;
 - Lagrangean lower bound; and
 - Objective functions of two benchmark heuristics:
 - Practitioner / Greedy heuristic.
 - 2 Sequential heuristic.

Introduction	Model	Heuristics & Lower Bound	Computational Results	Summary
000	00		0●000	00
Suboptima	lity Gap			

Introduction	Model	Heuristics & Lower Bound	Computational Results	Summary
000	00		00●00	00
An Insight	regarding	g Inventory Dec	cisions	

 \bullet Inventory levels in CVX heuristic < newsvendor levels.

Why?
CVX solution accounts for <u>effect of inventory</u> to upstream SC costs.

Intuitively: a higher inventory level increases

- (i) production and distribution costs; and
- (ii) costs associated establishing production capacity.

When these costs are accounted for, lower inventory is preferable.

Take-away

When managing the entire SC, a lower fill rate may be preferable.

Introduction 000	Model 00	Heuristics & Lower Bound	Computational Results	Summary 00
Analyzing	the Com	nutational Results		

- How does
 - a. the computational time ;
 - b. the gap between CVX and the best benchmark heuristic ;
 - c. the suboptimality gap ; and
 - d. the total expected cost of CVX heuristic

depend on the size and the cost parameters of the problem.

Finding 1: Computational Time.

- Depends primarily on problem size (i.e., I, J and K).
- Linear regression yields $R^2 = 0.64$.
 - Scales up approximately linearly in problem size.

Finding 2: CVX heuristic is robust to changes in parameters.

• All regressors and their std. errors are close to 0.

Introduction	Model 00	Heuristics & Lower Bour	d Computational Results	Summary 00
Gleaning I	nsights f	rom the Comr	outational Results ((Cont'd)

Finding 3: Performance Advantage of CVX heuristic is Robust.

- Performance advantage increases in problem size.
- Insensitive to the cost parameters.

Finding 4: Total Expected Cost vs. Problem Parameters.

- Increases in the problem size and the mean demand.
- Key influencing factors:
 - Inventory underage and overage costs; and
 - 2 Marginal production and distribution costs.
- Emphasizes value of improved demand forecast.
- Supplier capacity and fixed costs have a secondary effect.

Introduction 000	Model 00	Heuristics & Lower Bound	Computational Results	Summary ●○
Summary				

- Integrated SC problem: Retailer chooses suppliers, and determines production, distribution and inventory planning.
 - Use Lagrangean relaxation to obtain a lower bound.
 - Develop heuristics to obtain feasible solutions.
- Computational experiments.
 - Solutions are close to optimal (within 3.4% on average).
 - Suboptimality gap is robust to problem size and parameters.
 - Computational time scales up \sim linearly in problem size.
- Insights:

 - Lower fill rate may be preferable when managing the entire SC. Inventory costs are key drivers of total expected SC costs.
 - Fixed costs and supplier capacity have a secondary effect.

Introduction 000	Model 00	Heuristics & Lower Bound	Computational Results	Summary ○●
Future Res	search			

- Embed this problem in a dynamic environment.
 - Allow for replenishing of inventory.
- Incorporate multiple echelons in the SC.
 - e.g., wholesalers, distribution centers, etc.
- Explicitly model economies of scale.