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Introduction

Motivation

Teamwork & projects are central in firms and partnerships.

66% of Fortune 1000 corporations engage > 20% of their workforce
in teams.

Source: Lazear and Shaw (2007); 1996 survey.

Empirical literature: adoption of teamwork has increased productivity
in manufacturing & service firms.

Source: Ichniowski and Shaw (2003)

Teams are especially useful for tasks that will result in a defined
deliverable (a.k.a projects).

Source: Harvard Business School Press (2004)
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Introduction

Motivation (Cont’d)

Extensive literature studying team and free-rider problems.

incl. 1st issue of the AER: Coman (1911).

Little is known about dynamic problems in which agents collaborate
to complete a project.

In particular:

What is the e↵ect of the group size to agents’ incentives?

Principal’s Problem: Optimal team size and incentive contracts?

Reward agents upon reaching intermediate milestones?
Symmetric or asymmetric compensation?
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Introduction

Objectives

Develop a dynamic model of collaboration on a project.

Key features: The project

1 progresses gradually at rate that depends on the agents’ e↵orts ;

2 it is completed once its state reaches a pre-specified threshold ; and

3 it generates a payo↵ upon completion.

Examples:

Within firms: new product development, consulting projects.

Across firms: R&D joint ventures
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Introduction

Overview of Results: Part I

Agent’s Problem:

Characterize the equilibrium.

Agents work harder the closer the project is to completion.

Main Result: Individual and Aggregate E↵ort vs. Team Size.

Bigger teams work harder than smaller ones (both individually and on
aggregate) i↵ project is su�ciently far from completion.

(Result holds both when Vn = V , and when Vn = V
n .)

Optimal Partnership Size.
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Introduction

Overview of Results: Part II

Introduce a Manager:

1 Symmetric Contracts:

Optimal contract rewards the agents only upon completion.

Characterize optimal budget and team size.

Dynamically change the team size as the project progresses.

2 Asymmetric Contracts: (2 agents)

Reward upon reaching di↵erent milestones.

Reward asymmetrically upon completion.
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Introduction

Related Literature

Moral Hazard in Teams:

Holmström (1982), Legros and Matthews (1993), and others.

Bonatti and Hörner (2011)

Dynamic Contribution Games:

Admati and Perry (1991) and Marx and Matthews (2000)

Yildirim (2006) and Kessing (2007)

My Contributions:

1 Tractable & natural framework for dynamic contribution games.

2 Novel comparative static about (total) e↵ort vs. team size.

3 Insights for team design & contracting in projects.
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Model

Model Setup

Team comprises of n agents. Agent i

is risk neutral and discounts time at rate r > 0 ;

privately exerts e↵ort ai,t at cost c (a) = 1

p+1

ap+1 (p > 0) ;

receives lump-sum Vi upon completion of the project.

Project starts at q
0

< 0, it evolves according to

dqt =

 
nX

i=1

ai ,t

!
dt + �dWt ,

and it is completed at the first time ⌧ such that q⌧ = 0.

Assume Markov Perfect strategies.

i.e., e↵orts at t depend only on qt .
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Agency Problem

Building Blocks: Agents’ Payo↵ Functions

Agent i ’s problem at t:

Ji ,t = max
ai,s

E

e�r(⌧�t)Vi �

ˆ ⌧

t
e�r(s�t)c (ai ,s) ds | qt

�

Hamilton-Jacobi-Bellman Equation:

rJi (q) = max
ai

8
<

:�c (ai ) +

0

@
nX

j=1

aj

1

A J 0i (q) +
�2

2
J 00i (q)

9
=

;

subject to the boundary conditions

lim
q!�1

Ji (q) = 0 and Ji (0) = Vi for all i .
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Agency Problem

Building Blocks: Agents’ Payo↵ Functions (Cont’d)

First-order condition: api = J 0i (q)

Guess (and verify later) that J 0i (·) � 0 so that FOC binds.

=) ai (q) = [J 0i (q)]
1/p

A MPE must satisfy the system of ODE

rJi (q) = � 1

p + 1

⇥
J 0i (q)

⇤ p+1

p +
nX

l=1

⇥
J 0l (q)

⇤ 1

p J 0i (q) +
�2

2
J 00i (q)

subject to the set of boundary conditions.
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Agency Problem

Markov Perfect Equilibrium (MPE)

Theorem 1:

1 A MPE exists and J 0i (q) > 0 for all i and q.

If p 2 (0, 1), then also need
´1
0

s ds

r
Pn

i=1

Vi+ns
p+1

p

>
Pn

i=1

Vi .

2 If agents are symmetric, then the equilibrium is symmetric.

3 Eq’m is unique with n symmetric or 2 asymmetric agents.

4 a0i (q) > 0 for all i and q.
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Agency Problem

Some Intuition

Why a0i (q) > 0 ?

Deterministic case with 1 agent: Discounted reward = e�r⌧V .

Marg. benefit of bringing completion time forward= re�r⌧V| {z }
# in ⌧

.

a0i (q) > 0 implies that e↵orts are strategic complements (across time).

Unlike standard models of free-riding. So what?

Agent’s trade o↵:

(marg. e↵ort cost) =

✓
marg. benefit of progress

marg. benefit of influencing future e↵orts

◆

Implications for the e↵ect of team size to incentives.
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Agency Problem

Sketch of the Proof of Theorem 1

Existence & Uniqueness Proof: Apply Hartman (1960).

Need to show that |Ji (q)| and |J 0i (q)| are bounded 8q.
Challenge: showing that |J 0i (q)|  Ā for all q.

Ji (q) > 0: Project is completed in finite time even w/o e↵ort.

J 0i (q) > 0: Suppose there exists z such that J 0i (z) = 0.

Then rJi (z) =
�2

2

J 00i (z) > 0 ) z is a strict local min.
Hence Ji (·) has a local max ẑ 2 (�1, z).
J 0i (ẑ) = 0 and J 00i (ẑ)  0 implies Ji (ẑ)  0 `.
Therefore, J 0i (q) > 0 for all q.

A similar approach using the envelope theorem shows that J 00i (q) > 0,
so that a0i (q) > 0 for all q.
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Agency Problem

Illustration of the Agent’s Payo↵ and E↵ort Functions

Example: Quadratic e↵ort costs (p = 1) & symmetric agents.

rJ (q) =
2n � 1

2

⇥
J 0 (q)

⇤
2

+
�2

2
J 00 (q)

q

J(
q)
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Agency Problem

Comparative Statics

Proposition 1: Consider a group of n symmetric agents.

(i) If V
1

> V
2

, then other things equal, a
1

(q) > a
2

(q) for all q.

(ii) If r
1

> r
2

, then other things equal, a
1

(q)  a
2

(q) i↵ q  ⇥r .

(iii) If �
1

> �
2

, then other things equal, a
1

(q) � a
2

(q) if q  ⇥�,1 and
a
1

(q)  a
2

(q) if q � ⇥�,2.

Less patient agents have more to gain from earlier completion.

But bringing the completion time forward is costly.
Benefit > Cost i↵ project is su�ciently close to completion.

Higher volatility � =) project more likely to be completed either
earlier (upside), or later (downside) than expected.

If q  ⇥�,1, then Ji (q) ' 0 so that downside is negligible.
On the other hand, upside diminishes as qt ! 0.
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Agency Problem

Robustness

Theorem 1 and the main result continue to hold if

1 Project is deterministic: � = 0.

2 Agents can abandon project and collect outside option ū > 0.

3 Project is inhomogeneous; i.e., � depends (smoothly) on q.

4 E↵ort a↵ects both drift and variance of the process.

5 Synergies or coordination costs so that (total e↵ort) ? P
i ai,t .

If project generates a flow payo↵ h (q) (in addition to Vi ):

E↵ort profile ai (q) is hump-shaped in q.

Team size comparative static continues to hold.
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Team Size E↵ects

Team Size E↵ects: Introduction

How do the agents’ rewards depend on the team size?

1 Public Good Allocation: ea. agent’s reward independent of n.

2 Budget Allocation: ea. agent’s reward is equal to V
n .
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Team Size E↵ects

Team Size E↵ects: Main Result

Theorem 2: Consider a big (m) and a small (n) team. (m > n)

Under both allocations, 9 thresholds ⇥ and � > ⇥ such that

(A) am (q) � an (q) i↵ q  ⇥ , and

(B) mam (q) � n an (q) i↵ q  �.

q

a n(q
)
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Team Size E↵ects

The Free-riding E↵ect: Intuition

In a larger team, incentives to free-ride are stronger:

Fix strategies & consider an agent’s dilemma to # e↵ort by ✏:

1 He saves "c 0 (at) dt in e↵ort cost; but
2 At t + dt, the project is "dt farther from completion.

In eq’m, he will carry out only 1

n of this lost progress.

Gain from shirking = "c 0 (at) dt increases in q.

c 0 (·) is increasing, and in eq’m, a (q) increases in q.

Therefore, the free-riding e↵ect becomes stronger with progress.

lim
q!�1

c 0 (a (q)) = 0: free-riding e↵ect diminishes as q ! �1.
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Team Size E↵ects

The Encouragement E↵ect: Intuition

Assume � = 0 and fix the agents’ strategies.

If team size n % 2n, then completion time ⌧ & 1

2

⌧ .

Recall: ea. agent’s discounted reward = Vne
�r⌧ .

Marg. benefit of bringing completion time forward = rVne
�r⌧ .

Measure of encouragement e↵ect:

V
2n

Vn
e

r⌧
2

The encouragement e↵ect becomes weaker with progress.

Under budget allocation, n % 2n also implies that V
2n

Vn
= 1

2

.

Encouragement e↵ect > 0 as long as ⌧ is su�ciently large.
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Team Size E↵ects

Proof of Theorem 2

Statement A under public good allocation.
Observe: Jm (�1) = Jn (�1) = 0 and Jm (0) = Jn (0) = V .

Define D (q) = Jm (q)� Jn (q) and note D (�1) = D (0) = 0.

q
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Objective: Show that D 0 (q) � 0 i↵ q  ⇥.

* an (q) = [J 0n (q)]
1/p, this implies am (q) � an (q) i↵ q  ⇥.
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Team Size E↵ects

Proof of Theorem 2

Either D (·) ⌘ 0, or it has at least one interior extreme point.
There exists some z such that D 0 (z) = 0. Then

rD (z) = (m � n) [J 0n (z)]
p+1

p

| {z }
>0

+
�2

2
D 00 (z)

1 If D (·) ⌘ 0, then D 00 (·) ⌘ 0, which is a contradiction.
Therefore, D (·) has at least one interior extreme point.

2 Suppose z = min.
Then D 00 (z) � 0 =) D (z) > 0.
Therefore, D (q) � 0 for all q.
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Team Size E↵ects

Proof of Theorem 2

Claim: D (·) has a exactly one extreme point which is a max.

Suppose not. Then 9 a local max z and a local min y > z .
D 00 (z)  0  D 00 (y) and J 0n (z) < J 0n (y).

) rD (z) = (m � n) [J 0n (z)]
p+1

p + �2

2

D 00 (z)

< (m � n) [J 0n (y)]
p+1

p + �2

2

D 00 (y) = rD (y)

Contradicts the facts that y = min while z = max.
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Team Size E↵ects

Proof of Theorem 2

Thus D (·) has exactly one extreme point which is a max.

q

D
(q
)
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0
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Θ

Recall: D (q) = Jm (q)� Jn (q) and an (q) = [J 0n (q)]
1/p.

Therefore, am (q) � an (q) i↵ q  ⇥.

For statement B, def. D̄ (q) = mpJm (q)� npJn (q) instead.
Note: mam (q) � n an (q) i↵ D̄ 0 (q) � 0. (Same approach.)
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Team Size E↵ects

Interiorness of the Thresholds

⇥ is generally always interior. (Individual E↵ort)

Under public good allocation, D (�1) = D (0) = 0.

Therefore, ⇥ is guaranteed to be interior in this case.

Under budget allocation, D (0) = Jm (q)� Jn (q) < 0.

So it is possible that D 0 (·)  0 and ⇥ = �1.
Numerical analysis indicates that ⇥ is always interior.

� needs not always be interior. (Aggregate E↵ort)

Guaranteed to be interior only under budget allocation, if e↵ort costs
are (at most) quadratic.

Otherwise, possible � = 0: larger teams always work harder.

Numerically, � is interior as long as e↵ort costs not too convex.
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Team Size E↵ects

Partnership Formation

Optimal partnership size maximizes Jn (q0).

Partnership composition is finalized before agents begin to work.

Proposition 3.

1 Public good allocation: Optimal partnership size n⇤ = 1.

2 Budget allocation: n⇤ increases in project size |q
0

|.

Public good allocation: “size of pie” is n V .

Larger team ) smaller share of work for each agent.

Budget allocation: a new member # everyone’s reward.

Agents will increase team size only if the gain from sharing the e↵ort
among a bigger group is su�ciently large.

(George Georgiadis) Projects and Team Dynamics Caltech and BU 23 / 32



Manager’s Problem

Manager’s Problem: Setup

Risk-neutral manager hires n agents to undertake a project.

The manager values the project at U and discounts time at rate r .

At t = 0, she commits to a set of

milestones Q
1

< .. < QK = 0 ; and

rewards {Vi,k} n ,K
i=1,k=1

attached to each milestone.

(Agent i is paid Vi ,k upon reaching Qk for the first time.)

Objective: Choose the team size, the set of milestones and rewards to
maximize her expected discounted profit.
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Manager’s Problem

Manager’s Problem & Optimal Symmetric Contract

The profit function satisfies an ordinary di↵erential equation.

Theorem 3: Characterization of the manager’s problem

A solution to the manager’s problem exists.

It is unique with n symmetric or 2 asymmetric agents.

Theorem 4.

The optimal symmetric scheme rewards agents only upon completion.

By backloading payments, manager can provide same incentives early
on (via continuation utility), and stronger incentives later on.

Manager’s problem reduces to choosing budget B and team size n.
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Manager’s Problem

Optimal Budget & Team Size

Proposition 4: Optimal budget B.

Suppose the manager employs n agents and contracts are symmetric.

Her optimal budget B increases in the project length |q
0

|.

Larger project requires more e↵ort ) stronger incentives.

Proposition 5: Optimal team size n.

Suppose manager has a fixed budget B and contracts are symmetric.

Her optimal team size n increases in the project length |q
0

|.

Larger team is preferable if

benefit from harder work while project is far from completion,
outweighs loss from more free-riding when close to completion.
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Manager’s Problem

Proof of Proposition 5

Lemma: Fix m > n. Then Fm (q
0

) � Fn (q0) i↵ q
0

 Tm,n.

q
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3-member team
is preferable

5-member team
is preferable

Let � (q) = Fm (q)� Fn (q) and note � (�1) = � (0) = 0.
Either � (·) ⌘ 0 or � (·) has an int. global extreme point.

Proof Approach:
1 Cannot be the case that � (·) ⌘ 0.
2 Any extreme point z  [�]� must satisfy � (z) � [] 0.
3 Conclude that � (·) may cross 0 at most once from above.
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Manager’s Problem

Proof of Proposition 5

There exists at least one extreme point z s.t �0 (z) = 0. Then

r� (z) = [mam (z)� nan (z)]| {z }
�0 i↵ z�

F 0
n (z)| {z }
>0

+
�2

2
�00 (z)

If � (·) ⌘ 0, then �00 (·) ⌘ 0, which leads to a contradiction.

Now consider an extreme point z  �:

If z = min, then �00 (z) � 0, and hence � (z) � 0.
Therefore, any extreme point z  � must satisfy � (z) � 0.

Next, consider an extreme point z � �:

If z = max, then �00 (z)  0, and hence � (z)  0.
Therefore, any extreme point z � � must satisfy � (z)  0.
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Manager’s Problem

Proof of Proposition 5

q
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We know that:
1 Any extreme point z  � must satisfy � (z) � 0.
2 Any extreme point z � � must satisfy � (z)  0.

Therefore, � (·) crosses 0 at most once, from above.

Comparative static: n⇤ increases in project length |q
0

|.
Apply Monotonicity Thm of Milgrom and Shannon (1994).
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Manager’s Problem

An Example of Dynamic Team Size Management

Consider the following retirement contract:

The manager employs 2 (identical) agents.
She picks an R such that one agent is retired at qt = R.
Agent i receives Vi upon completion of the project.

(The Vi ’s are chosen such that agents are indi↵erent at R).

Proposition 6.

Suppose that e↵ort costs are quadratic and |R|  T
1

.

Then this contract is beneficial i↵ |q
0

| < ⇥R .

Interpretation: If |q
0

| = |R|, then optimal team size = 1.

Once one agent is retired, the other exerts first-best e↵ort.

While they collaborate, aggregate e↵ort is lower.
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Manager’s Problem

Implement with an Asymmetric Contract

Consider the following asymmetric contract w/ one intermediate milestone:

Proposition 6: preferable to symmetric contract i↵ |q
0

| < ⇥R .

Enables the manager to dynamically decrease the team size.

Remark: In general, the optimal contract is asymmetric.

Negative result: Optimal contracting requires n + 1 state variables.
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Manager’s Problem

Symmetric vs. Asymmetric Compensation

Proposition 7.

Suppose n = 2, c (a) = a2

2

and agents rewarded only upon compl’n.

Asymmetric contract is preferable if |q
0

| is su�ciently short.

i.e., 8✏ 2 [0,B],
�

B+✏
2

, B�✏
2

 
<
�

B
2

, B
2

 
i↵ |q

0

|  T✏.

Extreme Case: V
1

= B and V
2

= 0.

This contract is preferable i↵ |q
0

|  T
1

.

Intermediate Cases: A full-time agent and a part-time one.

Full-time agent cannot free-ride much on the part-time agent.

Takeaway: Asymmetric pay can mitigate free-riding.
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Conclusions

Current Research

1 Project size is endogenous and manager has limited commitment.
Manager’s has incentives to extend the project as it progresses.

Georgiadis, Lippman and Tang (RAND, forthcoming)

2 Incorporate deadlines and imperfect observability of the state qt .

3 Test the e↵ects of n and observability of qt in the laboratory.
joint with F. Ederer and S. Nunnari.

4 Endogenous project size: voting among n heterogeneous agents.
joint with R. Bowen and N. Lambert.

5 A group of agents extract a common resource over time.
Better o↵ if agents do not observe the amount of resource remaining.

joint with T. Palfrey.
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Conclusions

Directions for Future Research

Characterize the optimal contract. Intuitively:

Optimal contract will be asymmetric ; and
ea. agent will be rewarded at the end of his involvement in project.

But each agent’s reward will depend on the path of qt .

What if agents can imperfectly observe ea. other’s e↵ort choices?

Incorporate asymmetric information.

1 Agents are uncertain about the production technology (learning).
2 Agents are uncertain about their peers’ preferences (signaling).
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