Projects and Team Dynamics

George Georgiadis

Caltech and Boston University

(George Georgiadis)

Projects and Team Dynamics

Caltech and BU 1 / 32

Motivation

- Teamwork & projects are central in firms and partnerships.
- 66% of Fortune 1000 corporations engage > 20% of their workforce in teams. Source: Lazear and Shaw (2007); 1996 survey.
- Empirical literature: adoption of teamwork has increased productivity in manufacturing & service firms. *Source: Ichniowski and Shaw (2003)*
- Teams are especially useful for tasks that will result in a defined deliverable (a.k.a projects). Source: Harvard Business School Press (2004)

Motivation (Cont'd)

• Extensive literature studying team and free-rider problems.

- incl. 1^{st} issue of the AER: Coman (1911).
- Little is known about dynamic problems in which agents collaborate to complete a project.
- In particular:
 - What is the effect of the group size to agents' incentives?
 - Principal's Problem: Optimal team size and incentive contracts?
 - Reward agents upon reaching intermediate milestones?
 - Symmetric or asymmetric compensation?

Objectives

- Develop a dynamic model of collaboration on a project.
- Key features: The project
 - progresses gradually at rate that depends on the agents' efforts ;
 - 2 it is completed once its state reaches a pre-specified threshold ; and
 - it generates a payoff upon completion.

Examples:

- Within firms: new product development, consulting projects.
- Across firms: R&D joint ventures

Overview of Results: Part I

Agent's Problem:

- Characterize the equilibrium.
 - Agents work harder the closer the project is to completion.
- Main Result: Individual and Aggregate Effort vs. Team Size.
 - Bigger teams work harder than smaller ones (both individually and on aggregate) **iff** project is sufficiently far from completion.

(Result holds both when $V_n = V$, and when $V_n = \frac{V}{n}$.)

• Optimal Partnership Size.

Overview of Results: Part II

Introduce a Manager:

- O Symmetric Contracts:
 - Optimal contract rewards the agents only upon completion.
 - Characterize optimal budget and team size.
 - Dynamically change the team size as the project progresses.
- Asymmetric Contracts: (2 agents)
 - Reward upon reaching different milestones.
 - Reward asymmetrically upon completion.

Related Literature

- Moral Hazard in Teams:
 - Holmström (1982), Legros and Matthews (1993), and others.
 - Bonatti and Hörner (2011)
- Dynamic Contribution Games:
 - Admati and Perry (1991) and Marx and Matthews (2000)
 - Yildirim (2006) and Kessing (2007)

My Contributions:

- Tractable & natural framework for dynamic contribution games.
- **2** Novel comparative static about (total) effort *vs.* team size.
- Insights for team design & contracting in projects.

Model

Model Setup

- Team comprises of *n* agents. Agent *i*
 - is risk neutral and discounts time at rate r > 0;
 - privately exerts effort $a_{i,t}$ at cost $c(a) = \frac{1}{p+1}a^{p+1}$ (p > 0);
 - receives lump-sum V_i upon completion of the project.
- Project starts at $q_0 < 0$, it evolves according to

$$dq_t = \left(\sum_{i=1}^n a_{i,t}\right) dt + \sigma dW_t \,,$$

and it is completed at the first time τ such that $q_{\tau} = 0$.

- Assume Markov Perfect strategies.
 - *i.e.*, efforts at t depend only on q_t .

Building Blocks: Agents' Payoff Functions

• Agent *i*'s problem at *t*:

$$J_{i,t} = \max_{a_{i,s}} \mathbb{E}\left[e^{-r(\tau-t)}V_i - \int_t^\tau e^{-r(s-t)}c(a_{i,s})\,ds \mid q_t\right]$$

• Hamilton-Jacobi-Bellman Equation:

$$rJ_{i}(q) = \max_{a_{i}} \left\{ -c(a_{i}) + \left(\sum_{j=1}^{n} a_{j}\right) J_{i}'(q) + \frac{\sigma^{2}}{2} J_{i}''(q) \right\}$$

subject to the boundary conditions

$$\lim_{q \to -\infty} J_i(q) = 0 \quad \text{and} \quad J_i(0) = V_i \text{ for all } i.$$

Building Blocks: Agents' Payoff Functions (Cont'd)

• First-order condition: $a_i^p = J'_i(q)$

• Guess (and verify later) that $J'_i(\cdot) \ge 0$ so that FOC binds.

$$\implies \mathsf{a}_{i}\left(q
ight)=\left[J_{i}^{\prime}\left(q
ight)
ight]^{1/p}$$

• A MPE must satisfy the system of ODE

$$rJ_{i}(q) = -\frac{1}{p+1} \left[J_{i}'(q) \right]^{\frac{p+1}{p}} + \sum_{l=1}^{n} \left[J_{l}'(q) \right]^{\frac{1}{p}} J_{i}'(q) + \frac{\sigma^{2}}{2} J_{i}''(q)$$

subject to the set of boundary conditions.

Markov Perfect Equilibrium (MPE)

Theorem 1:

- A MPE exists and $J'_i(q) > 0$ for all *i* and *q*.
 - If $p \in (0,1)$, then also need $\int_0^\infty \frac{s \, ds}{r \sum_{i=1}^n V_i + ns^{\frac{p+1}{p}}} > \sum_{i=1}^n V_i$.
- If agents are symmetric, then the equilibrium is symmetric.
- Seq'm is unique with *n* symmetric or 2 asymmetric agents.
- $a'_i(q) > 0$ for all *i* and *q*.

Some Intuition

- Why $a'_i(q) > 0$?
 - Deterministic case with 1 agent: Discounted reward = $e^{-r\tau}V$.
 - Marg. benefit of bringing completion time forward = $\underbrace{re^{-r\tau}V}_{\downarrow \text{ in }\tau}$.

 $a'_{i}(q) > 0$ implies that efforts are strategic complements (across time).

- Unlike standard models of free-riding. So what?
 - Agent's trade off:

 $(marg. effort cost) = \left(\begin{array}{c} marg. benefit of progress\\ marg. benefit of influencing future efforts \end{array}\right)$

• Implications for the effect of team size to incentives.

Sketch of the Proof of Theorem 1

- Existence & Uniqueness Proof: Apply Hartman (1960).
 - Need to show that $|J_i(q)|$ and $|J'_i(q)|$ are bounded $\forall q$.
 - Challenge: showing that $|J'_i(q)| \leq \overline{A}$ for all q.

• $J_i(q) > 0$: Project is completed in finite time even w/o effort.

- $J'_{i}(q) > 0$: Suppose there exists z such that $J'_{i}(z) = 0$.
 - Then $rJ_i(z) = \frac{\sigma^2}{2}J_i''(z) > 0 \Rightarrow z$ is a strict local min.
 - Hence $J_i(\cdot)$ has a local max $\hat{z} \in (-\infty, z)$.
 - $J_{i}'(\hat{z}) = 0$ and $J_{i}''(\hat{z}) \leq 0$ implies $J_{i}(\hat{z}) \leq 0$ `.
 - Therefore, $J'_{i}(q) > 0$ for all q.
- A similar approach using the envelope theorem shows that J''_i (q) > 0, so that a'_i (q) > 0 for all q.

Illustration of the Agent's Payoff and Effort Functions

• *Example*: Quadratic effort costs (p = 1) & symmetric agents.

$$rJ(q) = \frac{2n-1}{2} \left[J'(q) \right]^2 + \frac{\sigma^2}{2} J''(q)$$

Comparative Statics

Proposition 1: Consider a group of *n* symmetric agents.

- (i) If $V_1 > V_2$, then other things equal, $a_1(q) > a_2(q)$ for all q.
- (ii) If $r_1 > r_2$, then other things equal, $a_1(q) \le a_2(q)$ iff $q \le \Theta_r$.
- (iii) If $\sigma_1 > \sigma_2$, then other things equal, $a_1(q) \ge a_2(q)$ if $q \le \Theta_{\sigma,1}$ and $a_1(q) \le a_2(q)$ if $q \ge \Theta_{\sigma,2}$.
 - Less patient agents have more to gain from earlier completion.
 - But bringing the completion time forward is costly.
 - Benefit > Cost iff project is sufficiently close to completion.
 - Higher volatility $\sigma \implies$ project more likely to be completed either earlier (*upside*), or later (*downside*) than expected.
 - If $q \leq \Theta_{\sigma,1}$, then $J_{i}\left(q\right) \simeq 0$ so that *downside* is negligible.
 - On the other hand, *upside* diminishes as $q_t \rightarrow 0$.

Robustness

- Theorem 1 and the main result continue to hold if
 - **1** Project is deterministic: $\sigma = 0$.
 - **2** Agents can abandon project and collect outside option $\bar{u} > 0$.
 - Solution Project is inhomogeneous; *i.e.*, σ depends (smoothly) on q.
 - Effort affects both drift and variance of the process.
 - Synergies or coordination costs so that (total effort) $\geq \sum_{i} a_{i,t}$.
- If project generates a flow payoff h(q) (in addition to V_i):
 - Effort profile $a_i(q)$ is hump-shaped in q.
 - Team size comparative static continues to hold.

Team Size Effects: Introduction

- How do the agents' rewards depend on the team size?
 - **1** Public Good Allocation: ea. agent's reward independent of n.
 - **2** Budget Allocation: ea. agent's reward is equal to $\frac{V}{n}$.

Team Size Effects: Main Result

Theorem 2: Consider a big (m) and a small (n) team. (m > n)Under both allocations, \exists thresholds Θ and $\Phi > \Theta$ such that (A) $a_m(q) \ge a_n(q)$ iff $q \le \Theta$, and (B) $m a_m(q) \ge n a_n(q)$ iff $q \le \Phi$.

The Free-riding Effect: Intuition

• In a larger team, incentives to free-ride are stronger:

• Fix strategies & consider an agent's *dilemma* to \downarrow effort by ϵ :

1 He saves $\varepsilon c'(a_t) dt$ in effort cost; but

- **2** At t + dt, the project is εdt farther from completion.
- In eq'm, he will carry out only $\frac{1}{n}$ of this *lost* progress.
- Gain from shirking $= \varepsilon c'(a_t) dt$ increases in q.
 - $c'(\cdot)$ is increasing, and in eq'm, a(q) increases in q.
- Therefore, the free-riding effect becomes stronger with progress.

•
$$\lim_{q \to -\infty} c'(a(q)) = 0$$
: free-riding effect diminishes as $q \to -\infty$.

The Encouragement Effect: Intuition

- Assume $\sigma = 0$ and fix the agents' strategies.
 - If team size $n \nearrow 2n$, then completion time $\tau \searrow \frac{1}{2}\tau$.
- *Recall:* ea. agent's discounted reward = $V_n e^{-r\tau}$.
 - Marg. benefit of bringing completion time forward $= rV_n e^{-r\tau}$.
- Measure of encouragement effect:

$$\frac{V_{2n}}{V_n}e^{\frac{r\tau}{2}}$$

- The encouragement effect becomes weaker with progress.
- Under budget allocation, $n \nearrow 2n$ also implies that $\frac{V_{2n}}{V_n} = \frac{1}{2}$.
 - Encouragement effect > 0 as long as τ is sufficiently large.

Projects and Team Dynamics

Statement A under *public good allocation*.

- Observe: $J_m(-\infty) = J_n(-\infty) = 0$ and $J_m(0) = J_n(0) = V$.
 - Define $D(q) = J_m(q) J_n(q)$ and note $D(-\infty) = D(0) = 0$.

• Objective: Show that $D'(q) \ge 0$ iff $q \le \Theta$.

• \therefore $a_n(q) = \left[J_n'(q)\right]^{1/p}$, this implies $a_m(q) \ge a_n(q)$ iff $q \le \Theta$.

- Either $D\left(\cdot\right)\equiv$ 0, or it has at least one interior extreme point.
 - There exists some z such that D'(z) = 0. Then

$$rD(z) = \underbrace{(m-n)\left[J'_{n}(z)\right]^{\frac{p+1}{p}}}_{>0} + \frac{\sigma^{2}}{2}D''(z)$$

1 If $D(\cdot) \equiv 0$, then $D''(\cdot) \equiv 0$, which is a contradiction.

• Therefore, $D(\cdot)$ has at least one interior extreme point.

• Therefore, $D(q) \ge 0$ for all q.

(George Georgiadis)

• Claim: $D(\cdot)$ has a exactly one extreme point which is a max.

• Suppose not. Then \exists a local max z and a local min y > z.

•
$$D''(z) \le 0 \le D''(y)$$
 and $J'_n(z) < J'_n(y)$.
 $\Rightarrow rD(z) = (m-n) [J'_n(z)]^{\frac{p+1}{p}} + \frac{\sigma^2}{2} D''(z)$
 $< (m-n) [J'_n(y)]^{\frac{p+1}{p}} + \frac{\sigma^2}{2} D''(y) = rD(y)$

• Contradicts the facts that $y = \min$ while $z = \max$.

• Thus $D(\cdot)$ has exactly one extreme point which is a max.

• Recall: $D(q) = J_m(q) - J_n(q)$ and $a_n(q) = [J'_n(q)]^{1/p}$.

• Therefore, $a_m(q) \ge a_n(q)$ iff $q \le \Theta$.

(George Georgiadis)

Interiorness of the Thresholds

- Θ is generally always interior. (Individual Effort)
 - Under public good allocation, $D\left(-\infty
 ight)=D\left(0
 ight)=0.$
 - $\bullet\,$ Therefore, Θ is guaranteed to be interior in this case.
 - Under budget allocation, $D(0) = J_m(q) J_n(q) < 0$.
 - So it is possible that $D'(\cdot) \leq 0$ and $\Theta = -\infty$.
 - $\bullet\,$ Numerical analysis indicates that Θ is always interior.
- Φ needs not always be interior. (Aggregate Effort)
 - Guaranteed to be interior only under budget allocation, if effort costs are (at most) quadratic.
 - Otherwise, possible $\Phi = 0$: larger teams always work harder.
 - Numerically, Φ is interior as long as effort costs not too convex.

(George Georgiadis)

Partnership Formation

- Optimal partnership size maximizes $J_n(q_0)$.
 - Partnership composition is finalized before agents begin to work.

Proposition 3.

Q Public good allocation: Optimal partnership size $n^* = \infty$.

2 Budget allocation: n^* increases in project size $|q_0|$.

- Public good allocation: "size of pie" is n V.
 - Larger team \Rightarrow smaller share of work for each agent.
- **Budget allocation:** a new member \downarrow everyone's reward.
 - Agents will increase team size only if the gain from sharing the effort among a bigger group is sufficiently large.

Manager's Problem: Setup

- Risk-neutral manager hires *n* agents to undertake a project.
- The manager values the project at U and discounts time at rate r.
- At t = 0, she commits to a set of
 - milestones $Q_1 < .. < Q_K = 0$; and
 - rewards $\{V_{i,k}\}_{i=1,k=1}^{n,K}$ attached to each milestone.

(Agent *i* is paid $V_{i,k}$ upon reaching Q_k for the first time.)

• *Objective:* Choose the team size, the set of milestones and rewards to maximize her expected discounted profit.

Manager's Problem & Optimal Symmetric Contract

• The profit function satisfies an ordinary differential equation.

Theorem 3: Characterization of the manager's problem

- A solution to the manager's problem exists.
- It is unique with *n* symmetric or 2 asymmetric agents.

Theorem 4.

The optimal symmetric scheme rewards agents only upon completion.

- By backloading payments, manager can provide same incentives early on (via continuation utility), and stronger incentives later on.
- Manager's problem reduces to choosing budget B and team size n.

(George Georgiadis)

Projects and Team Dynamics

Optimal Budget & Team Size

Proposition 4: Optimal budget B.

- Suppose the manager employs *n* agents and contracts are symmetric.
- Her optimal budget B increases in the project length $|q_0|$.
- Larger project requires more effort \Rightarrow stronger incentives.

Proposition 5: Optimal team size n.

- Suppose manager has a fixed budget B and contracts are symmetric.
- Her optimal team size *n* increases in the project length $|q_0|$.
- Larger team is preferable if
 - benefit from harder work while project is far from completion,
 - outweighs loss from more free-riding when close to completion.

Proof of Proposition 5

Lemma: Fix m > n. Then $F_m(q_0) \ge F_n(q_0)$ iff $q_0 \le T_{m,n}$.

Let Δ(q) = F_m(q) - F_n(q) and note Δ(-∞) = Δ(0) = 0.
Either Δ(·) ≡ 0 or Δ(·) has an int. global extreme point.

• Proof Approach:

- **1** Cannot be the case that $\Delta(\cdot) \equiv 0$.
- 2) Any extreme point $z \leq [\geq] \Phi$ must satisfy $\Delta(z) \geq [\leq] 0$.
- **③** Conclude that $\Delta(\cdot)$ may cross 0 at most once from above.

(George Georgiadis)

Projects and Team Dynamics

Proof of Proposition 5

There exists at least one extreme point z s.t $\Delta'(z) = 0$. Then

$$r\Delta(z) = \underbrace{[ma_m(z) - na_n(z)]}_{\geq 0 \text{ iff } z \leq \Phi} \underbrace{F'_n(z)}_{> 0} + \frac{\sigma^2}{2} \Delta''(z)$$

• If $\Delta(\cdot) \equiv 0$, then $\Delta''(\cdot) \equiv 0$, which leads to a contradiction.

- Now consider an extreme point $z \leq \Phi$:
 - If $z = \min$, then $\Delta''(z) \ge 0$, and hence $\Delta(z) \ge 0$.
 - Therefore, any extreme point $z \leq \Phi$ must satisfy $\Delta(z) \geq 0$.
- Next, consider an extreme point $z \ge \Phi$:
 - If $z = \max$, then $\Delta''(z) \le 0$, and hence $\Delta(z) \le 0$.
 - Therefore, any extreme point $z \ge \Phi$ must satisfy $\Delta(z) \le 0$.

Proof of Proposition 5

- We know that:
 - Any extreme point z ≤ Φ must satisfy Δ(z) ≥ 0.
 Any extreme point z ≥ Φ must satisfy Δ(z) ≤ 0.
- Therefore, $\Delta(\cdot)$ crosses 0 at most once, from above.
- Comparative static: n^* increases in project length $|q_0|$.
 - Apply Monotonicity Thm of Milgrom and Shannon (1994).

(George Georgiadis)

Projects and Team Dynamics

An Example of Dynamic Team Size Management

- Consider the following *retirement* contract:
 - The manager employs 2 (identical) agents.
 - She picks an R such that one agent is retired at $q_t = R$.
 - Agent i receives V_i upon completion of the project.

(The V_i 's are chosen such that agents are indifferent at R).

Proposition 6.

- Suppose that effort costs are quadratic and $|R| \leq T_1$.
- Then this contract is *beneficial* iff $|q_0| < \Theta_R$.
- Interpretation: If $|q_0| = |R|$, then optimal team size = 1.
- Once one agent is retired, the other exerts first-best effort.
- While they collaborate, aggregate effort is lower.

Implement with an Asymmetric Contract

Consider the following asymmetric contract w/ one intermediate milestone:

Proposition 6: preferable to symmetric contract iff $|q_0| < \Theta_R$.

• Enables the manager to dynamically decrease the team size.

Remark: In general, the optimal contract is asymmetric.

• Negative result: Optimal contracting requires n + 1 state variables.

Symmetric vs. Asymmetric Compensation

Proposition 7.

- Suppose n = 2, $c(a) = \frac{a^2}{2}$ and agents rewarded only upon compl'n.
- Asymmetric contract is *preferable* if $|q_0|$ is sufficiently short.
 - *i.e.*, $\forall \epsilon \in [0, B]$, $\left\{\frac{B+\epsilon}{2}, \frac{B-\epsilon}{2}\right\} \succcurlyeq \left\{\frac{B}{2}, \frac{B}{2}\right\}$ iff $|q_0| \leq T_{\epsilon}$.
- Extreme Case: $V_1 = B$ and $V_2 = 0$.
 - This contract is preferable iff $|q_0| \leq T_1$.
- Intermediate Cases: A full-time agent and a part-time one.
 - Full-time agent cannot free-ride much on the part-time agent.
- Takeaway: Asymmetric pay can mitigate free-riding.

(George Georgiadis)

Projects and Team Dynamics

Current Research

 Project size is endogenous and manager has limited commitment.
 Manager's has incentives to extend the project as it progresses. Georgiadis, Lippman and Tang (RAND, forthcoming)

2 Incorporate deadlines and imperfect observability of the state q_t .

- Test the effects of n and observability of q_t in the laboratory. joint with F. Ederer and S. Nunnari.
- Endogenous project size: voting among n heterogeneous agents. joint with R. Bowen and N. Lambert.
- **o** A group of agents extract a common resource over time.

• Better off if agents do not observe the amount of resource remaining. *joint with T. Palfrey.*

(George Georgiadis)

Directions for Future Research

- Characterize the optimal contract. Intuitively:
 - Optimal contract will be asymmetric ; and
 - ea. agent will be rewarded at the end of his involvement in project.
 - But each agent's reward will depend on the path of q_t .
 - What if agents can imperfectly observe ea. other's effort choices?
- Incorporate asymmetric information.
 - Agents are uncertain about the production technology (*learning*).
 Agents are uncertain about their peers' preferences (*signaling*).