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Introduction

Introduction

Dynamic contribution games to a project are ubiquitous in practice.

Main features:
1 Positive externalities =) there is scope for free-riding ;

2 contributions accumulate over time (i.e., non-stationary game) ; and

3 a certain goal must be reached before a payoff is generated.

For example:
New product development
Consulting projects
Film production
Startup Companies
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Introduction

Introduction (Cont’d)

Substantial literature studying this class of games.
But, the goal is given exogenously.

A central decision involves deciding the requirements that must be
fulfilled for the project to be deemed complete.

Trade off: Value of additional features vs. associated cost.

Objective:
Analyze a dynamic contribution game in which

a group of agents collaborate to complete a project, and
a manager chooses its features (i.e., its size).
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Introduction

Limited Commitment

Managers are often unable to commit to the requirements in advance.
1 Because they are difficult to contract on.

e.g., if the project involves innovation, quality, design.

2 Due to the asymmetry in bargaining power.
e.g., employer - employee relationship.

Example: Steve Jobs and the development of the 1st-generation iPod
1 “Steve doesn’t think it’s loud enough.”
2 “The menu’s not coming up fast enough.”

Source: Ben Knauss, Snr. Manager at PortalPlayer - co-developer of the iPod.

George Georgiadis Project Design Caltech and BU 4 / 30



Introduction

Limited Commitment (Cont’d)

How to model limited commitment ?

Idea: The manager cannot commit too far ahead.

Commitment power measures how far ahead she can commit.
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Introduction

Outline of the Results (1 / 2)

Tractable characterization of the dynamic contribution game.
Closed form; both Markovian and non-Markovian equilibria.

Main Result:
Manager has incentives to extend the project as it progresses.

Intuition:
Manager trades off cost of waiting vs value of larger project.
Eq’m effort increases as the project progresses (due to discounting).
So the marg. cost of waiting decreases with progress.
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Introduction

Outline of the Results (2 / 2)

Implication #1
Smaller commitment power =) Larger project.

In anticipation, agents reduce their effort (ratchet effect).

Implication #2
Optimal delegation of the project requirements to the agents.

Agents prefer a smaller project, but have time-consistent preferences.

Lastly:
Contracting on Project Duration vs. Project Size
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Introduction
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Model

The Model

A manager employs n identical agents to undertake a project.
All parties discount time at rate r > 0.

At time t, agent i privately exerts effort a
i ,t at cost

a

2

i ,t
2 .

Project starts at q
0

= 0, and it progresses according to

dq
t

=

 
n

Â
i=1

a
i ,t

!
dt .

If project is completed at qt = Q, then it generates payoff Q.

The manager receives (1�b )Q, and ea. agent receives b
n

Q.

Q : 1-D parameter that captures the project’s requirements.
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Equilibrium Characterization (Fixed Q)

Agents’ Problem

At time t, agent i ’s discounted payoff is equal to

⇧
i ,t (qt

;Q) = max
{ai ,s}s�t

"
e�r(t�t) b

n
Q �
ˆ t

t

e�r(s�t)
a2

i ,s

2
ds

#

We consider Markov Perfect equilibria. (Will relax this later)

Problem is stationary, and ⇧
i

(q ;Q) satisfies

r⇧
i

(q ;Q) = max
ai

(
�a2

i

2
+

 
n

Â
j=1

a
j

!
⇧0

i

(q ;Q)

)

subject to ⇧
i

(Q ;Q) = bQ

n

.
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Equilibrium Characterization (Fixed Q)

Characterization of Markov Perfect Equilibria

Proposition 1: Characterization of MPE
For any Q, strategies in the unique project-completing MPE satisfy

a (q ;Q) =
r [q�C (Q)]

2n�1
1{Q<⇥} .

If Q � 2b
r

, then there exists an eq’m in which a (q ;Q) = 0 for all q.

a (q ;Q) increases in q.
Reward looms larger, the closer the project is to completion.

We focus on the project-completing equilibrium.
Optimal Q satisfies this condition.
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Equilibrium Characterization (Fixed Q)

Non-Markovian Strategies

What if effort at t is allowed to depend on {q
s

}
st

?

Consider the following trigger strategy:
For some fixed k 2 (1,n], suppose that each agent solves

a (q ;Q) 2 argmax
a

⇢
ak⇧0 (q ;Q)� a2

2

�

as long as no agent has so far deviated from this strategy.
After a deviation, all agents revert to Markov eq’m (k = 1).

Social Identity Theory: Agents can behave as insiders or outsiders.
k can be interpreted as a measure of group cohesiveness.

Inertia Strategies by Bergin and MacLeod (1993).
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Equilibrium Characterization (Fixed Q)

Characterization of (Non-Markov) Public Perfect Equilibria

Proposition 2: Characterization of Perfect Public Equilibria (PPE)
For all k 2 (1,n], there exists a PPE in which each agent follows the
aforementioned trigger strategy.

Along the eq’m path, each agent’s effort level satisfies

a (q ;Q) =
r [q�C (Q)]

2n�k
1{Q<⇥k} .

Agents work harder the closer they are to completion.

For any q, ea. agent is strictly better off the higher k is.
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Equilibrium Characterization (Fixed Q)

Manager’s Problem

For given Q, the manager’s discounted profit satisfies

rW (q ;Q) = [na (q ;Q)]W 0 (q ;Q)

subject to W (Q ;Q) = (1�b )Q.

Using the agents’ equilibriumm strategy, we have

W (q ;Q) = (1�b )Q| {z }
net profit


q�C (Q)

Q �C (Q)

� 2n�k
n

1{Q<⇥k}
| {z }
present discounted value

.

Main take-away so far:
Agents work harder as the project progresses.
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Project Design

Endogenizing the Project Size Q

Benchmark Case: Full Commitment

At time 0, manager chooses Q
FC

= argmax
Q

{W (0 ;Q)} .

=) Q
FC

=
b
r

k (2n�k)
2n

✓
4n

4n�k

◆
2
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Project Design

Modeling the Commitment Problem

At q
t

, manager can commit only to project sizes Q 2 [q
t

, q
t

+ y ].
We interpret y as her commitment power.

Game form with limited commitment (y is public info):

At every moment, ea. agent forms a belief Q̃ about the project size,
and chooses his strategy to maximize his discounted payoff.

Solution concept: Nash equilibrium (w/ pure strategies).

Second Benchmark Case: y = 0 (I know it when I see it)

Q
NC

=
b
r

2kn
2n�k

> Q
FC
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Project Design

An Auxiliary Problem

Suppose the manager commits to her optimal Q at q
t

= x .
Let Q

x

= argmax
Q

{W (x ;Q)}. It follows that

Q
x

= g
✓p

d +

r
d +

x
4n�k

◆2

.

Main Result: Q
x

increases in x
The manager has incentives to extend the project as it progresses.

Manager trades larger payoff from bigger Q vs longer wait.
Effort increases with progress ) marg. waiting cost decreases.
Hence, the optimal Q increases in x .

(Note: The manager does not internalize cost of effort.)
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Project Design

An Illustration of the Manager’s Commitment Problem

If y � Q
FC

, then the manager will commit to Q
FC

at time 0.

Suppose that y < Q
FC

. At q
0

, the manager can
1 Commit to y immediately ; or
2 Wait until x = Q

FC

� y so that she can commit to Q
FC

.
But at x = Q

FC

� y , Q
x

> Q
FC

: It’s déjà vu all over again!
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Project Design

Optimal Q with Limited Commitment

Assume that y < Q
FC

.

Suppose the manager finds it optimal to commit at (some) x .
Then she must be indifferent between:

1 Committing to Q = x +y immediately ; and
2 Waiting to commit to Q = x +y + e at x + e.

i.e., W (x ,x +y)' W (x ,x +x + e).

Therefore, q must satisfy: ∂
∂Q

W (x ,Q)
���
Q=x+y

= 0

i.e., manager will commit to Q
x

at x = Q
x

� y .

( where Q
x

= argmax
Q

{W (x ;Q)} )
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Project Design

Optimal Q with Limited Commitment (Cont’d)

Proposition 3: Suppose that y < Q
FC

.
The manager finds it optimal to commit to Q

x

at x = Q
x

� y .
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Manager will commit as soon as height of the wedge equals y .
If y is smaller, then manager will commit later and to a larger project.

George Georgiadis Project Design Caltech and BU 20 / 30



Delegation

A “Ratchet Effect”

Recall that this is a complete information game.

Anticipating the manager’s commitment problem, if y is smaller,
1 the agents work less ; and

2 the manager worse off.

Manager might delegate decision rights over Q to the agents.
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Delegation

The Agents’ Optimal Project Size

Suppose that the project size is chosen by the agents.

At q
t

, the agents will choose Q
A

= argmax
Q

{⇧(q
t

;Q)}

=) Q
A

=
b
r

k (2n�k)
2n

.

Q
A

is independent of y , but Q
A

< Q
x(y) for all y .

Intuitively, because the agents also trade off effort cost.
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Delegation

Optimal Delegation

Delegation is optimal iff W (0 ;Q
A

)| {z }
independent of y

> W
�
0 ;Q

x(y)

�
| {z }
increases in y

.

Proposition 4: Optimal Delegation.
Manager is better off delegating iff y < q , where q > 0.

If y = 0, then the manager always prefers to delegate.

Typically, delegation arises due to asymmetric information.
e.g., Aghion and Tirole (1997), Dessein (2002).

Here, it arises solely due to moral hazard !
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Extensions

“Punishing” the Manager

Can agents induce manager to choose smaller Q by lowering k ?
e.g., by deviating to trigger a switch to the MPE (k = 1).

1 If a switch is permanent (and manager knows this), then yes.

Agents cannot induce manager to complete project at any Q < Q
y

|
k=1.

Claim: Agents trigger a switch to MPE at q
t

= min
�
QA, Q

y

|
k=1

 
.

Manager finds it optimal to complete the project immediately.

2 If agents can coordinate back to original k w/o delay, then no.
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Extensions

Contracting on Project Duration

Manager might delegate decision rights over Q, but impose a deadline.
Clearly, it is optimal to commit to a deadline at time 0.

Proposition: Symmetric MPE with a deadline Derivation

1 Given a deadline T , there exists a symmetric MPE in which

a
t

=
b
n

e
rn(t�T )
2n�1 ;

2 If the manager chooses deadline optimally, then Q
T

⇤ = b
r

2n�1

3n�1

;

3 Q
T

⇤  QA and T ⇤  t
�
QA

�
.
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Extensions

Contracting on Project Duration vs Project Size

Contract on project duration iff W (0 ;T ⇤, Q
T

⇤)| {z }
independent of y

> W
�
0 ;Q

x(y)

�
| {z }
increases in y

.

Similar to optimal delegation result: Inequality holds iff y < �.

The manager might prefer to contract on duration even if y = •.

Proposition: Suppose manager has full commitment power (i.e., y = •).
Other things equal, W (0 ;Q

T

⇤ ,T ⇤)> W (0 ;Q
FC

) iff n > N
crit

or k < k
crit

.

Contracting on project duration is optimal (i) if the team is sufficiently
large, or (ii) if free-ridering is too severe.
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Extensions

Socially Efficient Outcome

Case 1: Social planner chooses Q but cannot control efforts.
For any y , the social planner will choose Q

A

< QSP

y

< Q
x(y).

Social planner also has incentives to extend the project.
Q

SP

y

decreases in commitment power y .

Commitment problem perseveres (but is mitigated).

Case 2: Social planner chooses Q and effort levels.
Commitment problem disappears.

Because the social planner internalizes effort cost.
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Extensions

Robustness Tests : 5 Extensions

1 Production synergies / team coordination costs ;
Total effort is greater / smaller than sum of individual efforts.

2 Agents’ compensation is independent of Q ;
e.g., projects in which the budget is fixed.

3 A new project is initiated as soon as the previous is completed ;
e.g., Employees often hired for multiple projects.

4 Manager incurs per-unit time cost to keep the project going ;

Her incentives to extend the project are mitigated.

5 Project evolves stochastically.
dq

t

= (Ân

i=1 a
i ,t)dt +sdW

t

.

In all 5 cases, main results continue to hold.
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Discussion

Main Take-aways

1 Tractable model to analyze a dynamic contribution game.
Capture interaction between a manager and a group of agents.

Endogenous project size and limited commitment power.

2 Manager has incentives to extend the project as it progresses.
She chooses a larger project, the smaller her commitment power.

3 Delegating choice of Q is optimal w/o sufficient commitment power.
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Discussion

What’s Next ?

Optimal Contract

Deadlines

Incomplete Information
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Discussion

Derivation of Game with Deadline Return

Agent i ’s Hamiltonian

H
i ,t =�e�rt

a2

i ,t

2
+l

i ,t

 
n

Â
j=1

a
j ,t

!
,

and his terminal value function f
T

= bQ

n

e�rT .

Necessary (and it turns out sufficient) conditions for a MPE:
1 Optimality equation:

dH
i ,t

da
i ,t

= 0

2 Adjoint equation:

l̇
i ,t =�dH

i ,t

dq
3 Transversality condition:

l
i ,T =

df
T

dQ
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