Optimal Incentives under Moral Hazard: From Theory to Practice

George Georgiadis

Michael Powell

Northwestern Kellogg
Motivation

- Imagine you have to design an employee performance pay plan.
- If you know all payoff-relevant parameters (i.e., agent preferences, production function, etc), you can find optimal contract (in principle).
- Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

1. What information do you need?
2. And how should you use that information?
Imagine you have to design an employee performance pay plan.
If you know all payoff-relevant parameters (i.e., agent preferences, production function, etc), you can find optimal contract (in principle).
Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?
1. What information do you need?
2. And how should you use that information?
Imagine you have to design an employee performance pay plan.

If you know all payoff-relevant parameters (i.e., agent preferences, production function, etc), you can find optimal contract (in principle).

Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

1. What information do you need?
2. And how should you use that information?
Framework: Static agency model with a risk-averse agent

- Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
- Goal: Find a new contract that raises profits as much as possible.

Key Lemma:
If the principal knows the agent’s marginal utility for money, then she can predict the distribution of output corresponding to any* contract.

Then, the principal can find the optimal perturbation.

(*) Formally, (i) w_B must provide infinitesimally different incentives than w_A, and (ii), predictions apply only to such contracts.

Demonstrate application using dataset from DellaVigna and Pope.
Framework: Static agency model with a risk-averse agent
- Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
- Goal: Find a new contract that raises profits as much as possible.

Key Lemma:
If the principal knows the agent’s marginal utility for money, then she can predict the distribution of output corresponding to any* contract.

- Then, the principal can find the optimal perturbation.

(*) Formally, (i) w_B must provide infinitesimally different incentives than w_A, and (ii), predictions apply only to such contracts.
- Demonstrate application using dataset from DellaVigna and Pope.
Framework: Static agency model with a risk-averse agent
- Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
- Goal: Find a new contract that raises profits as much as possible.

Key Lemma:
If the principal knows the agent’s marginal utility for money, then she can predict the distribution of output corresponding to any contract.

Then, the principal can find the optimal perturbation.

(*) Formally, (i) w_B must provide infinitesimally different incentives than w_A, and (ii), predictions apply only to such contracts.

Demonstrate application using dataset from DellaVigna and Pope.
Framework: Static agency model with a risk-averse agent

- Principal knows only distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
- **Goal:** Find a new contract that raises profits as much as possible.

Key Lemma:
If the principal knows the agent’s marginal utility for money, then she can predict the distribution of output corresponding to any* contract.

- Then, the principal can find the optimal perturbation.

(*) Formally, (i) w_B must provide infinitesimally different incentives than w_A, and (ii), predictions apply only to such contracts.

- Demonstrate application using dataset from DellaVigna and Pope.
Framework: Static agency model with a risk-averse agent
- Principal knows *only* distribution of output following $w_A(\cdot)$ and $w_B(\cdot)$.
- Goal: Find a new contract that raises profits as much as possible.

Key Lemma:
If the principal *knows* the agent’s marginal utility for money, then she can predict the distribution of output corresponding to any* contract.

- Then, the principal can find the *optimal perturbation*.

(*) Formally, (i) w_B must provide infinitesimally different incentives than w_A, and (ii), predictions apply only to such contracts.

- Demonstrate application using dataset from DellaVigna and Pope.
Related Literature

- **Agency theory**: Mirrlees (1976), Holmström (1979), etc...

- **Agency problems — Applications**:
 - Gibbons (1998), Murphy (1999), Prendergast (2002), etc...

- **Agency problems — Empirics**:
 - Lazear (2000), Shearer (2004), Bandiera et al. (2007, 2009), etc...
 - Chiappori & Salanie (2002)

- **Sufficient statistics**:
 - Monopoly pricing: Lerner (1934), Tirole (1988), etc...
 - Optimal taxation: Saez (2001), Golosov et al. (2014), etc...
 - General framework: Chetty (2009)
Model

- Principal-agent model with the following timing:
 1. Principal offers a contract $w(\cdot)$.
 2. Agent observes $w(\cdot)$ and chooses effort $a(w) \in \mathbb{R}$.
 3. Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

- Preferences:
 - Agent’s utility: $\int v(w(x))f(x|a)dx - c(a)$
 - Principal’s profit: $\pi(w) := ma(w) - \int w(x)f(x|a)dx$.

- Information:
 - Principal knows (only) $f(\cdot|a)$ and $f_a(\cdot|a)$ for $a \in \{a(w_A), a(w_B)\}$.
 - Agent knows all payoff-relevant parameters.
Model

- Principal-agent model with the following timing:
 1. Principal offers a contract $w(\cdot)$.
 2. Agent observes $w(\cdot)$ and chooses effort $a(w) \in \mathbb{R}$.
 3. Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

- Preferences:
 - Agent’s utility: $\int v(w(x)) f(x|a) dx - c(a)$
 - Principal’s profit: $\pi(w) := ma(w) - \int w(x) f(x|a) dx$.

- Information:
 - Principal knows (only) $f(\cdot|a)$ and $f_a(\cdot|a)$ for $a \in \{a(w_A), a(w_B)\}$.
 - Agent knows all payoff-relevant parameters.
Principal-agent model with the following timing:

1. Principal offers a contract $w(\cdot)$.

2. Agent observes $w(\cdot)$ and chooses effort $a(w) \in \mathbb{R}$.

3. Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

Preferences:

- Agent’s utility: $\int v(w(x)) f(x|a) dx - c(a)$

- Principal’s profit: $\pi(w) := ma(w) - \int w(x) f(x|a) dx$.

Information:

- Principal knows (only) $f(\cdot|a)$ and $f_a(\cdot|a)$ for $a \in \{a(w_A), a(w_B)\}$.

- Agent knows all payoff-relevant parameters.
In the canonical formulation (Holmström, 1979), the principal solves

\[
\max_{w(\cdot), a} \int [mx - w(x)] f(x|a) \, dx
\]

s.t.

\[
\int v(w(x)) f(x|a) \, dx - c(a) \geq u \quad \text{(IR)}
\]

\[
\int v(w(x)) f_a(x|a) \, dx = c'(a) \quad \text{(IC)}
\]

To do so, she must know \(v(\cdot), u, c(a),\) and \(f(\cdot|a)\) for all \(a\).

In our setting, she only knows \(f(\cdot|a)\) and \(f_a(\cdot|a)\) for \(a \in \{a_1, a_2\}\).
In the canonical formulation (Holmström, 1979), the principal solves

\[
\max_{w(\cdot), a} \int \left[mx - w(x) \right] f(x|a) \, dx \\
\text{s.t.} \int v(w(x)) f(x|a) \, dx - c(a) \geq u \quad \text{(IR)} \\
\int v(w(x)) f_a(x|a) \, dx = c'(a) \quad \text{(IC)}
\]

To do so, she must know \(v(\cdot), u, c(a), \) and \(f(\cdot|a) \) for all \(a \).

In our setting, she only knows \(f(\cdot|a) \) and \(f_a(\cdot|a) \) for \(a \in \{a_1, a_2\} \).
Agent’s Problem

- **A1:** Optimal effort \(a(w) \) satisfies the first-order condition

\[
\int_v w(x) f_a(x|a(w)) dx = c'(a(w)) \tag{IC}
\]

- Suppose \(w(\cdot) \) is replaced by (some other) contract \(w(\cdot) + \theta t(\cdot) \).

- Define the directional (Gateaux) derivative

\[
D a(w, t) := \left. \frac{d a(w + \theta t)}{d \theta} \right|_{\theta=0} = \lim_{\theta \to 0} \frac{a(w + \theta t) - a(w)}{\theta},
\]

interpreted as the MC of \(a \) when \(w \) perturbed in the direction of \(w + t \).

- Using (IC), we can rewrite \(D a(w, t) \) as

\[
D a(w, t) = \frac{\int t v'(w) f_a dx}{c''(a(w)) - \int v(w) f_{aa} dx}.
\]
Agent’s Problem

- **A1:** Optimal effort $a(w)$ satisfies the first-order condition

$$\int v(w(x)) f_a(x | a(w)) dx = c'(a(w)) \quad (IC)$$

- Suppose $w(\cdot)$ is replaced by (some other) contract $w(\cdot) + \theta t(\cdot)$.

- Define the directional (Gateaux) derivative

$$Da(w, t) := \frac{da(w + \theta t)}{d\theta} \bigg|_{\theta=0} = \lim_{\theta \to 0} \frac{a(w + \theta t) - a(w)}{\theta},$$

interpreted as the MC of a when w perturbed in the direction of $w + t$.

- Using (IC), we can rewrite $Da(w, t)$ as

$$Da(w, t) = \frac{\int t v'(w) f_a dx}{c''(a(w)) - \int v(w) f_{aa} dx}.$$
Agent’s Problem

- **A1**: Optimal effort $a(w)$ satisfies the first-order condition

 $$\int v(w(x)) f_a(x|a(w)) dx = c'(a(w))$$ \hfill (IC)

- Suppose $w(\cdot)$ is replaced by (some other) contract $w(\cdot) + \theta t(\cdot)$.

- Define the directional (Gateaux) derivative

 $$\mathcal{D}a(w, t) := \frac{da(w + \theta t)}{d\theta} \bigg|_{\theta=0} = \lim_{\theta \to 0} \frac{a(w + \theta t) - a(w)}{\theta},$$

 interpreted as the MC of a when w perturbed in the direction of $w + t$.

- Using (IC), we can rewrite $\mathcal{D}a(w, t)$ as

 $$\mathcal{D}a(w, t) = \frac{\int t v'(w) f_a \, dx}{c''(a(w)) - \int v(w) f_{aa} \, dx}.$$
Principal’s Problem

- If $w(\cdot)$ is replaced by (some) $w(\cdot) + \theta t(\cdot)$, then the principal’s profit

$$\pi(w + \theta t) \approx \pi(w) + \theta \mathcal{D}\pi(w, t),$$

where $\mathcal{D}\pi(w, t)$ is the derivative of $\pi(w)$ in direction of $w + t$, and

$$\mathcal{D}\pi(w, t) := \frac{d\pi(w + \theta t)}{d\theta} \bigg|_{\theta=0} = \left(m - \int w f_a dx \right) \mathcal{D}a(w, t) - \int tf dx$$

- A2: Principal chooses $t(\cdot)$ to maximize $\mathcal{D}\pi(w_A, t)$ subject to giving the agent at least as much expected utility as w_A.

- Using (IC) and the envelope condition, we can write the constraint as

$$\int tv'(w_A) \tilde{f} dx \geq 0$$
Principal’s Problem

- If $w(\cdot)$ is replaced by (some) $w(\cdot) + \theta t(\cdot)$, then the principal’s profit
 \[\pi(w + \theta t) \simeq \pi(w) + \theta \mathcal{D} \pi(w, t), \]
 where $\mathcal{D} \pi(w, t)$ is the derivative of $\pi(w)$ in direction of $w + t$, and
 \[\mathcal{D} \pi(w, t) := \left. \frac{d\pi(w + \theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int w f_a dx \right) \mathcal{D} a(w, t) - \int tf dx \]

- **A2**: Principal chooses $t(\cdot)$ to maximize $\mathcal{D} \pi(w_A, t)$ subject to giving the agent at least as much expected utility as w_A.

- Using (IC) and the envelope condition, we can write the constraint as
 \[\int tv'(w_A) \tilde{f} dx \geq 0 \]
Principal’s Problem

- If \(w(\cdot) \) is replaced by (some) \(w(\cdot) + \theta t(\cdot) \), then the principal’s profit

\[
\pi(w + \theta t) \simeq \pi(w) + \theta D\pi(w, t),
\]

where \(D\pi(w, t) \) is the derivative of \(\pi(w) \) in direction of \(w + t \), and

\[
D\pi(w, t) := \left. \frac{d\pi(w + \theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int wf_a dx \right) D a(w, t) - \int tf dx
\]

- **A2**: Principal chooses \(t(\cdot) \) to maximize \(D\pi(w_A, t) \) subject to giving the agent at least as much expected utility as \(w_A \).

- Using (IC) and the envelope condition, we can write the constraint as

\[
\int tv'(w_A)\widehat{f} dx \geq 0
\]
Principal’s Problem (Cont’d)

The principal solves

\[
\max_{t \text{ u.s.c}} \left(m - \int w_A \hat{f}_a \, dx \right) \mathcal{D}_a(w_A, t) - \int t \hat{f} \, dx
\]
\[
\text{s.t } \int t v'(w_A) \hat{f} \, dx \geq 0
\]
\[
\int |t|^p \, dx \leq 1
\]

where \(p \in \{2, 3, \ldots\} \) is a “smoothing parameter”.

Given a solution to (P), the principal should replace \(w_A(\cdot) \) with

\[
w(x) = w_A(x) + \theta t(x),
\]

where \(\theta > 0 \) is an appropriately chosen step size.

To solve (P), principal must know \(v' \) and \(\mathcal{D}_a(w_A, t) \) for all feasible \(t \)!
The principal solves

\[
\max_{t \text{ u.s.c}} \left(m - \int w_A \tilde{f}_a \, dx \right) D_a(w_A, t) - \int t \tilde{f} \, dx \\
\text{s.t} \; \int tv'(w_A) \tilde{f} \, dx \geq 0 \\
\int |t|^p \, dx \leq 1
\]

(P)

where \(p \in \{2, 3, \ldots\} \) is a “smoothing parameter”.

Given a solution to (P), the principal should replace \(w_A(\cdot) \) with

\[
w(x) \equiv w_A(x) + \theta t(x),
\]

where \(\theta > 0 \) is an appropriately chosen step size.

To solve (P), principal must know \(v' \) and \(D_a(w_A, t) \) for all feasible \(t \).
Principal’s Problem (Cont’d)

- The principal solves

\[
\max_{t \text{ u.s.c}} \left(m - \int w_A \hat{f}_a dx \right) D_a(w_A, t) - \int t \hat{f} dx
\]

subject to

\[
\int tv'(w_A) \hat{f} dx \geq 0
\]

\[
\int |t|^p dx \leq 1
\]

where \(p \in \{2, 3, \ldots\} \) is a “smoothing parameter”.

- Given a solution to (P), the principal should replace \(w_A(\cdot) \) with

\[
w(x) \equiv w_A(x) + \theta t(x),
\]

where \(\theta > 0 \) is an appropriately chosen step size.

- To solve (P), principal must know \(v' \) and \(D_a(w_A, t) \) for all feasible \(t \)!
Principal’s Problem (Cont’d)

The principal solves

\[
\max_{t \text{ u.s.c}} \left(m - \int w_A \hat{f}_a dx \right) \mathcal{D}a(w_A, t) - \int t \hat{f} dx
\]

s.t

\[
\int tv'(w_A) \hat{f} dx \geq 0 \quad \text{(Part)}
\]

\[
\int |t|^p dx \leq 1
\]

where \(p \in \{2, 3, \ldots\} \) is a “smoothing parameter”.

Given a solution to (P), the principal should replace \(w_A(\cdot) \) with

\[
w(x) \equiv w_A(x) + \theta t(x),
\]

where \(\theta > 0 \) is an \textit{appropriately chosen} step size.

To solve (P), principal must \textit{know} \(v' \) and \(\mathcal{D}a(w_A, t) \) for all feasible \(t \)!
Key Lemma

Recall that
\[Da(w, t) = \frac{\int tv'(w)f_a dx}{c''(a(w))} - \int \nu(w)f_{aa} dx \]

Lemma 1. For any (upper semi-continuous) \(t \):
\[Da(w_A, t) = \frac{Da(w_A, w_B - w_A)}{\int (w_B - w_A)\nu'(w_A)\hat{f_a} dx} \int tv'(w_A)\hat{f_a} dx \]
\[= DM(w_A, t) \]

Perturbation leads to a change in the agent’s marginal incentives, \(DM(w_A, t) \), which is predictable given \(\nu' \) and \(\hat{f_a} \). Locally,
\[Da(w_A, t) = \text{const} \times DM(w_A, t) \]
where \(\text{const} = \frac{Da(w_A, w_B - w_A)}{DM(w_A, w_B - w_A)} \).

If the principal takes a stance on \(\nu' \), then she can solve (P).
Key Lemma

- Recall that
 \[D_a(w, t) = \frac{\int tv'(w)f_a \, dx}{c''(a(w)) - \int v(w)f_{aa} \, dx} \]

Lemma 1. For any (upper semi-continuous) \(t \):

\[D_a(w_A, t) = \frac{D_a(w_A, w_B - w_A)}{\int (w_B - w_A)v'(w_A)\widehat{f}_a \, dx} \left(\int tv'(w_A)\widehat{f}_a \, dx \right) \frac{\widehat{D} M(w_A, t)}{\widehat{D} M(w_A, w_B - w_A)} \]

- Perturbation leads to a change in the agent’s marginal incentives, \(\mathcal{D} M(w_A, t) \), which is predictable given \(v' \) and \(\widehat{f}_a \). Locally,

\[D_a(w_A, t) = \text{const} \times \mathcal{D} M(w_A, t) \]

 where \(\text{const} = \frac{D_a(w_A, w_B - w_A)}{\mathcal{D} M(w_A, w_B - w_A)} \).

- If the principal takes a stance on \(v' \), then she can solve (P).
Key Lemma

- Recall that
 \[D_a(w, t) = \frac{\int tv'(w)f_a dx}{c''(a(w)) - \int v(w)f_{aa} dx} \]

Lemma 1. For any (upper semi-continuous) \(t \):

\[D_a(w_A, t) = \frac{D_a(w_A, w_B - w_A)}{\int (w_B - w_A)v'(w_A)\widehat{f}_a dx} \left(\int tv'(w_A)\widehat{f}_a dx \right) / D_M(w_A, t) \]

- Perturbation leads to a change in the agent’s marginal incentives, \(D_M(w_A, t) \), which is predictable given \(v' \) and \(\widehat{f}_a \). Locally,

\[D_a(w_A, t) = \text{const} \times D_M(w_A, t) \]

where \(\text{const} = \frac{D_a(w_A, w_B - w_A)}{D_M(w_A, w_B - w_A)} \).

- If the principal *takes a stance on* \(v' \), then she can solve (P).
Main Result

Optimal Perturbation

- The principal’s problem can be rewritten as

$$\max_{t \text{ u.s.c}} \mu^* \int t v'(w_A) \hat{f}_a dx - \int t \hat{f} dx$$

s.t. $$\int t v'(w_A) \hat{f} dx \geq 0$$

$$\int |t|^p dx \leq 1$$

where $$\mu^*$$ is a constant that depends on $$w_A$$, $$w_B$$, $$v'$$, and $$\hat{f}_a$$.

Main Proposition.

i. The optimal perturbation (when $$p = 2$$)

$$t^* = C \times \left[\lambda^* + \mu^* \frac{\hat{f}_a}{\hat{f}} - \frac{1}{v'(w_A)} \right]$$

ii. $$w_A$$ is locally optimal iff $$\lambda + \mu^* \frac{\hat{f}_a}{\hat{f}} = \frac{1}{v'(w_A)}$$, where $$\lambda = \int \frac{\hat{f}}{v'(w_A)} dx$$.
Optimal Perturbation

- The principal’s problem can be rewritten as

\[
\max_{t \text{ u.s.c}} \mu^* \int tv'(w_A)\hat{f}_a dx - \int t\hat{f} dx
\]

s.t. \[\int tv'(w_A)\hat{f} dx \geq 0\]

\[\int |t|^p dx \leq 1\]

where \(\mu^*\) is a constant that depends on \(w_A, w_B, v', \) and \(\hat{f}_a\).

Main Proposition.

i. The optimal perturbation (when \(p = 2\))

\[
t^* = C \times \left[\lambda^* + \mu^* \frac{\hat{f}_a}{\hat{f}} - \frac{1}{v'(w_A)} \right]
\]

ii. \(w_A\) is locally optimal iff \(\lambda + \mu^* \frac{\hat{f}_a}{\hat{f}} = \frac{1}{v'(w_A)}\), where \(\lambda = \int \hat{f} / v'(w_A) dx\).
Extensions

1. **Bounded payments.** Assume that $w_A(x) + \theta t(x) \in [\underline{w}, \overline{w}]$
 - New constraints are linear, so principal’s problem remains convex.

2. **Heterogeneous abilities.** Assume that the principal offers a common contract to multiple agents who have heterogeneous effort costs.
 - Principal must classify the agents into types ϕ, and estimate $\Pr\{\phi\}$, \overline{f}_ϕ, \overline{f}_a\phi$, and $\mathcal{D}_a(\overline{w}, \overline{t})$ for each ϕ.
 - Can induce selection by imposing participation for subset of types.

3. **Multidimensional effort.** Assume agent’s effort $a \in \mathbb{R}^N$ at cost $c(a)$
 - e.g., effort towards quantity & quality, or selling different products.
 - Principal must have output data for $K \geq (N + 3)/2$ contracts.
4. **Parametric contract classes.** Assume the principal restricts attention to contracts of the form w_{α}, where α is a vector of parameters.

- Find optimal perturbation direction z. *(New contract: $w_{\alpha+\theta z}$)*
- Same informational requirements as general case.

5. **Other sources of incentives.** (Promotion, firing threat, prestige, etc)

- Results hold verbatim if the agent’s IC constraint can be written as
 \[
 \int v(w)f_a \, dx + I(a(w)) = c'(a(w)),
 \]
 where $I(a)$ denotes marginal benefit of effort due to *other incentives*.
- **Key:** Additive separability and $I(\cdot)$ not directly dependent on w.

6. **Multiplicatively separable utility.** Agent’s payoff $u(\omega, a) = v(\omega)c(a)$

- **Example:** Agent’s utility satisfies CARA.
- Principal must take a stance on v (instead of v').
Goal: Illustrate how to apply the methodology presented

Dataset from DellaVigna and Pope (REStud, 2017)

Real-effort experiment on M-Turk: Subjects press a-b keys for 10 min

7 treatments with different monetary incentives:

<table>
<thead>
<tr>
<th>Contract (in ¢)</th>
<th>Mean effort (\overline{x})</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1(x) = 100$</td>
<td>1521</td>
<td>540</td>
</tr>
<tr>
<td>$w_2(x) = 100 + 0.001x$</td>
<td>1883</td>
<td>538</td>
</tr>
<tr>
<td>$w_3(x) = 100 + 0.01x$</td>
<td>2029</td>
<td>558</td>
</tr>
<tr>
<td>$w_4(x) = 100 + 0.04x$</td>
<td>2132</td>
<td>566</td>
</tr>
<tr>
<td>$w_5(x) = 100 + 0.10x$</td>
<td>2175</td>
<td>538</td>
</tr>
<tr>
<td>$w_6(x) = 100 + 40 I_{{x\geq 2000}}$</td>
<td>2136</td>
<td>545</td>
</tr>
<tr>
<td>$w_7(x) = 100 + 80 I_{{x\geq 2000}}$</td>
<td>2188</td>
<td>532</td>
</tr>
</tbody>
</table>
Assuming subjects are identical and $v'(\omega) = \omega^{-\rho}$, perform 3 exercises:
1. Given data for any two treatments, predict effort in the other five

 i. Linear extrapolation using Lemma 1

 ii. Nonlinear extrapolation using \(\log a(w) = \beta + \epsilon \log M(w) \), where

 \[
 M(w) := \int v(w(x)) f_a(x|a(w_A)) dx
 \]

 - Agent FOC implies \(M(w) = c'(a) \). (i) and (ii) implicitly assume \(f_a(\cdot|a) \) is constant in \(a \), and \(c(\cdot) \) has constant elasticity 1 and \(\epsilon \), respectively.

2. Given any 2 treatments, characterize the optimally perturbed contract

 - Pin down the step size \(\theta \) using the nonlinear extrapolation above.

3. Use all 7 treatments to structurally estimate the model

 - Compare optimal contract to perturbed contract derived above.

 - Estimate profit of perturbed contract & compare to optimal contract.
Data Exercises

1. Given data for any two treatments, predict effort in the other five

i. Linear extrapolation using Lemma 1

ii. Nonlinear extrapolation using \(\log a(w) = \beta + \epsilon \log M(w) \), where

\[
M(w) := \int v(w(x))f_a(x|a(w_A))dx
\]

- Agent FOC implies \(M(w) = c'(a) \). (i) and (ii) implicitly assume \(f_a(\cdot|a) \) is constant in \(a \), and \(c(\cdot) \) has constant elasticity 1 and \(\epsilon \), respectively.

2. Given any 2 treatments, characterize the optimally perturbed contract

 - Pin down the step size \(\theta \) using the nonlinear extrapolation above.

3. Use all 7 treatments to structurally estimate the model

 - Compare optimal contract to perturbed contract derived above.

 - Estimate profit of perturbed contract & compare to optimal contract.
Data Exercises

1. Given data for any two treatments, predict effort in the other five

 i. Linear extrapolation using Lemma 1

 ii. Nonlinear extrapolation using $\log a(w) = \beta + \epsilon \log M(w)$, where

 $$M(w) := \int v(w(x)) f_a(x|a(w_A)) dx$$

 - Agent FOC implies $M(w) = c'(a)$. (i) and (ii) implicitly assume $f_a(\cdot|a)$ is constant in a, and $c(\cdot)$ has constant elasticity 1 and ϵ, respectively.

2. Given any 2 treatments, characterize the optimally perturbed contract

 - Pin down the step size θ using the nonlinear extrapolation above.

3. Use all 7 treatments to structurally estimate the model

 - Compare optimal contract to perturbed contract derived above.

 - Estimate profit of perturbed contract & compare to optimal contract.
Data Exercises

1. Given data for any two treatments, predict effort in the other five

i. Linear extrapolation using Lemma 1

ii. Nonlinear extrapolation using $\log a(w) = \beta + \epsilon \log M(w)$, where

 $$M(w) := \int v(w(x)) f_a(x|a(w_A)) dx$$

 - Agent FOC implies $M(w) = c'(a)$. (i) and (ii) implicitly assume $f_a(\cdot|a)$ is constant in a, and $c(\cdot)$ has constant elasticity 1 and ϵ, respectively.

2. Given any 2 treatments, characterize the optimally perturbed contract

 - Pin down the step size θ using the nonlinear extrapolation above.

3. Use all 7 treatments to structurally estimate the model

 - Compare optimal contract to perturbed contract derived above.

 - Estimate profit of perturbed contract & compare to optimal contract.
Exercise 1: Predicting effort

![Graph showing effort prediction given treatments 3 and 6 (\(\rho = 0.2\))](image)

- **True**
- **Linear extrap.**
- **Nonlinear extrap.**

- Piece Rate
- 0 Piece Rate
- 0.1c PR
- 1c PR
- 4c PR
- 10c PR
- 40c Bonus
- 80c Bonus

- Effort

- Treatment
- 1500
- 1700
- 1900
- 2100
- 2300
- 2500
Exercise 1: Predicting effort

Effort prediction given treatments 2 and 3 ($\rho = 0.2$)

- **True**
- **Linear extrap.**
- **Nonlinear extrap.**
Exercise 2: Estimated pdf’s

- Suppose firm has data for treatments 3 and 4 (1¢ and 4¢ piece-rate)
- First, estimate \(f(\cdot|a(w_3)) \) and \(f(\cdot|a(w_4)) \) using kernels, and compute

\[
f_a(x|a(w_3)) \approx f_a(x|a(w_3)) \approx \frac{f(x|a(w_4)) - f(x|a(w_3))}{a(w_4) - a(w_3)}\]

![Graph showing estimated pdf's](image-url)
Exercise 2: Optimally *Perturbed* Contract

Optimally Perturbed Contracts given treatments 3 and 4 (assuming $m = 0.2$ and $\rho = 0.9$)

$$w_{\theta=1k}(x)$$
$$w_{\theta=2.5k}(x)$$
$$w_{\theta=3k}(x)$$

Projected Profit

x

θ
Exercise 2: Optimally *Perturbed* Contract

Optimally Perturbed Contract assuming CRRA utility and $m = 0.2$

- $\rho = 0.5$
- $\rho = 0.6$
- $\rho = 0.7$
- $\rho = 0.8$
- $\rho = 0.9$
- "Simple" contract
Exercise 3: Optimal Contract

Assumptions: CRRA utility with coefficient 0.7 and $m = 0.2$

- Optimal Contract
- Optimally Perturbed Contract
- "Simple" Contract

Approximately the same profit!
Summary & Future Work

- Framework for using agency theory to address an empirical question.
 - How to improve an existing performance pay plan?
 - What information do you need to do so?
 - Next steps: Further test methodology with additional experiments

- Other questions:
 - Optimal experimentation (ratchet effects, behavioral constraints)?
 - Extend to other settings?
 - Other optimization algorithms (more efficient / robust?)