Motivation

Imagine you are a manager designing employee performance pay plan. To find optimal contract, need to know all payoff-relevant parameters.

- i.e., agent’s utility and cost function, output distribution for every effort
- Otherwise, agency theory gives us guiding principles (trade-offs, CS).

This paper: How to optimally improve current performance pay plan?

1. What information do you need?
2. And how should you use that information?
Motivation

- Imagine you are a manager designing employee performance pay plan.
- To find optimal contract, need to know all payoff-relevant parameters.
 - *i.e.*, agent's utility and cost function, output distribution for every effort
- Otherwise, agency theory gives us guiding principles (trade-offs, CS).

This paper: How to *optimally* improve current performance pay plan?

1. What information do you need?
2. And how should you use that information?
Motivation

- Imagine you are a manager designing employee performance pay plan.
- To find optimal contract, need to know all payoff-relevant parameters.
 - *i.e.*, agent’s utility and cost function, output distribution for every effort.
- Otherwise, agency theory gives us guiding principles (trade-offs, CS).

This paper: How to *optimally* improve current performance pay plan?

1. What information do you need?
2. And how should you use that information?
Motivation

- Imagine you are a manager designing employee performance pay plan.
- To find optimal contract, need to know all payoff-relevant parameters.
 - *i.e.*, agent’s utility and cost function, output distribution for every effort
- Otherwise, agency theory gives us guiding principles (trade-offs, CS).

This paper: How to *optimally* improve current performance pay plan?

1. What information do you need?
2. And how should you use that information?
A Simple Example with Linear Contracts

- Suppose you restrict attention to linear contracts; i.e., \(w(x) = \alpha x \)
 - How to modify your current piece rate, \(\alpha \), to increase profits?

- Denote the principal’s profit by \(\Pi = (m - \alpha) a \)
 - \(m \) is marginal profit, and \(a = \mathbb{E}[x|\text{effort}(\alpha)] \) is expected output.

- Consider the impact of a small increase in \(\alpha \):
 \[
 \frac{d\Pi}{d\alpha} = -a + (m - \alpha) \frac{da}{d\alpha} \geq 0 \iff \frac{\alpha}{a} \frac{da}{d\alpha} \geq \frac{\alpha}{m - \alpha}
 \]

Observation:

\(a \) and \(da/d\alpha \) are sufficient statistics for finding profitable perturbation.

(i.) Need observational data corresponding to \(\alpha \), plus an experiment.
(ii.) If contract is characterized by \(n \) parameters need \(\geq n \) experiments!
A Simple Example with Linear Contracts

- Suppose you restrict attention to linear contracts; i.e., \(w(x) = \alpha x \)
- How to modify your current piece rate, \(\alpha \), to increase profits?
- Denote the principal’s profit by \(\Pi = (m - \alpha) a \)
 - \(m \) is marginal profit, and \(a = \mathbb{E}[x|\text{effort}(\alpha)] \) is expected output.
- Consider the impact of a *small* increase in \(\alpha \):

\[
\frac{d\Pi}{d\alpha} = -a + (m - \alpha) \frac{da}{d\alpha} \geq 0 \iff \frac{\alpha}{a} \frac{da}{d\alpha} \geq \frac{\alpha}{m - \alpha}
\]

Observation:
a and \(da/d\alpha \) are sufficient statistics for finding profitable perturbation.

(i.) Need observational data corresponding to \(\alpha \), plus an experiment.
(ii.) If contract is characterized by \(n \) parameters need \(\geq n \) experiments!
A Simple Example with Linear Contracts

- Suppose you restrict attention to linear contracts; i.e., \(w(x) = \alpha x \)
 - How to modify your current piece rate, \(\alpha \), to increase profits?
- Denote the principal’s profit by \(\Pi = (m - \alpha)a \)
 - \(m \) is marginal profit, and \(a = \mathbb{E}[x|\text{effort}(\alpha)] \) is expected output.
- Consider the impact of a small increase in \(\alpha \):

\[
\frac{d\Pi}{d\alpha} = -a + (m - \alpha) \frac{da}{d\alpha} \geq 0 \iff \frac{\alpha}{a} \frac{da}{d\alpha} \geq \frac{\alpha}{m - \alpha}
\]

Observation:
a and \(da/d\alpha \) are sufficient statistics for finding profitable perturbation.

(i.) Need observational data corresponding to \(\alpha \), plus an experiment.
(ii.) If contract is characterized by \(n \) parameters need \(\geq n \) experiments!
A Simple Example with Linear Contracts

- Suppose you restrict attention to linear contracts; i.e., \(w(x) = \alpha x \)
 - How to modify your current piece rate, \(\alpha \), to increase profits?

- Denote the principal’s profit by \(\Pi = (m - \alpha) a \)
 - \(m \) is marginal profit, and \(a = \mathbb{E}[x|\text{effort}(\alpha)] \) is expected output.

- Consider the impact of a small increase in \(\alpha \):

\[
\frac{d\Pi}{d\alpha} = -a + (m - \alpha) \frac{da}{d\alpha} \geq 0 \iff \frac{\alpha}{a} \frac{da}{d\alpha} \geq \frac{\alpha}{m - \alpha}
\]

Observation:

- \(a \) and \(da/d\alpha \) are sufficient statistics for finding profitable perturbation.

(i.) Need observational data corresponding to \(\alpha \), plus an experiment.

(ii.) If contract is characterized by \(n \) parameters need \(\geq n \) experiments!
A Simple Example with Linear Contracts

- Suppose you restrict attention to linear contracts; \(i.e., w(x) = \alpha x \)
 - How to modify your current piece rate, \(\alpha \), to increase profits?

- Denote the principal’s profit by \(\Pi = (m - \alpha) a \)
 - \(m \) is marginal profit, and \(a = \mathbb{E}[x|\text{effort}(\alpha)] \) is expected output.

- Consider the impact of a *small* increase in \(\alpha \):

\[
\frac{d\Pi}{d\alpha} = -a + (m - \alpha) \frac{da}{d\alpha} \geq 0 \iff \frac{\alpha \; da}{a \; d\alpha} \geq \frac{\alpha}{m - \alpha}
\]

Observation:

\(a \) and \(da/d\alpha \) are sufficient statistics for finding profitable perturbation.

(i.) Need observational data corresponding to \(\alpha \), plus an experiment.

(ii.) If contract is characterized by \(n \) parameters need \(\geq n \) experiments!
A Simple Example with Linear Contracts

- Suppose you restrict attention to linear contracts; i.e., \(w(x) = \alpha x \)
 - How to modify your current piece rate, \(\alpha \), to increase profits?
- Denote the principal’s profit by \(\Pi = (m - \alpha) \)
 - \(m \) is marginal profit, and \(a = \mathbb{E}[x | \text{effort}(\alpha)] \) is expected output.
- Consider the impact of a small increase in \(\alpha \):
 \[
 \frac{d\Pi}{d\alpha} = -a + (m - \alpha) \frac{da}{d\alpha} \geq 0 \iff \frac{\alpha}{a} \frac{da}{d\alpha} \geq \frac{\alpha}{m - \alpha}
 \]

Observation:
a and \(da/d\alpha \) are sufficient statistics for finding profitable perturbation.

(i.) Need observational data corresponding to \(\alpha \), plus an experiment.
(ii.) If contract is characterized by \(n \) parameters need \(\geq n \) experiments!
Preview of Results

- **Framework**: Static agency model with a risk-averse agent
 - Principal knows the distribution of x following some \hat{w} and some $\hat{w} + \hat{t}$.
 - **Objective**: Perturb \hat{w} in direction that increases profits at fastest rate.

Key Lemma:
If the principal knows the agent’s marginal utility for money, then she can estimate his response to any arbitrary perturbation of \hat{w}.

- If principal takes stance on v', she can find the optimal perturbation.
- True even if she restricts attention to a parametric class (e.g., affine).
- Illustrate how to apply using dataset from DellaVigna & Pope (2017).
Preview of Results

- **Framework:** Static agency model with a risk-averse agent
 - Principal knows the distribution of x following some \hat{w} and some $\hat{w} + \hat{t}$.
 - **Objective:** Perturb \hat{w} in direction that increases profits at fastest rate.

Key Lemma:
If the principal *knows* the agent’s marginal utility for money, then she can estimate his response to *any arbitrary* perturbation of \hat{w}.

1. If principal takes stance on ν', she can find the optimal perturbation.
2. True even if she restricts attention to a parametric class (e.g., affine).
Preview of Results

- **Framework:** Static agency model with a risk-averse agent
 - Principal knows the distribution of x following some \widehat{w} and some $\widehat{w} + \widehat{t}$.
 - **Objective:** Perturb \widehat{w} in direction that increases profits at *fastest rate*.

Key Lemma:
If the principal *knows* the agent’s marginal utility for money, then she can estimate his response to *any arbitrary* perturbation of \widehat{w}.

1. If principal takes stance on v', she can find the optimal perturbation.
2. True even if she restricts attention to a parametric class (e.g., affine).
Preview of Results

- **Framework**: Static agency model with a risk-averse agent
 - Principal knows the distribution of x following some \hat{w} and some $\hat{w} + \hat{t}$.
 - **Objective**: Perturb \hat{w} in direction that increases profits at *fastest rate*.

Key Lemma:
If the principal *knows* the agent’s marginal utility for money, then she can estimate his response to *any arbitrary* perturbation of \hat{w}.

1. If principal takes stance on v', she can find the optimal perturbation.
2. True even if she restricts attention to a parametric class (e.g., affine).
Preview of Results

- **Framework:** Static agency model with a risk-averse agent
 - Principal knows the distribution of x following some \hat{w} and some $\hat{w} + \hat{t}$.
 - **Objective:** Perturb \hat{w} in direction that increases profits at *fastest rate*.

Key Lemma:
If the principal *knows* the agent’s marginal utility for money, then she can estimate his response to *any arbitrary* perturbation of \hat{w}.

1. If principal takes stance on v', she can find the optimal perturbation.
2. True even if she restricts attention to a parametric class (e.g., affine).
Related Literature

- *Agency theory:* Mirrlees (1976), Holmström (1979), etc...

- Agency problems — Applications:
 - Gibbons (1998), Murphy (1999), Prendergast (2002), etc...

- Agency problems — Empirics:
 - Lazear (2000), Shearer (2004), Bandiera et al. (2007, 2009), etc...
 - Chiappori & Salanie (2002)

- Sufficient statistics:
 - Monopoly pricing: Lerner (1934), Tirole (1988), etc...
 - Optimal taxation: Saez (2001), Golosov et al. (2014), etc...
 - General framework: Chetty (2009)
Principal-agent model with the standard timing:

1. Principal offers a contract $w(\cdot)$.
2. Agent observes $w(\cdot)$ and chooses effort $a(w)$.
3. Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

Preferences:

- Agent’s utility: $\mathbb{E}_a[v(w(x))] - c(a)$
- Principal’s profit: $\pi(w) := ma(w) - \mathbb{E}_{a(w)}[w(x)]$.

Information:

- Principal has an estimate for $f(\cdot|a(\hat{w}))$ and $f(\cdot|a(\hat{w} + \hat{t}))$, where \hat{w} is a status quo contract and $\hat{w} + \hat{t}$ is a perturbation thereof.

Objective: Perturb \hat{w} in direction that increases $\pi(\hat{w})$ at fastest rate.
Model

- Principal-agent model with the standard timing:
 1. Principal offers a contract $w(\cdot)$.
 2. Agent observes $w(\cdot)$ and chooses effort $a(w)$.
 3. Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

- Preferences:
 - Agent’s utility: $\mathbb{E}_a[v(w(x))] - c(a)$
 - Principal’s profit: $\pi(w) := ma(w) - \mathbb{E}_{a(w)}[w(x)]$.

- Information:
 - Principal has an estimate for $f(\cdot|a(\hat{w}))$ and $f(\cdot|a(\hat{w} + \hat{t}))$, where \hat{w} is a status quo contract and $\hat{w} + \hat{t}$ is a perturbation thereof.

- Objective: Perturb \hat{w} in direction that increases $\pi(\hat{w})$ at fastest rate.
Model

- Principal-agent model with the standard timing:
 1. Principal offers a contract $w(\cdot)$.
 2. Agent observes $w(\cdot)$ and chooses effort $a(w)$.
 3. Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

- Preferences:
 - Agent’s utility: $\mathbb{E}_a [v(w(x))] - c(a)$
 - Principal’s profit: $\pi(w) := ma(w) - \mathbb{E}_{a(w)} [w(x)]$

- Information:
 - Principal has an estimate for $f(\cdot|a(\hat{w}))$ and $f(\cdot|a(\hat{w}+\hat{t}))$, where \hat{w} is a status quo contract and $\hat{w} + \hat{t}$ is a perturbation thereof.

- Objective: Perturb \hat{w} in direction that increases $\pi(\hat{w})$ at fastest rate.
Model

- Principal-agent model with the standard timing:
 1. Principal offers a contract $w(\cdot)$.
 2. Agent observes $w(\cdot)$ and chooses effort $a(w)$.
 3. Output $x \sim f(\cdot|a(w))$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

- Preferences:
 - Agent’s utility: $\mathbb{E}_a[v(w(x))] - c(a)$
 - Principal’s profit: $\pi(w) := ma(w) - \mathbb{E}_{a(w)}[w(x)]$.

- Information:
 - Principal has an estimate for $f(\cdot|a(\hat{w}))$ and $f(\cdot|a(\hat{w} + \hat{t}))$, where \hat{w} is a status quo contract and $\hat{w} + \hat{t}$ is a perturbation thereof.

- Objective: Perturb \hat{w} in direction that increases $\pi(\hat{w})$ at fastest rate.
Assumptions

A.1. Performance measure x does not suffer from multitasking problem, and the data corresponding to $\widehat{w} + \widehat{t}$ is not “tainted” by ratchet effects.

A.2. The first-order approach is valid, so that the agent’s IC constraint can be replaced by the corresponding first-order condition.

A.3. Local Perturbation: Perturbation \widehat{t} leads to a sufficiently small change in the agent’s marginal incentives that the principal can estimate

$$f_a(x|a(\widehat{w})) \approx \frac{f(x|a(\widehat{w} + \widehat{t})) - f(x|a(\widehat{w}))}{a(\widehat{w} + \widehat{t}) - a(\widehat{w})}$$

- i.e., perturbations that give the agent at least as much utility as \widehat{w}.
Assumptions

A.1. Performance measure x does not suffer from multitasking problem, and the data corresponding to $\hat{w} + \hat{t}$ is not “tainted” by ratchet effects.

A.2. The first-order approach is valid, so that the agent’s IC constraint can be replaced by the corresponding first-order condition.

A.3. Local Perturbation: Perturbation \hat{t} leads to a sufficiently small change in the agent’s marginal incentives that the principal can estimate

$$f_a(x|a(\hat{w})) \approx \frac{f(x|a(\hat{w} + \hat{t})) - f(x|a(\hat{w}))}{a(\hat{w} + \hat{t}) - a(\hat{w})}$$

- i.e., perturbations that give the agent at least as much utility as \hat{w}.

Assumptions

A.1. Performance measure x does not suffer from multitasking problem, and the data corresponding to $\hat{w} + \hat{t}$ is not “tainted” by ratchet effects.

A.2. The first-order approach is valid, so that the agent’s IC constraint can be replaced by the corresponding first-order condition.

A.3. Local Perturbation: Perturbation \hat{t} leads to a sufficiently small change in the agent’s marginal incentives that the principal can estimate

$$f_a(x|a(\hat{w})) \approx \frac{f(x|a(\hat{w} + \hat{t})) - f(x|a(\hat{w}))}{a(\hat{w} + \hat{t}) - a(\hat{w})}$$

- i.e., perturbations that give the agent at least as much utility as \hat{w}.

Assumptions

A.1. Performance measure x does not suffer from multitasking problem, and the data corresponding to $\hat{w} + \hat{t}$ is not “tainted” by ratchet effects.

A.2. The first-order approach is valid, so that the agent’s IC constraint can be replaced by the corresponding first-order condition.

A.3. Local Perturbation: Perturbation \hat{t} leads to a sufficiently small change in the agent’s marginal incentives that the principal can estimate

$$f_a(x|a(\hat{w})) \approx \frac{f(x|a(\hat{w} + \hat{t})) - f(x|a(\hat{w}))}{a(\hat{w} + \hat{t}) - a(\hat{w})}$$

- \textit{i.e.}, perturbations that give the agent at least as much utility as \hat{w}.
Agent’s Problem

- **First-order approach**: optimal effort $a(w)$ satisfies

$$\int v(w(x)) f_a(x|a(w)) \, dx = c'(a(w))$$

(IC)

- Define the Gateaux (directional) derivative

$$\mathcal{D} a(\hat{w}, t) := \frac{d a(\hat{w} + \theta t)}{d \theta} \bigg|_{\theta=0} = \lim_{\theta \to 0} \frac{a(\hat{w} + \theta t) - a(\hat{w})}{\theta},$$

interpreted as marg. change of a when \hat{w} perturbed in direction of t.

- Using (IC), $\mathcal{D} a(\hat{w}, t)$ can be written as

$$\mathcal{D} a(\hat{w}, t) = \frac{\int tv'(\hat{w}) \hat{f}_a \, dx}{c''(a(\hat{w})) - \int v(\hat{w}) f_{aa}(x|a(\hat{w})) \, dx},$$

and observe that it is linear in t.

Georgiadis and Powell
Optimal Incentives under Moral Hazard
Northwestern Kellogg
Agent’s Problem

- **First-order approach**: optimal effort \(a(w) \) satisfies

\[
\int v(w(x)) f_a(x|a(w)) \, dx = c'(a(w)) \tag{IC}
\]

- Define the Gateaux (directional) derivative

\[
D_a(\widehat{w}, t) := \frac{da(\widehat{w} + \theta t)}{d\theta} \bigg|_{\theta=0} = \lim_{\theta \to 0} \frac{a(\widehat{w} + \theta t) - a(\widehat{w})}{\theta},
\]

interpreted as marg. change of \(a \) when \(\widehat{w} \) perturbed in direction of \(t \).

- Using (IC), \(D_a(\widehat{w}, t) \) can be written as

\[
D_a(\widehat{w}, t) = \frac{\int tv'(\widehat{w})\widehat{f}_a \, dx}{c''(a(\widehat{w})) - \int v(\widehat{w}) f_{aa}(x|a(\widehat{w})) \, dx},
\]

and observe that it is *linear* in \(t \).
Agent’s Problem

- **First-order approach**: optimal effort \(a(w) \) satisfies

\[
\int v(w(x)) f_a(x|a(w)) \, dx = c'(a(w)) \tag{IC}
\]

- Define the Gateaux (directional) derivative

\[
D a(\hat{w}, t) := \frac{d a(\hat{w} + \theta t)}{d \theta} \bigg|_{\theta=0} = \lim_{\theta \rightarrow 0} \frac{a(\hat{w} + \theta t) - a(\hat{w})}{\theta},
\]

interpreted as marg. change of \(a \) when \(\hat{w} \) perturbed in direction of \(t \).

- Using (IC), \(D a(\hat{w}, t) \) can be written as

\[
D a(\hat{w}, t) = \frac{\int tv'(\hat{w}) \hat{f}_a \, dx}{c''(a(\hat{w})) - \int v(\hat{w}) f_{aa}(x|a(\hat{w})) \, dx},
\]

and observe that it is *linear* in \(t \).
Principal’s Problem

- The principal’s profit

\[\pi(w) := ma(w) - \int w(x) f(x | a(w)) \, dx \]

- Define the Gateaux derivative

\[D\pi(\widehat{w}, t) := \left. \frac{d\pi(\widehat{w} + \theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int \widehat{w} \widehat{f}_a \, dx \right) Da(\widehat{w}, t) - \int t \widehat{f} \, dx \]

- Perturbing \(\widehat{w}(\cdot) \) in direction of \(t(\cdot) \) affects profits via two channels:
 1. By inducing a change in effort, as captured by 1\(^{st}\) term.
 2. Mechanically, as captured by 2\(^{nd}\) term.

- Set of Pareto-improving perturbations:

\[\mathcal{T} = \left\{ t : \left. \frac{d}{d\theta} \int v(\widehat{w} + \theta t) f(x | a(w + \theta t)) \, dx - c(a(w + \theta t)) \right|_{\theta=0} \geq 0 \right\} \]

- (IC) implies constraint \(t \in \mathcal{T} \) can be rewritten as \(\int tv'(\widehat{w}) \widehat{f} \, dx \geq 0 \).
Principal’s Problem

- The principal’s profit
 \[\pi(w) := ma(w) - \int w(x)f(x|a(w))\,dx \]

- Define the Gateaux derivative
 \[D\pi(\hat{w}, t) := \left. \frac{d\pi(\hat{w} + \theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int \hat{w}\hat{f}_a\,dx \right) Da(\hat{w}, t) - \int t\hat{f}\,dx \]

- Perturbing \(\hat{w}(\cdot) \) in direction of \(t(\cdot) \) affects profits via two channels:
 1. By inducing a change in effort, as captured by 1st term.
 2. Mechanically, as captured by 2nd term.

- Set of Pareto-improving perturbations:
 \[T = \left\{ t : \left. \frac{d}{d\theta} \int v(\hat{w} + \theta t)\,f(x|a(w + \theta t))\,dx - c(a(w + \theta t)) \right|_{\theta=0} \geq 0 \right\} \]

- (IC) implies constraint \(t \in T \) can be rewritten as \(\int tv'(\hat{w})\hat{f}\,dx \geq 0. \)
Principal’s Problem

- The principal’s profit
 \[\pi(w) := ma(w) - \int w(x)f(x|a(w))\,dx \]

- Define the Gateaux derivative
 \[D\pi(\widehat{w}, t) := \left. \frac{d\pi(\widehat{w} + \theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int \widehat{w}\widehat{f}_a\,dx \right) Da(\widehat{w}, t) - \int t\widehat{f}\,dx \]

- Perturbing \(\widehat{w}(\cdot) \) in direction of \(t(\cdot) \) affects profits via two channels:
 1. By inducing a change in effort, as captured by 1\(^{st}\) term.
 2. Mechanically, as captured by 2\(^{nd}\) term.

- Set of Pareto-improving perturbations:
 \[T = \left\{ t : \left. \frac{d}{d\theta} \int v(\widehat{w} + \theta t)f(x|a(w + \theta t))\,dx - c(a(w + \theta t)) \right|_{\theta=0} \geq 0 \right\} \]

- (IC) implies constraint \(t \in T \) can be rewritten as \(\int tv'(\widehat{w})\widehat{f}\,dx \geq 0 \).
Principal’s Problem

- The principal’s profit
 \[\pi(w) := ma(w) - \int w(x)f(x|a(w))dx \]

- Define the Gateaux derivative
 \[D\pi(\hat{w}, t) := \left. \frac{d\pi(\hat{w} + \theta t)}{d\theta} \right|_{\theta=0} = \left(m - \int \hat{w}\hat{f}_a dx \right) Da(\hat{w}, t) - \int t\hat{f} dx \]

- Perturbing \(\hat{w}(\cdot) \) in direction of \(t(\cdot) \) affects profits via two channels:
 1. By inducing a change in effort, as captured by 1\(^{st} \) term.
 2. Mechanically, as captured by 2\(^{nd} \) term.

- Set of Pareto-improving perturbations:
 \[\mathcal{T} = \left\{ t : \left. \frac{d}{d\theta} \int v(\hat{w} + \theta t) f(x|a(w + \theta t))dx - c(a(w + \theta t)) \right|_{\theta=0} \geq 0 \right\} \]

- (IC) implies constraint \(t \in \mathcal{T} \) can be rewritten as \(\int tv'(\hat{w})\hat{f} dx \geq 0. \)
Interpreting our Assumptions

- Define family of contracts \(\hat{w}_\theta \equiv (1 - \theta) \hat{w} + \theta (\hat{w} + \hat{t}) \equiv \hat{w} + \theta \hat{t} \)

- Using a first-order Taylor expansion, for \(\theta \in (0, 1] \),
 \[
a(\hat{w}_\theta) = a(\hat{w}) + \theta a(\hat{w} + \hat{t}) \text{, and}
\]
 \[
f(x|a(\hat{w}_\theta)) = \hat{f}(x) + \theta \hat{f}_a(x) \left[a(\hat{w} + \hat{t}) - a(\hat{w})\right] \quad \forall x
\]
- Perturbation \(t \) that maximizes \(D_{\pi}(\hat{w}, t) \)? [Steepest ascent]
Principal’s Problem (Cont’d)

- The principal solves

\[
\max_{t \text{ u.s.c}} \left(m - \int \hat{w} \hat{f}_a \, dx \right) D_a(\hat{w}, t) - \int t \hat{f} \, dx \\
\text{s.t} \int t v'(\hat{w}) \hat{f} \, dx \geq 0 \\
\int |t|^p \, dx \leq 1
\]

for some “smoothing parameter” \(p \in \{2, 3, \ldots\} \).

- Given a solution to (P), the principal should replace \(\hat{w} \) with

\[
w(x) = \hat{w}(x) + \theta t(x)
\]

for an appropriately chosen step size \(\theta > 0 \).

- To solve (P), principal must know \(v' \) and \(D_a(\hat{w}, t) \) for all feasible \(t \).
Principal’s Problem (Cont’d)

The principal solves

$$\max_{t \text{ u.s.c}} \left(m - \int \hat{w} \hat{f}_a \, dx \right) Da(\hat{w}, t) - \int t \hat{f} \, dx$$

s.t

$$\int tv'(\hat{w}) \hat{f} \, dx \geq 0$$

$$\int |t|^p \, dx \leq 1$$

for some “smoothing parameter” $p \in \{2, 3, \ldots\}$.

Given a solution to (P), the principal should replace \hat{w} with

$$w(x) \equiv \hat{w}(x) + \theta t(x)$$

for an appropriately chosen step size $\theta > 0$.

To solve (P), principal must know v' and $Da(\hat{w}, t)$ for all feasible t!
Principal’s Problem (Cont’d)

- The principal solves

\[
\max_{t \text{ u.s.c}} \left(m - \int \hat{w} \hat{f}_a \, dx \right) \mathcal{D}a(\hat{w}, t) - \int t \hat{f} \, dx
\]

\[\text{s.t } \int tv'(\hat{w})\hat{f} \, dx \geq 0 \]

\[\int |t|^p \, dx \leq 1\]

for some “smoothing parameter” \(p \in \{2, 3, \ldots\}. \)

- Given a solution to (P), the principal should replace \(\hat{w} \) with

\[w(x) \equiv \hat{w}(x) + \theta t(x)\]

for an appropriately chosen step size \(\theta > 0. \)

- To solve (P), principal must know \(v' \) and \(\mathcal{D}a(\hat{w}, t) \) for all feasible \(t \)!
The principal solves

\[
\max_{t \text{ u.s.c}} \left(m - \int \hat{w} f_a \, dx \right) D_a(\hat{w}, t) - \int t \hat{f} \, dx \\
\text{s.t} \quad \int t v'(\hat{w}) \hat{f} \, dx \geq 0 \\
\int |t|^p \, dx \leq 1
\]

(P)

(Part)

for some “smoothing parameter” \(p \in \{2, 3, \ldots\} \).

Given a solution to (P), the principal should replace \(\hat{w} \) with

\[w(x) \equiv \hat{w}(x) + \theta t(x) \]

for an appropriately chosen step size \(\theta > 0 \).

To solve (P), principal must know \(v' \) and \(D_a(\hat{w}, t) \) for all feasible \(t \).
Sufficient Statistics

- Recall that

\[D_a(\hat{w}, t) = \frac{\int t'v'(\hat{w})\hat{f}_a dx}{c''(a(\hat{w})) - \int v(\hat{w})f_{aa}(x|a(\hat{w})) dx} \]

Remark 1.

- For any u.s.c \(t \),

\[D_a(\hat{w}, t) = \frac{D_a(\hat{w}, t)}{\int t'v'(\hat{w})\hat{f}_a dx} \int t'v'(\hat{w})\hat{f}_a dx \]

- If the principal knows \(v' \), then she can solve (P).
Main Result

Optimal Perturbation

- The principal’s problem can be rewritten as

$$\max_{t \text{ u.s.c}} \mu^* \int tv'(\hat{w}) \hat{f}_a dx - \int t \hat{f} dx$$

s.t. $$\int tv'(\hat{w}) \hat{f} dx \geq 0$$

$$\int |t|^p dx \leq 1$$

where $$\mu^*$$ is a constant that depends on $$\hat{w}, \hat{t}, v',$$ and $$\hat{f}_a$$.

Main Proposition.

i. $$\hat{w}$$ is locally optimal iff $$\lambda + \mu^* \frac{\hat{f}_a}{\hat{f}} = \frac{1}{v'(\hat{w})}$$, where $$\lambda = \int \frac{\hat{f}}{v'(\hat{w})} dx$$.

ii. Otherwise, the optimal perturbation (when $$p = 2$$)

$$t^* = C \times \left[\lambda^* + \mu^* \frac{\hat{f}_a}{\hat{f}} - \frac{1}{v'(\hat{w})} \right]$$
Optimal Perturbation

- The principal’s problem can be rewritten as

 \[
 \max_{t \ u.s.c \ \mu^*} \int t \nu'(\hat{w}) \hat{f}_a dx - \int t \hat{f} dx \\
 \text{s.t.} \ \int t \nu'(\hat{w}) \hat{f} dx \geq 0 \\
 \int |t|^p dx \leq 1
 \]

 where \(\mu^* \) is a constant that depends on \(\hat{w}, \hat{t}, \nu', \) and \(\hat{f}_a \).

Main Proposition.

i. \(\hat{w} \) is locally optimal iff \(\lambda + \mu^* \frac{\hat{f}_a}{\hat{f}} \equiv \frac{1}{\nu'(\hat{w})} \), where \(\lambda = \int \hat{f} / \nu'(\hat{w}) dx \).

ii. Otherwise, the optimal perturbation (when \(p = 2 \))

 \[
 t^* = C \times \left[\lambda^* + \mu^* \frac{\hat{f}_a}{\hat{f}} - \frac{1}{\nu'(\hat{w})} \right]
 \]
Two Remarks & Two Caveats

R.1. While our optimality condition looks the same as Holmström (1979), it contains additional information, as it accounts for perturbations which induce the agent to choose a different effort level.

R.2. Optimal perturbation dictates raising payments if and only if

\[
(\lambda^* \hat{f} + \mu^* \hat{f_a}) v'(\hat{w}) > \hat{f}
\]

C.1. Optimality condition guarantees local but not global optimality.

C.2. Optimality condition cannot be used to characterize optimal contract.
Two Remarks & Two Caveats

R.1. While our optimality condition looks the same as Holmström (1979), it contains additional information, as it accounts for perturbations which induce the agent to choose a different effort level.

R.2. Optimal perturbation dictates raising payments if and only if

\[
(\lambda^* \hat{f} + \mu^* \hat{f}_a) v'(\hat{w}) > \hat{f}
\]

C.1. Optimality condition guarantees local but not global optimality.

C.2. Optimality condition cannot be used to characterize optimal contract.
Proposition 1 is useful in 3 ways

1. Provides an explicit formula for finding the optimal perturbation.

 \[D a(\hat{w}, \hat{t}) \quad \text{Marg. change of effort if } \hat{w} \text{ is perturbed in direction of } \hat{w} + \hat{t} \]
 \[f(\cdot | a(\hat{w})) \quad \text{Pdf of } x \text{ given the agent's effort } a(\hat{w}) \]
 \[f_a(\cdot | a(\hat{w})) \quad \text{Marg. change in pdf of } x \text{ due to change in effort at } a = a(\hat{w}) \]
 \[\nu'(\cdot) \quad \text{Agent's marginal utility function} \]

2. Tell us what information principal must estimate / take a stance on.

3. Even if the principal is unwilling to experiment or make assumptions, can infer implicit assumptions (given the premise that \(\hat{w} \) is optimal).
Proposition 1 is useful in 3 ways

1. Provides an explicit formula for finding the optimal perturbation.

2. Tell us what information principal must estimate / take a stance on.

 \[D(a(\hat{w}, \hat{t})) \quad \text{Marg. change of effort if } \hat{w} \text{ is perturbed in direction of } \hat{w} + \hat{t} \]
 \[f(x|a(\hat{w})) \quad \text{Pdf of } x \text{ given the agent's effort } a(\hat{w}) \]
 \[f_a(x|a(\hat{w})) \quad \text{Marg. change in pdf of } x \text{ due to change in effort at } a = a(\hat{w}) \]
 \[v'(\cdot) \quad \text{Agent’s marginal utility function} \]

3. Even if the principal is unwilling to experiment or make assumptions, can infer implicit assumptions (given the premise that \(\hat{w} \) is optimal).
Proposition 1 is useful in 3 ways

1. Provides an explicit formula for finding the optimal perturbation.

2. Tell us what information principal must estimate / take a stance on.

 - $D a(\hat{w}, \hat{t})$ Marg. change of effort if \hat{w} is perturbed in direction of $\hat{w} + \hat{t}$
 - $f(\cdot|a(\hat{w}))$ Pdf of x given the agent's effort $a(\hat{w})$
 - $f_a(\cdot|a(\hat{w}))$ Marg. change in pdf of x due to change in effort at $a = a(\hat{w})$
 - $v'(\cdot)$ Agent’s marginal utility function

3. Even if the principal is unwilling to experiment or make assumptions, can infer implicit assumptions (given the premise that \hat{w} is optimal).
What about characterizing the *optimal contract*?

- The characterization itself is standard; see, for example, Grossman and Hart (1983) or Jewitt et al. (2008).

- The principal must take a stance on the following parameters:

 \[
 f(\cdot|a) \quad \text{Pdf of output corresponding to every } a \text{ (in relevant range)}
 \]
 \[
 c'(a) \quad \text{Marg. cost of effort for every } a \text{ (in relevant range)}
 \]
 \[
 v(\cdot) \quad \text{Agent’s utility function}
 \]

 i.e., local information is no longer sufficient.
What about characterizing the *optimal contract*?

- The characterization itself is standard; see, for example, Grossman and Hart (1983) or Jewitt et al. (2008).

- The principal must take a stance on the following parameters:

 \[f(\cdot|a) \quad \text{Pdf of output corresponding to every } a \text{ (in relevant range)} \]

 \[c'(a) \quad \text{Marg. cost of effort for every } a \text{ (in relevant range)} \]

 \[v(\cdot) \quad \text{Agent’s utility function} \]

 i.e., local information is no longer sufficient.
 Extensions (1/2)

1. *Bounded payments.* Assume that \(\widehat{w}(x) + \theta t(x) \in [w, w] \)

 - New constraints are linear, so principal’s problem remains convex.

2. *Heterogeneous abilities.* Assume that the principal offers a common contract to multiple agents who have heterogeneous effort costs.

 - Principal must classify the agents into types \((\phi)\), and estimate \(\Pr\{\phi\} \), \(\widehat{r}_\phi \), \(\widehat{r}_a^\phi \), and \(D a^\phi(\widehat{w}, \widehat{t}) \) for each \(\phi \).

 - Can induce selection by imposing participation for subset of types.

3. *Multidimensional effort.* Assume agent’s effort \(a \in \mathbb{R}^N \) at cost \(c(a) \)

 - *Example:* Agent might be a salesman of \(N \) different products.

 - Principal must have output data for \(K \geq (N + 1)/2 \) perturbations.
Extensions (1/2)

1. *Bounded payments.* Assume that $\hat{w}(x) + \theta t(x) \in [\underline{w}, \overline{w}]$
 - New constraints are linear, so principal’s problem remains convex.

2. *Heterogeneous abilities.* Assume that the principal offers a common contract to multiple agents who have heterogeneous effort costs.
 - Principal must classify the agents into types (ϕ), and estimate $\Pr \{ \phi \}$, \hat{f}_ϕ, \hat{f}_a^ϕ, and $\mathcal{D}a^\phi(\hat{w}, \hat{t})$ for each ϕ.
 - Can induce selection by imposing participation for subset of types.

3. *Multidimensional effort.* Assume agent’s effort $a \in \mathbb{R}^N$ at cost $c(a)$
 - *Example:* Agent might be a salesman of N different products.
 - Principal must have output data for $K \geq (N + 1)/2$ perturbations.
Extensions (1/2)

1. **Bounded payments.** Assume that $\hat{w}(x) + \theta t(x) \in [w, \bar{w}]$
 - New constraints are linear, so principal’s problem remains convex.

2. **Heterogeneous abilities.** Assume that the principal offers a common contract to multiple agents who have heterogeneous effort costs.
 - Principal must classify the agents into types (ϕ), and estimate $\Pr \{ \phi \}$, \hat{f}_ϕ, \hat{f}_a^ϕ, and $D a^\phi(\hat{w}, \hat{t})$ for each ϕ.
 - Can induce selection by imposing participation for subset of types.

3. **Multidimensional effort.** Assume agent’s effort $a \in \mathbb{R}^N$ at cost $c(a)$
 - **Example:** Agent might be a salesman of N different products.
 - Principal must have output data for $K \geq (N + 1)/2$ perturbations.
4. **Parametric contract classes.** Assume the principal restricts attention to contracts of the form w_{α}, where α is a vector of parameters.

- Find optimal perturbation direction z. (*New contract:* $w_{\alpha + \theta z}$)
- Same informational requirements as general case.

5. **Other sources of incentives.** (Promotion, firing threat, prestige, etc)

- Results hold verbatim if the agent’s IC constraint can be written as

$$\int v(w(x))f_a(x|a(w))dx + I(a(w)) = c'(a(w))$$

- Key: Additive separability and I not directly dependent on w.

6. **Multiplicatively separable utility.** Agent’s payoff $u(\omega, a) = v(\omega)c(a)$

- *Example:* Agent’s utility satisfies CARA.
- Principal must take a stance on v (instead of v').
4. **Parametric contract classes.** Assume the principal restricts attention to contracts of the form w_{α}, where α is a vector of parameters.
 - Find optimal perturbation direction z. *(New contract: $w_{\alpha+\theta z}$)*
 - Same informational requirements as general case.

5. **Other sources of incentives.** *(Promotion, firing threat, prestige, etc)*
 - Results hold verbatim if the agent’s IC constraint can be written as
 $$\int v(w(x))f_a(x|a(w))dx + l(a(w)) = c'(a(w))$$
 - **Key:** Additive separability and l not directly dependent on w.

6. **Multiplicatively separable utility.** Agent’s payoff $u(\omega, a) = v(\omega)c(a)$
 - **Example:** Agent’s utility satisfies CARA.
 - Principal must take a stance on v (instead of v').
4. **Parametric contract classes.** Assume the principal restricts attention to contracts of the form w_α, where α is a vector of parameters.
 - Find optimal perturbation direction z. (*New contract:* $w_{\alpha+\theta z}$)
 - Same informational requirements as general case.

5. **Other sources of incentives.** (Promotion, firing threat, prestige, etc)
 - Results hold verbatim if the agent’s IC constraint can be written as
 $$\int v(w(x))f_a(x|a(w))dx + l(a(w)) = c'(a(w))$$
 - **Key:** Additive separability and l not directly dependent on w.

6. **Multiplicatively separable utility.** Agent’s payoff $u(\omega, a) = v(\omega)c(a)$
 - **Example:** Agent’s utility satisfies CARA.
 - Principal must take a stance on v (instead of v').
Goal: Illustrate how to apply the methodology presented.

Dataset from DellaVigna and Pope (REStud, 2017).

Real-effort experiment on MTurk: Subjects press a-b keys for 10 min.

7 treatments with different monetary incentives.

<table>
<thead>
<tr>
<th>Contract (in ¢)</th>
<th>Mean effort (x)</th>
<th>Std. Errors</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(x) = 100$</td>
<td>1521</td>
<td>31.23</td>
<td>540</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.001x$</td>
<td>1883</td>
<td>28.61</td>
<td>538</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.01x$</td>
<td>2029</td>
<td>27.47</td>
<td>558</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.04x$</td>
<td>2132</td>
<td>26.42</td>
<td>566</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.10x$</td>
<td>2175</td>
<td>24.28</td>
<td>538</td>
</tr>
<tr>
<td>$w(x) = 100 + 40I_{{x\geq2000}}$</td>
<td>2136</td>
<td>24.66</td>
<td>545</td>
</tr>
<tr>
<td>$w(x) = 100 + 80I_{{x\geq2000}}$</td>
<td>2188</td>
<td>22.99</td>
<td>532</td>
</tr>
</tbody>
</table>

Each subject participates in a single treatment, once.
Goal: Illustrate how to apply the methodology presented.

Dataset from DellaVigna and Pope (REStud, 2017).

Real-effort experiment on MTurk: Subjects press a-b keys for 10 min.

7 treatments with different monetary incentives.

<table>
<thead>
<tr>
<th>Contract (in $)</th>
<th>Mean effort (\bar{x})</th>
<th>Std. Errors</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(x) = 100$</td>
<td>1521</td>
<td>31.23</td>
<td>540</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.001x$</td>
<td>1883</td>
<td>28.61</td>
<td>538</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.01x$</td>
<td>2029</td>
<td>27.47</td>
<td>558</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.04x$</td>
<td>2132</td>
<td>26.42</td>
<td>566</td>
</tr>
<tr>
<td>$w(x) = 100 + 0.10x$</td>
<td>2175</td>
<td>24.28</td>
<td>538</td>
</tr>
<tr>
<td>$w(x) = 100 + 40I{x \geq 2000}$</td>
<td>2136</td>
<td>24.66</td>
<td>545</td>
</tr>
<tr>
<td>$w(x) = 100 + 80I{x \geq 2000}$</td>
<td>2188</td>
<td>22.99</td>
<td>532</td>
</tr>
</tbody>
</table>

Each subject participates in a single treatment, once.
Setting & Objectives

- **Assumptions:**
 - Principal’s profit margin $m = 0.2\$ \text{ (per a-b keystroke, } x)\$
 - Principal has data for

 $\hat{w}(x) = 100 + 0.01x$ and $\hat{w}(x) + \hat{t}(x) = 100 + 0.04x$
 - Agents are identical, and $v'(\omega) = \omega^{-\rho}$ [$\rho \in (0, 1)$ is coeff. of RRA].

- **Step 1:** Using a first-order Taylor expansion, estimate

 $$D a(\hat{w}, \hat{t}) \approx a(\hat{w}) - a(\hat{w}) = 103$$
Setting & Objectives

Assumptions:
- Principal’s profit margin $m = 0.2\$ (per a-b keystroke, x)
- Principal has data for
 \[\hat{w}(x) = 100 + 0.01x \quad \text{and} \quad \hat{w}(x) + \hat{t}(x) = 100 + 0.04x \]
- Agents are identical, and $v'(\omega) = \omega^{-\rho}$ [$\rho \in (0, 1)$ is coeff. of RRA].

Step 1: Using a first-order Taylor expansion, estimate

\[D_a(\hat{w}, \hat{t}) \approx a(\hat{w}) - a(\hat{w}) = 103 \]
Empirical CDFs

\[a(\hat{w}) = 2029 \]
\[a(\hat{w} + \hat{t}) = 2132 \]
Step 2: Estimate pdf

- Estimate $f(\cdot | a(\hat{w}))$ and $f(\cdot | a(\hat{w} + \hat{t}))$ using kernels, and compute

$$f_a(x | a(\hat{w})) \approx \frac{f(x | a(\hat{w} + \hat{t})) - f(x | a(\hat{w}))}{a(\hat{w} + \hat{t}) - a(\hat{w})}$$
Step 3: Characterize Optimal Perturbation

$\rho = 0$
$\rho = 0.2$
$\rho = 0.5$
$\rho = 0.8$
A “simple” perturbation

\[\tilde{t} \text{ is feasible and } D_\pi(\tilde{w}, \tilde{t}) \geq 95\% \times D_\pi(\hat{w}, \hat{t}). \]
Step 4: Perturb the status quo Contract

- Replace \hat{w} with $\tilde{w} = \hat{w} + \theta t^*$ for appropriately chosen step size θ.

Here, θ is chosen such that $a(\tilde{w}) \simeq a(\hat{w} + \hat{t})$.
Effect of “smoothing” parameter \(p \)

As \(p \) increases, the optimal perturbation focuses more on the sign of \((\lambda^* \hat{f} + \mu^* \hat{f}_a) v'(\hat{w}) - \hat{f} \) instead of its magnitude.
Discussion

How to use contract theory to improve performance pay plans?

1. To find “optimal” perturbation of status quo contract, principal must:
 a. Estimate how distribution of output responds to a change in incentives.
 b. Take a stance on the agent’s marginal utility for money.

2. To characterize optimal contract, need (much) stronger assumptions.

3. Illustrate how to apply ideas using dataset from DellaVigna & Pope.

Future work?

- Optimal experimentation (ratchet effects, behavioral constraints)
- Extend to other settings or more specific applications
- Other optimization algorithms; e.g., Newton (info. requirements)
How to use contract theory to improve performance pay plans?

1. To find “optimal” perturbation of status quo contract, principal must:
 a. Estimate how distribution of output responds to a change in incentives.
 b. Take a stance on the agent’s marginal utility for money.

2. To characterize optimal contract, need (much) stronger assumptions.

3. Illustrate how to apply ideas using dataset from DellaVigna & Pope.

Future work?

- Optimal experimentation (ratchet effects, behavioral constraints)
- Extend to other settings or more specific applications
- Other optimization algorithms; e.g., Newton (info. requirements)
How to use contract theory to improve performance pay plans?

1. To find “optimal” perturbation of status quo contract, principal must:
 a. Estimate how distribution of output responds to a change in incentives.
 b. Take a stance on the agent’s marginal utility for money.

2. To characterize optimal contract, need (much) stronger assumptions.

3. Illustrate how to apply ideas using dataset from DellaVigna & Pope.

Future work?

- Optimal experimentation (ratchet effects, behavioral constraints)
- Extend to other settings or more specific applications
- Other optimization algorithms; e.g., Newton (info. requirements)
Discussion

- How to use contract theory to improve performance pay plans?

1. To find “optimal” perturbation of status quo contract, principal must:
 a. Estimate how distribution of output responds to a change in incentives.
 b. Take a stance on the agent’s marginal utility for money.

2. To characterize optimal contract, need (much) stronger assumptions.

3. Illustrate how to apply ideas using dataset from DellaVigna & Pope.

Future work?

- Optimal experimentation (ratchet effects, behavioral constraints)
- Extend to other settings or more specific applications
- Other optimization algorithms; e.g., Newton (info. requirements)
How to use contract theory to improve performance pay plans?

1. To find “optimal” perturbation of status quo contract, principal must:
 a. Estimate how distribution of output responds to a change in incentives.
 b. Take a stance on the agent’s marginal utility for money.

2. To characterize optimal contract, need (much) stronger assumptions.

3. Illustrate how to apply ideas using dataset from DellaVigna & Pope.

Future work?

- Optimal experimentation (ratchet effects, behavioral constraints)
- Extend to other settings or more specific applications
- Other optimization algorithms; e.g., Newton (info. requirements)