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Motivation

@ Rents due to agency problems is key determinant of economic welfare

@ Determinants of these frictions are usually part of model description

o In adverse selection models, distribution of types typically exogenous

o In moral hazard models, production technology taken as given

o If an agent’s payoff depends on agency frictions, then he is likely to

take actions to generate these frictions optimally.
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Motivation

@ Rents due to agency problems is key determinant of economic welfare

@ Determinants of these frictions are usually part of model description

o In adverse selection models, distribution of types typically exogenous

o In moral hazard models, production technology taken as given

o If an agent’s payoff depends on agency frictions, then he is likely to

take actions to generate these frictions optimally.

This Paper.
Revisit standard principal-agent model under moral hazard to understand

how an agent might gain by designing the production technology optimally.
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Model

@ Players. Risk-neutral principal & risk-averse, cash constrained agent

o Today: Agent will be risk-neutral (results generalize to any concave u)

o Timing.
i. Agent chooses a “project” ¢ : A([0,1]) - R,; i.e.,, a map from every

output distribution with support on [0,1] to a (nonnegative) cost.
ii. Principal offers a wage scheme w: [0,1] - R,
iii. Agent chooses an “action” F € A([0,1])
iv. Output x ~ F and payoffs are realized
o Payoffs.
o Agent: Ef[w(x)]-c(F)
o Principal: Eg[x - w(x)]

o Both players have outside option 0
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Framework

Applications
@ An entrepreneur (agent) seeks funding from a VC (principal)
o Before contracting, the entrepreneur must develop a business plan,
specifying various aspects of his production function
@ Conceivable he has at least some flexibility in choosing the biz plan.
o If VC has a lot of bargaining power, the entrepreneur benefits from

putting forward a biz plan that exacerbates moral hazard problem.
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Applications

An entrepreneur (agent) seeks funding from a VC (principal)

o Before contracting, the entrepreneur must develop a business plan,

specifying various aspects of his production function
@ Conceivable he has at least some flexibility in choosing the biz plan.
o If VC has a lot of bargaining power, the entrepreneur benefits from
putting forward a biz plan that exacerbates moral hazard problem.
@ Remark: Abstract away from constraints in the agent’s flexibility.
@ More broadly, employees can often influence aspects of production

function (e.g., assignment of projects, goals, evaluation metrics, etc)
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Framework

Some Intuition

o Efficient outcome. Agent sets c(F) =0 for all F

@ Principal responds by offering wage 0 and implementing F(x) = I,_1}

e i.e., while outcome is efficient, the agent is left with no rents!
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Framework

Some Intuition

o Efficient outcome. Agent sets c(F) =0 for all F

@ Principal responds by offering wage 0 and implementing F(x) = I,_1}

e i.e., while outcome is efficient, the agent is left with no rents!

© Mechanism. Agent chooses the project to make the moral hazard

problem severe, which will enable him to extract rents.

Garrett, Georgiadis, Smolin and Szentes Optimal Project Design Northwestern Kellogg 5/22



Problem Formulation
@ Principal. Given project c, she solves:
max Eg[x - w(x)]

st. Ep[w(x)] - c(F) > Ez[w(x)] - c(F) forall F
w(x) >0 for all x
F e A([0,1])

Denote the optimal contract by w¢ and implemented action by F€.
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Problem Formulation
@ Principal. Given project c, she solves:
max Eg[x - w(x)]

st. Ep[w(x)] - c(F) > Ez[w(x)] - c(F) forall F
w(x) >0 for all x
F e A([0,1])

Denote the optimal contract by w¢ and implemented action by F€.
o Agent. Chooses the optimal project by solving:
max Egc [w(x)] - c(F°)

stt. ¢: A([0,1]) > R,
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Main Results

@ Optimal project is coarse: all feasible actions generate binary output

o Binary projects effectively restrict the contracting space, making it

more expensive for the principal to motivate the agent.
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Main Results

@ Optimal project is coarse: all feasible actions generate binary output
o Binary projects effectively restrict the contracting space, making it
more expensive for the principal to motivate the agent.
@ Action space is rich: Optimal (binary) project comprises

e continuum of zero-cost actions where project succeeds with some prob.
o a high cost action which guarantees success

e a spectrum of actions in between.

© Inefficiency: Maximal output realized in equilibrium at bloated costs

@ Rents: The agent extracts all rents

© Characterization of payoff allocations for any production technology
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Plan of Attack

@ Theorem 1: Show it suffices to restrict attention to binary projects

o Given an arbitrary project, we construct a new project such that

c(F) < 1iff supp(F) ={0,1}, and the agent is (weakly) better off.

@ This dramatically reduces the dimensionality of the problem so that:
o In Stage 1, the agent assigns a cost C(p) >0 to each p=Pr{x =1}

o In Stage 2, the principal offers a bonus contract w(x) = bll,-13

o In Stage 3, agent chooses p at a cost C (p)
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Plan of Attack

@ Theorem 1: Show it suffices to restrict attention to binary projects

o Given an arbitrary project, we construct a new project such that

c(F) < 1iff supp(F) ={0,1}, and the agent is (weakly) better off.

@ This dramatically reduces the dimensionality of the problem so that:
o In Stage 1, the agent assigns a cost C(p) >0 to each p=Pr{x =1}

o In Stage 2, the principal offers a bonus contract w(x) = bll,-13

o In Stage 3, agent chooses p at a cost C (p)

@ Theorem 2: Characterize the optimal project (in closed form)
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Properties of an Optimal Project

Theorem 1.

@ For any project c, there exists another project, C, such that
i. T(F)<1ifandonly if supp(F) ={0,1} (i.e., output is binary), and
i. the principal optimally implements F(x) =T,y (i.e, x=1w.p 1),

which gives the agent a (weakly) larger expected payoff.
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Properties of an Optimal Project

Theorem 1.

@ For any project c, there exists another project, C, such that

i. T(F)<1ifandonly if supp(F) ={0,1} (i.e., output is binary), and
ii. the principal optimally implements F(x) = I,y (i.e, x=1w.p 1),

which gives the agent a (weakly) larger expected payoff.

o Informativeness principle: if the signal is made less informative, then

incentivizing the agent becomes more expensive
@ Output x acts as a signal about the agent’s action

@ Binary distribution provides the least informative signal among all

distributions with the same mean
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Binary Projects: Proof

@ Fix a ¢ & suppose principal offers w*, implementing F* (w/ mean u*)
o Construct a new project T: For each p € [0, 1], define

By =(1~-p)+pl-qy and
(B,) = inf{c(F) : Eelx] = p}

i.e., B, is a distribution with support {0,1} and mean y, and we

assign it the cost of the cheapest distribution in ¢ with same mean.

e Given T, wolog, the principal offers a bonus contract w(x) = bI{x-1y,

or equivalently, a linear contract w(x) = bx.
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Binary Projects: Proof

o Consider the problem of implementing any action at max profit

M(F)= sup {Ef[x-w(x)] : FisIC} , and
w(-)>0

M(B,)= sup {(1-b)u : B,isIC},
be[0,1)

in the original and the new project, ¢ and €, respectively.
o Lemma 1: For any F such that Ef[x] = u, N(B,,) <N(F).
i.e., implementing B,, is less profitable than an F with same mean.

e Suppose the principal were restricted to linear contracts in c¢. Then:
Myin(F) =MN(B,,) for all F with mean .

o Absent this restriction, her profit is weakly larger; i.e., T(F) > My, (F).
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Binary Projects: Proof
@ Define B* = B+ and b* = Er«[w*(x)]/n* <1
o If w(x) = b*l,_;y implements B*, then:
@ It makes the same expected payment to the agent as w*.
@ It generates profit equal to M(F*) for the principal.

o If b* does not implement B, adjust cost €(B*) = inf, {b*nu—c(B,)}

@ Lemma 2: Principal cannot implement B* with any b < b*.

e Suppose B* can be implemented by some b < b*
o If €(B*) was adjusted, this contradicts the above definition of €(B*).

o If €(B*) was not, then the premise contradicts Lemma 1.

Garrett, Georgiadis, Smolin and Szentes Optimal Project Design Northwestern Kellogg 10 /22



Binary Projects: Proof

By assumption, F* is optimal in c; i.e., [1(F*) > T(F) for all F

By Lemma 1, TI(B,,) < MN(F) for any F with mean y

By construction, ﬁ(B*) =T1(F*), and therefore,

n(B*)>M(B,) forall u
i.e., the principal optimally implements B* in €.

@ Also by construction, agent is weakly better off relative to {c, w*}.

o If u* =1, then the proof is complete.
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Binary Projects: Proof

@ Suppose p* < 1. Since b* implements B*, the following IC is satisfied

b*u* —¢(B*) > b* u-¢(B,) forall pu.

Observation: This constraint is slack for all p > p*.

o If not, b* implements B, for some p’ > p* giving principal bigger profit
@ Therefore, wolog, we can adjust €(B,,) = oo for all pz > pu*.

Multiply bonus b*, costs and success prob. Pr{x =1} by 1/u* > 1.

o Payoffs are scaled up and IC constraints are unchanged.

e Summary: New project comprises only actions with support {0,1},

principal optimally implements x =1 w.p. 1, and agent is better off.
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Implication

@ By Theorem 1, it suffices to restrict attention to:

e Actions such that

1 with probability p
X =
0  with probability 1 - p

e Cost function C(p) > 0 such that principal optimally implements p =1

o Bonus contracts w(x) = bl;,_1y for some b >0 to be chosen.

@ We will solve the problem using backward induction
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Heuristic Characterization — Stage 2

e Fix a cost function C(-). Then the principal solves

max p(1-b)
s.t. pb—C(p) 2pb—- C(p) forall pe[0,1]
pe[0,1] and b>0
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Heuristic Characterization — Stage 2

e Fix a cost function C(-). Then the principal solves

max p(1-b)
s.t. pb—C(p) 2pb—- C(p) forall pe[0,1]
pe[0,1] and b>0

@ Guess that C is twice differentiable and convex. Then we can replace

the agent’s IC constraint with its first-order condition:

b=C'(p)

and rewrite the principal’s problem as

mi=max p[1-C'(p)]
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Heuristic Characterization — Stage 1

@ The agent solves

>(-b_ C *
Jhax P (p*)
stp*[1-C'(p*)]>p[L-C'(p)] forallp (ICp)

where p* =1 by Theorem 1, and b= C’(p*) from the agent's FOC.
@ Using that C’(1) = 1—m, we can rewrite this maximization program as
1
max 1—7r—f0 C'(q)dq
st. C'(p)>1- T forallp<1
p

C(-)20 and me[0,1]
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Heuristic Characterization — Stage 1 (Continued)

e Step 1: For (any) fixed 7, we solve

1
1- —f C'(p)d
Jaxl-m= | (p)dp

st. C'(p)>1- T forallp<1
p
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Heuristic Characterization — Stage 1 (Continued)

e Step 1: For (any) fixed 7, we solve

1
1- —f C'(p)d
Jaxl-m= | (p)dp

st. C'(p)>1- T forallp<1
p

@ Objective decreases in C’(p) and constraint imposes lower bound. So

c'p)-[1-2]
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Heuristic Characterization — Stage 1 (Continued)

e Step 1: For (any) fixed 7, we solve

1
1- —f C'(p)d
Jaxl-m= | (p)dp

st. C'(p)>1- T forallp<1
p

@ Objective decreases in C’(p) and constraint imposes lower bound. So
+
cp-[1-1]
p

e Step 2: Plugging C'(-) into the agent's objective, we solve

1 1
max {-wIn7}== and 7" ==;
me[0,1] € €
i.e., the principal’s, as well as the agent's payoff is 1/e.
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Characterization

Theorem 2. Optimal Project

@ There exists an optimal project in which the agent chooses

0 if p<l/e
C’(p): 1 . /
1-2 if p>1/e

@ The principal offers bonus contract with b=1-1/e

@ Each player obtains payoff equal to 1/e
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Characterization

Theorem 2. Optimal Project

@ There exists an optimal project in which the agent chooses

0 if p<l/e
C’(p): 1 . /
1-2 if p>1/e

@ The principal offers bonus contract with b=1-1/e

@ Each player obtains payoff equal to 1/e

@ The agent chooses a convex cost function s.t any p < 1/e is costless,
while larger p's are progressively more expensive and the principal is

is indifferent across any bonus contract with be [0, 1-1/e].

@ Principal’s profit m = 1/e, and agent captures all rents for p > 1/e.
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Graphically

061 Principal’s payoff
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Graphically
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payoff
08 T m=1/¢)
071 o -
Principal’s payment
061 Principal’s payoff pb=pC'(1) g
P ~
05 —
Agent’s
payoff
04F | (=1/e)
03 —
02
Distortion
1
01F et
0 . A
0 0.1 02 0.3 0.4 0.5 06 07 0.8 0.9 1

Agent’s Action (p)

e To capture rents, agent commits to rent seeking activity costing C(p).
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Payoff pairs implementable by an arbitrary binary project

@ Insofar, we have assumed the agent can choose any cost function
c: A([0,1]) ~ R,

@ Suppose the agent is constrained and must choose among a subset of

these cost functions.
@ Q: Can we make any predictions regarding surplus allocation?
o Let V (c)={n",U*} be the set of equilibrium payoffs for given c,

and define the payoff possibility set:

P = U V(c).

c:A([0,1])~R,
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Extensions

Payoff pairs implementable by an arbitrary binary project

Theorem 3. Payoff Possibility Set

The payoff possibility set is

P =co({m,-wlogn}:7e[0,1]).
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Bounded Project Complexity

@ Suppose the agent can choose a project with at most N actions.

@ By Theorem 1, wolog, he chooses p; € [0,1] and C(p;) >0 for each i

°
N
a

Agent Payoff (U)

0.05

N =10

—Pa‘yoff Possib‘ility Set ‘
— Constrained Technology
@ Agent-Optimal Payoffs (N — oco)

0.3
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Negative Payoffs

@ Suppose agent can choose output distributions with support [-M, 1].

e Suffices to focus on binary projects s.t F(x) = Iix-1y is implemented.

M x> —
$
1.0
0.8
b
0.6
0.4
c(p)
0.2
P
0.0 0.2 0.4 0.6 0.8 1.0

@ When M =0, C(-) and b are given in Theorem 2.
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Negative Payoffs

@ Suppose agent can choose output distributions with support [-M, 1].

e Suffices to focus on binary projects s.t F(x) = Iix-1y is implemented.

M Ih=rx —

$
10
0.8 b
06
0.4

c(p)
0.2
P
0.0 0.2 0.4 0.6 0.8 1.0

@ As M 1, both C(-) and b are shifted upwards.
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Negative Payoffs

@ Suppose agent can choose output distributions with support [-M, 1].

e Suffices to focus on binary projects s.t F(x) = Iix-1y is implemented.

M 2y —

0.4 c(p)

e For M sufficiently large, b =1, and agent extracts all surplus.
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Extensions

Negative Payoffs

@ Suppose agent can choose output distributions with support [-M, 1].

e Suffices to focus on binary projects s.t F(x) = Iix-1y is implemented.

M

0.8

0.6

0.4

0.2

x> —

c(p)

p

0.0 0.2

e As M 1t further, C(-) is shifted downwards, decreasing distortion.
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Negative Payoffs

@ Suppose agent can choose output distributions with support [-M, 1].

e Suffices to focus on binary projects s.t F(x) = Iix-1y is implemented.

M Inhax —

0.8
0.6
0.4

0.2
c(p)

0.0 0.2 0.4 0.6 0.8 1.0

@ As M — oo, b=1 and C(-) - 0 leading to efficiency.
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Discussion

Discussion

@ We consider an agency model of moral hazard in which production

technology is endogenous and chosen by the agent.

@ The agent optimally designs a project with binary output such that
the principal is indifferent between b* and any smaller bonus, enabling
him to extract all rents.

o Potential implication. Promoting more flexibility for workers to design

their job as an alternative to regulation (e.g., minimum wages)
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