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Motivation

@ Performance monitoring is a crucial aspect of any incentive plan.

@ Organizations devote substantial resources to identify or design good

performance monitoring processes (Lazear, Gibbs, Murphy, Larcker,..)

@ Contracting models typically assume exogenous performance measure.

This paper:
Optimal design of performance monitoring & wage scheme. J
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N
In a Nutshell

@ Standard principal-agent model under moral hazard
(One-shot interaction, risk-averse agent, continuous effort, etc..)

@ Performance monitoring.— The principal sequentially acquires costly

i.i.d signals that are correlated with the agent's effort.

@ Principal commits to:

a. A path-contingent stopping rule for acquiring signals.

b. A wage scheme, which conditions agent's wage on the acquired signals.

Main Result: Under certain conditions
i. Optimal information acquisition strategy is a two-threshold policy.

ii. Single-bonus wage scheme is optimal; i.e., base wage + fixed bonus.
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|
Roadmap

© Model

© Reformulating the Principal’'s Problem
© Zero-Sum Game

@ The Main Theorem

O A First-Best Result

@ Validating the First-Order Approach
@ Comparative Statics

© Discussion
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Model

o Players & timing:

i. Principal commits to information acquisition strategy & wage scheme.
ii. Agent chooses effort a > 0.

iii. Information acquisition strategy is implemented & payoffs are realized.
o Information acquisition: Principal observes the process
dX; = adt+ dB; , where Xy =0,
at cost 1 p.u of t, and chooses a stopping time T(w).
o Wage scheme: W (w;) > w (the agent is cash constrained)

o Payoffs:
o Agent: u(W) -c(a)
e Principal: W +1
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Reformulating the Principal’s Problem

Principal's Problem and a 3-Step Reformulation
o Objective: Motivate agent to choose some effort a* > 0 at min. cost.

‘j‘r)’fT Eo [W (w;) + 7]
stt. a¥ earg max {E,[u(W (w:))]-c(a)}
W(wr) 2w
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inf E - [W
\}\27 a [W(wr) +7]
s.t. a* eargmax{E,[u(W (w;))]-c(a)}
a
W(wr) 2w
@ Replace (IC) with its first-order condition. Then will show that in an
optimal contract, wages depend only on the score s, = w, — a*r.

© Express choice of stopping time as an information design problem.

(Principal chooses zero-mean distribution s.t s, ~ F @ cost= Ef[s?])

© Principal's problem can be expressed as a min-max problem.
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Recall the Textbook Principal-Agent Model

e Textbook model: Effort generates a signal x ~ G(:|a). Principal solves
inf f w(x)g(x|a™)dx
w(-)zw

st. a* earg maaxf u(w(x))g(x|a)dx — c(a)
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Recall the Textbook Principal-Agent Model

e Textbook model: Effort generates a signal x ~ G(:|a). Principal solves
inf f w(x)g(x|a™)dx
w()2w
sit. a* earg maxf u(w(x))g(x|a)dx — c(a)
a
@ Standard approach: Replace IC constraint with a local IC constraint,

[ uw(x)gs(xla"dx > ¢'(a"),

and solve the Lagrangian

inf [W(X) Au(w(x ))ga(x|

w(-)zw g(x|a*)

@ An optimal contract depends only on the score, g,(x|a*)/g(x|a*).
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Reformulating the Principal’s Problem

Back to our Problem
‘j‘r)’fT Eo [W(w;) + 7]
sit. a“ earg max {E,[u(W(w;))]-c(a)}
W(w:) 2w

o Fix 7 =t & let the contract condition wages only on X;.
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Reformulating the Principal’s Problem

Back to our Problem
vaT Eo [W(w;) + 7]
s.t. a* eargmax{E, [u(W (w;))]-c(a)}
a
W (wr) 2w
o Fix 7 =t & let the contract condition wages only on X;.

@ This is a special case of the textbook model where X; ~ N(a*7,7) and

1 2

X_|3) = _e—(XT—aT) /27 )

g(X:|a) oy
@ Therefore, the score

8a(Xr|a*)

g(Xr|a*)

is a sufficient statistic for the optimal wage scheme.

=X,-a'r

@ Question: Can principal benefit from information about path of X7
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Reformulating the Principal’s Problem

Girsanov's Theorem

@ Incentive compatibility constraint:

a" e argmax{E, [u (W (wr))] - c(a)}
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@ Incentive compatibility constraint:

a" e argmax{E, [u (W (wr))] - c(a)}

@ Using Girsanov's Theorem, agent’s expected utility can be written as

]Ea |:U ( W (w.,-))] = Eax— [U ( W (wT)) e(afa*)B‘r*%(a*a*)2T:|
o Differentiating wrt a and evaluating at a = a* yields relaxed IC constr.
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Reformulating the Principal’s Problem

Girsanov's Theorem

@ Incentive compatibility constraint:

a" e argmax{E, [u (W (wr))] - c(a)}

@ Using Girsanov's Theorem, agent’s expected utility can be written as

By [0(W (wr))] = Eae [u(W (w)) ela2)Bm2(2r]

o Differentiating wrt a and evaluating at a = a* yields relaxed IC constr.
Ea[u(W (wr)) Br] 2 ¢'(a") (IC-FOC)
tscore! 5= X,—a"r
Lemma 1.

o Consider the relaxed problem where (IC) is replaced by (IC-FOC).

@ In an optimal contract, the wage depends only on the score s;.
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Reformulating the Principal’s Problem

The Score

@ Recall that dX; = adt + dB;

@ Notice that in equilibrium, a = a*, and hence, ds; = dB;

} Score
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Reformulating the Principal’s Problem

Information Design

@ Each stopping time generates a zero-mean distribution over scores.”

Lemma 2.

o Consider a stopping time 7 such that E,«[7] < co.

@ Then s. ~ F., where

FreF={FeA(R) :Ef[s] =0, Er[s®] < oo}
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i. For any F € F, there exists a 7 such that s, ~ F and E,«[7] = Ef[s?].

ii. Any 7" such that s,/ ~ F satisfies E «[7'] > Ea«[7].

Georgiadis and Szentes Optimal Monitoring Design Northwestern Kellogg 12 /29



Reformulating the Principal’s Problem

Information Design

@ Each stopping time generates a zero-mean distribution over scores.”

Lemma 2.

o Consider a stopping time 7 such that E,«[7] < co.

@ Then s. ~ F., where

FreF={FeA(R) :Ef[s] =0, Er[s®] < oo}

@ The reverse is also true.
Lemma 3. (Root, 1969 and Rost, 1976)

i. For any F € F, there exists a 7 such that s, ~ F and E,«[7] = Ef[s?].

ii. Any 7" such that s,/ ~ F satisfies E «[7'] > Ea«[7].

o Can rewrite problem so that principal chooses F € F at cost Ef[s?].
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Reformulating the Principal’s Problem

Problem Reformulation

@ We can reformulate the principal problem as

inf f [W(s) + 52] dF(s)

W(-),Fe]—'
.t f su(W(s))dF(s) > ¢'(a*) (IC)
W(s) 2w forall s (LL)
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Reformulating the Principal’s Problem

Problem Reformulation

@ We can reformulate the principal problem as

inf f [W(s) + 52] dF(s)

W(),FeF
.t [ su(W(s))dF(s) > ¢'(a*) (IC)
W(s) 2w forall s (LL)
@ We will solve this problem in two stages:

© Characterize optimal wage scheme for given F. Denote objective 1(F).

e Solve iane}' H(F)
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Optimal Wage Scheme for any given F € F

@ Write the Lagrangian:

LOVF) = inf [ [W(s) - 2su(W(s)) + 5% + Ac'(a") | dF (s)
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Optimal Wage Scheme for any given F € F

@ Write the Lagrangian:

LOVF) = inf f [W(s) - Asu(W(s)) + s + \c'(a*)] dF (s)

@ Define, for every s, the wage scheme

w if s<s.(N)

w(A,s) = {;/—1 (Yxs) if s>s.(N),

where s, (\) = 1/Ad/(w). (This minimizes the term in brackets Vs.)
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Optimal Wage Scheme for any given F € F

@ Write the Lagrangian:

LOVF) = inf f [W(s) - Asu(W(s)) + s + \c'(a*)] dF (s)

@ Define, for every s, the wage scheme

w if s<s.(N)

w(A,s) = {;/—1 (Yxs) if s>s.(N),

where s, (\) = 1/Ad/(w). (This minimizes the term in brackets Vs.)

Lemma 4.

i. Strong duality holds; i.e., supyso L(A, F) = T1(F).

ii. An optimal wage scheme exists iff 3\ > 0 such that L(X, F) = [1(F).
In this case, (IC) binds and {W(//\\,S} is uniquely optimal.
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Reformulating the Principal’s Problem

Minimax Problem

@ Strong duality = we can write the principal’s problem as

inf sup L(\, F)
Foox
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Reformulating the Principal’s Problem

Minimax Problem

Strong duality = we can write the principal’s problem as

inf sup L(\, F)
Foox

o Unfortunately, we cannot solve this problem... ®

@ However, we can solve

sup inf L(\,F) ©
A F

e But (when)
sup inf L(\, F) Zinf sup L(A, F)
X F Fox
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Solution Approach

o Consider the following (auxiliary) zero-sum game:
e Principal chooses F € F to minimize L(\, F)

o Nature chooses A >0 to maximize L(\, F)
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Solution Approach

o Consider the following (auxiliary) zero-sum game:
e Principal chooses F € F to minimize L(\, F)

o Nature chooses A >0 to maximize L(\, F)

Lemma 5. (Von Neumann, 1928)

If {\*, F*} is an equilibrium in the zero-sum game, then

inf sup L(\, F) =sup inf L(\, F)
F oo A F

o If the first-order approach is valid, then the wage scheme w(\*,-)

and the stopping rule corresponding to F* solve the original problem.
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Two-Point Distribution

@ The principal best-responds to any A > 0 by solving
inf L(\,F) = inf E - 2+ (af
jnf. (A F) inf_ Flw(A s) = Asu(w(A,s)) +s° + Ac'(a*)]

27(\,s)

—Z(\s)
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Two-Point Distribution

@ The principal best-responds to any A > 0 by solving

inf L(\,F) = inf E - 2+ (af
jnf. (A F) inf_ Flw(A s) = Asu(w(A,s)) +s° + Ac'(a*)]

27(\,s)

I
0

@ There is a BR that is either a two-point, or a degenerate distribution.*
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Main Result

Theorem 1.

o Assume p(z) = u(u'"*(1/z)) is strictly concave and lim,_. p'(z) = 0.

@ There exists a unique equilibrium {\*, F*} in the zero-sum game,

in which supp {F*} = {s, 5} for some s <0<5.
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Main Result

Theorem 1.

o Assume p(z) = u(u'"*(1/z)) is strictly concave and lim,_. p'(z) = 0.

@ There exists a unique equilibrium {\*, F*} in the zero-sum game,

in which supp {F*} = {s, 5} for some s <0<5.

e Implication.— There is a unique contract {7, W*} which solves
the original problem. In this contract, the stopping rule

T =min{t>0: X;=a"t+s or Xy=a"t+5},
and the wage scheme

w if wx =a"t+s
w(A,5) ifwx=a"t+5s

W (wes) = {
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Main Result

Theorem 1.
e Assume p(z) = u(u""*(1/z)) is strictly concave and lim,_.o p'(z) = 0.

@ There exists a unique equilibrium {\*, F*} in the zero-sum game,
in which supp{F*} = {s, 5}.

o Conditions are satisfied by many common utility functions; e.g.,
o CRRA: u(w) = w'™, where v > 1/2 (coefficient of RRA)
o CARA: u(w)=1-e*"

o Logarithmic: u(w) = log(aw + f8)

1-—
o HARA: u(w) = ﬁ (% +6) 7, where v > 1/2

Georgiadis and Szentes Optimal Monitoring Design Northwestern Kellogg 18 /29



The Main Theorem

Interpretation of Two-point Distribution

@ Given s < 0<'s, the principal uses the stopping rule

T =min{t>0: X; ¢ (a"t+s,a"t+53)}.

T T
—X; Stops observing X; and
Catts pays the agent w(A\*,3) __x
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@ Given s < 0<'s, the principal uses the stopping rule

T =min{t>0: X; ¢ (a"t+s,a"t+53)}.

—X;
—at+s
—at +3

Stops observing X; and

pays the agent w
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Sketch of the Proof 1/3: Nature's Best Response

o Nature best-responds to F € F by solving supysq {EF[Z(\,s)}.
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Sketch of the Proof 1/3: Nature's Best Response

o Nature best-responds to F € F by solving supysq {EF[Z(\,s)}.

o This is equivalent to choosing A > 0 such that (IC) binds:

fsu(w()\,s))dF(s):c'(a*).

e If (IC) binds for some \ < oo, then this is the unique best response.
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Sketch of the Proof 1/3: Nature's Best Response

Nature best-responds to F € F by solving supyso {EF[Z(A,s)}.

This is equivalent to choosing A > 0 such that (IC) binds:

fsu(w()\,s))dF(s):c'(a*).

If (IC) binds for some A < oo, then this is the unique best response.

@ Otherwise, nature does not have a best response.
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Sketch of the Proof 2/3: Principal’'s Best Response

@ Assumptions that p is strictly concave and lim,_., p'(z) =0

= Z(\,-) is convex-concave-convex if A > A, and convex otherwise.

—Z(\s8) —Z(\s)
—Z°(\.s) —Z°0\s)
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= Z(\,-) is convex-concave-convex if A > A, and convex otherwise.

—Z(\s8) —Z(\s)
—Z°(\.s) —Z°0\s)

ECVA] 5 s 0 s

@ Principal’s best-response, Fy = argsupg.r {EF[Z(\,s)}, is unique.
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Sketch of the Proof 2/3: Principal’'s Best Response

@ Assumptions that p is strictly concave and lim,_., p'(z) =0

= Z(\,-) is convex-concave-convex if A > A, and convex otherwise.

—Z(\s8) —Z(\s)
—Z°(\.s) —Z°0\s)

s 0 5(\) s 0 s

@ Principal’s best-response, Fy = argsupg.r {EF[Z(\,s)}, is unique.
@ A degenerate distribution cannot be part of an equilibrium.

o Cannot satisfy (IC) for any A, so nature does not have a best response.
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Sketch of the Proof 3/3: Existence & Uniqueness

@ Recall \ is a best response to F if & only if IC binds at {\, F}; i.e.,
[ su(w () dF ()= ¢'(a"),

and F) denotes the principal’s best response to A.
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Sketch of the Proof 3/3: Existence & Uniqueness

@ Recall \ is a best response to F if & only if IC binds at {\, F}; i.e.,
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Sketch of the Proof 3/3: Existence & Uniqueness

@ Recall \ is a best response to F if & only if IC binds at {\, F}; i.e.,

[ su(w () dF ()= ¢'(a"),
and F) denotes the principal’s best response to A.

Lemmas 10-11: There exists a A* such that
i. 1C binds at {\*, Fx~},

ii. 1Cis violated at {\, F\} if A<\, and
iii. 1C is slack at {A, Fy} if A> A",

o Existence: A\* and Fy« are best responses to each other.

@ Uniqueness: The principal's best response F) is unique, and there
exists no different pair {\', F\/} such that (IC) binds.
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Attaining Efficiency

o First-best: Principal pays w and chooses F(s) =I5 at cost = w.
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@ Suppose that there exists some ( > 1 such that

’ 3 1
lim w)I® [u(w)]_% =-00.

w—>00 U”(W)
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Attaining Efficiency
@ First-best: Principal pays w and chooses F(s) = Igso at cost = w

Theorem 2.
@ Suppose that there exists some ( > 1 such that

o )P

w—>00 U”(W)

[w(w)] T = o

o For every € > 0, there exists a single-bonus wage scheme, and a

two-point distribution satisfying (IC) and (LL) such that M* < w +e.

v

o Condition satisfied if, for example, u(w) = w'™ and 7 < 1/2 (CRRA)

@ Optimal contract pays w, plus a large bonus with small probability.

i.e., inverse of a Mirrlees shoot-the-agent contract.
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Validating the First-Order Approach
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Validating the First-Order Approach

o Fix any two-point distribution F € F and wage scheme {W(s)}

@ F can be implemented at lowest cost by the stopping rule
T=inf{t:s¢(s,5)}, where {s,5} =supp(F).

e Noting that ds; = (a— a*)dt + dB;, we have

3 e—2(a—a* )s _ 1
p(a) = Pr{s =3} = L

o (IC) binds in any equilibrium, so wages must satisfy
c'(a%)

p'(a)’

u (W(E)) -u (W(._s)) =
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Validation of the First-Order Approach (Cont'd)

@ Thus, the global IC constraint can be written as:

a* eargmax{u(W(s))+p(a) E ; (a)}.
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a* eargmax{u(W(s))+p(a) ,E ; (a)}

@ FOA is valid if maximand is single-peaked at a*.

Proposition:

o If ¢’(a) is sufficiently small (large) for all a< a* (a>a*), and ¢”(a*)

is sufficiently /arge, then the first-order approach is valid.
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Validating the First-Order Approach

Validation of the First-Order Approach (Cont'd)

@ Thus, the global IC constraint can be written as:

a* eargmax{u(W(s))+p(a) ,E ; (a)}

@ FOA is valid if maximand is single-peaked at a*.

Proposition:

o If ¢’(a) is sufficiently small (large) for all a< a* (a>a*), and ¢”(a*)

is sufficiently /arge, then the first-order approach is valid.

o Example: If c(a) = a¥ and a* = 1, then FOA is valid as long as k is
sufficiently large.
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Comparative Statics: Varying the (constant) coeff. of RRA

Equilibrium distribution as a function of coeff. of RRAy Probability of bonus being paid as a function of y
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Comparative Statics

Comparative Statics: Varying the minimum wage

Pr(s =

Equilibrium distribution as a function of w

Bonus as a function of w

Bonus

0.2

0.1

Probability of bonus being paid as a function of w

w

Constant Relative Risk Aversion

adis and Szentes

[

Bonus

Optimal Monitoring Design

Equilibrium distribution as a function of w

Bonus as a function of w

Probability of bonus being paid as a function of w

w

Constant Absolute Risk Aversion
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Discussion

Robustness

@ Results hold if principal must satisfy (IR) constraint or effort is binary.
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Discussion

Robustness

@ Results hold if principal must satisfy (IR) constraint or effort is binary.

@ Main theorem holds also if the principal can choose F € F at cost
Er[¢(s)] for some convex function such that ¢"’(s) > 0 for all s> 0.

o What if signals are discrete; i.e., each signal X; ~ G(-|a)?

e What if the principal observes a costless signal xp ~ G(+|a) prior to

acquiring additional costly (Brownian) information?
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Wrap Up

o Flexible framework for analyzing design of performance measures.
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@ Under certain conditions, optimal contract pays 2 wage levels.
o Ideal performance measure is binary — model highlights trade-off.

o Rationale for commonly observed single-bonus contracts.

Georgiadis and Szentes Optimal Monitoring Design Northwestern Kellogg 29 /29



Wrap Up

o Flexible framework for analyzing design of performance measures.

@ Under certain conditions, optimal contract pays 2 wage levels.
o Ideal performance measure is binary — model highlights trade-off.

o Rationale for commonly observed single-bonus contracts.

o Next steps:
o Single-bonus contracts vs gaming?
e How to think about performance measure design more broadly?

o Techniques (info. design / zero-sum game) useful in other settings?
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Attaining Efficiency: Construction

@ Pick a ¢ > 1 such that

o P

w—>00 u”( )

[u(w)] T = - (*)
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Attaining Efficiency: Construction

@ Pick a ¢ > 1 such that

WP R .
Jm ey ) - *)

@ Define the sequence of two-point distributions & wage schemes

0 if s<-n¢ € ~
. ~ w ITS=-n
Fa(s) =i i se[-n"C,n) and wn(s) = {W if s=n
1 if s>n ’ ’

where w, is chosen such that (IC) binds.
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Attaining Efficiency: Construction
@ Pick a ¢ > 1 such that
im L -2 - e *
w— 00 u”( )

@ Define the sequence of two-point distributions & wage schemes

0 if s<-n¢ i€ ~
. ~ w ITS=-n
Fa(s) =i i se[-n"C,n) and wn(s) = {W if 5=
1 if s>n ’ ’

where w, is chosen such that (IC) binds.

@ As n — oo, the principal’s expected cost

¢ - 1-2¢ 2—C
n n = n+n , n'=2¢ +n
W+ v u(w)+ ——d @) | ——— s w
n+n¢— n+n¢ ( (w) ni-=¢ ( )) n+n-°< -
~—— ~—

—1 as n—oo —0 as n—ooo V (>1

—0 as n—oo by (*)
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