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Motivation

Performance monitoring is a crucial aspect of any incentive plan.

Organizations devote substantial resources to identify or design good

performance monitoring processes (Lazear, Gibbs, Murphy, Larcker,..)

Contracting models typically assume exogenous performance measure.

This paper:

Optimal design of performance monitoring & wage scheme.
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In a Nutshell

Standard principal-agent model under moral hazard

(One-shot interaction, risk-averse agent, continuous effort, etc..)

Performance monitoring.— The principal sequentially acquires costly

i.i.d signals that are correlated with the agent’s effort.

Principal commits to:

a. A path-contingent stopping rule for acquiring signals.

b. A wage scheme, which conditions agent’s wage on the acquired signals.

Main Result: Under certain conditions

i. Optimal information acquisition strategy is a two-threshold policy.

ii. Single-bonus wage scheme is optimal; i.e., base wage + fixed bonus.
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Model

Model

Players & timing:

i. Principal commits to information acquisition strategy & wage scheme.

ii. Agent chooses effort a ≥ 0.

iii. Information acquisition strategy is implemented & payoffs are realized.

Information acquisition: Principal observes the process

dXt = a dt + dBt , where X0 = 0 ,

at cost 1 p.u of t, and chooses a stopping time τ(ω).

Wage scheme: W (ωτ) ≥ w (the agent is cash constrained)

Payoffs:

Agent: u(W ) − c(a)

Principal: W + τ
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Reformulating the Principal’s Problem

Principal’s Problem and a 3-Step Reformulation Skip

Objective: Motivate agent to choose some effort a∗ > 0 at min. cost.

inf
W , τ

Ea∗ [W (ωτ) + τ]

s.t. a∗ ∈ arg max
a

{Ea [u (W (ωτ))] − c(a)}

W (ωτ) ≥ w

1 Replace (IC) with its first-order condition. Then will show that in an

optimal contract, wages depend only on the score sτ = ωτ − a∗τ .

2 Express choice of stopping time as an information design problem.

(Principal chooses zero-mean distribution s.t sτ ∼ F @ cost= EF [s
2])

3 Principal’s problem can be expressed as a min-max problem.
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Reformulating the Principal’s Problem

Recall the Textbook Principal-Agent Model

Textbook model: Effort generates a signal x ∼ G(⋅∣a). Principal solves

inf
w(⋅)≥w

∫ w(x)g(x ∣a∗)dx

s.t. a∗ ∈ arg max
a
∫ u(w(x))g(x ∣a)dx − c(a)

Standard approach: Replace IC constraint with a local IC constraint,

∫ u(w(x))ga(x ∣a∗)dx ≥ c ′(a∗) ,

and solve the Lagrangian

inf
w(⋅)≥w

∫ [w(x) − λu(w(x))
ga(x ∣a∗)

g(x ∣a∗)
]g(x ∣a∗)dx + λc ′(a∗).

An optimal contract depends only on the score, ga(x ∣a∗)/g(x ∣a∗).
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Reformulating the Principal’s Problem

Back to our Problem

inf
W , τ

Ea∗ [W (ωτ) + τ]

s.t. a∗ ∈ arg max
a

{Ea [u (W (ωτ))] − c(a)}

W (ωτ) ≥ w

Fix τ ≡ t & let the contract condition wages only on Xτ .

This is a special case of the textbook model where Xτ ∼ N(a∗τ, τ) and

g(Xτ ∣a) =
1

√
2πτ

e−(Xτ−aτ)2/2τ .

Therefore, the score

ga(Xτ ∣a
∗)

g(Xτ ∣a∗)
= Xτ − a∗τ

is a sufficient statistic for the optimal wage scheme.

Question: Can principal benefit from information about path of X ?
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Reformulating the Principal’s Problem

Girsanov’s Theorem

Incentive compatibility constraint:

a∗ ∈ arg max
a

{Ea [u (W (ωτ))] − c(a)}

Using Girsanov’s Theorem, agent’s expected utility can be written as

Ea [u (W (ωτ))] = Ea∗ [u (W (ωτ)) e(a−a
∗)Bτ−

1
2
(a−a∗)2τ

]

Differentiating wrt a and evaluating at a = a∗ yields relaxed IC constr.

Ea∗[u (W (ωτ)) Bτ
¯

′score′ sτ =Xτ−a∗τ

] ≥ c ′(a∗) (IC-FOC)

Lemma 1.

Consider the relaxed problem where (IC) is replaced by (IC-FOC).

In an optimal contract, the wage depends only on the score sτ .
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Reformulating the Principal’s Problem

The Score

1 Recall that dXt = adt + dBt

2 Notice that in equilibrium, a = a∗, and hence, dst = dBt

Score

X
t

a
*
 t

τ
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Reformulating the Principal’s Problem

Information Design

Each stopping time generates a zero-mean distribution over scores.∗

Lemma 2.

Consider a stopping time τ such that Ea∗[τ] < ∞.

Then sτ ∼ Fτ , where

Fτ ∈ F = {F ∈ ∆(R) ∶ EF [s] = 0, EF [s
2
] < ∞}

The reverse is also true.

Lemma 3. (Root, 1969 and Rost, 1976)

i. For any F ∈ F , there exists a τ such that sτ ∼ F and Ea∗[τ] = EF [s
2].

ii. Any τ ′ such that sτ ′ ∼ F satisfies Ea∗[τ
′] ≥ Ea∗[τ].

Can rewrite problem so that principal chooses F ∈ F at cost EF [s
2].
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Reformulating the Principal’s Problem

Problem Reformulation

We can reformulate the principal problem as

inf
W̃ (⋅) ,F∈F

∫ [W̃ (s) + s2]dF(s)

s.t.∫ su(W̃ (s))dF(s) ≥ c ′(a∗) (IC)

W̃ (s) ≥ w for all s (LL)

We will solve this problem in two stages:

1 Characterize optimal wage scheme for given F . Denote objective Π(F).

2 Solve infF∈F Π(F).
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Reformulating the Principal’s Problem

Optimal Wage Scheme for any given F ∈ F

Write the Lagrangian:

L(λ,F) = inf
W̃ (⋅)≥w

∫ [W̃ (s) − λsu(W̃ (s)) + s2 + λc ′(a∗)]dF(s)

Define, for every s, the wage scheme

w(λ, s) =

⎧⎪⎪
⎨
⎪⎪⎩

w if s ≤ s∗(λ)

u′−1 (1/λs) if s > s∗(λ) ,

where s∗(λ) = 1/λu′(w). (This minimizes the term in brackets ∀s.)

Lemma 4.

i. Strong duality holds; i.e., supλ≥0 L(λ,F) = Π(F).

ii. An optimal wage scheme exists iff ∃ λ̂ > 0 such that L(λ̂,F) = Π(F).

In this case, (IC) binds and {w(λ̂, s} is uniquely optimal.
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Reformulating the Principal’s Problem

Minimax Problem

Strong duality ⇒ we can write the principal’s problem as

inf
F

sup
λ

L(λ,F)

Unfortunately, we cannot solve this problem... /

However, we can solve

sup
λ

inf
F

L(λ,F) ,

But (when)

sup
λ

inf
F

L(λ,F)
?
= inf

F
sup
λ

L(λ,F)
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Zero-Sum Game

Solution Approach

Consider the following (auxiliary) zero-sum game:

Principal chooses F ∈ F to minimize L(λ,F)

Nature chooses λ ≥ 0 to maximize L(λ,F)

Lemma 5. (Von Neumann, 1928)

If {λ∗,F ∗} is an equilibrium in the zero-sum game, then

inf
F

sup
λ

L(λ,F) = sup
λ

inf
F

L(λ,F)

If the first-order approach is valid, then the wage scheme w(λ∗, ⋅)

and the stopping rule corresponding to F ∗ solve the original problem.
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Zero-Sum Game

Two-Point Distribution

The principal best-responds to any λ ≥ 0 by solving

inf
F∈F

L(λ,F) = inf
F∈F

EF [w(λ, s) − λsu(w(λ, s)) + s2 + λc ′(a∗)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≜Z(λ,s)

0 s

Z( ,s)

If a BR exists, it is either a two-point, or a degenerate distribution.*
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The Main Theorem

Main Result

Theorem 1.

Assume ρ(z) = u (u′−1(1/z)) is strictly concave and limz→∞ ρ
′(z) = 0.

There exists a unique equilibrium {λ∗,F ∗} in the zero-sum game,

in which supp{F ∗} = {s, s} for some s < 0 < s.

Implication.— There is a unique contract {τ∗,W ∗} which solves
the original problem. In this contract, the stopping rule

τ∗ = min {t > 0 ∶ Xt = a∗t + s or Xt = a∗t + s} ,

and the wage scheme

W ∗

(ωτ∗) =

⎧
⎪⎪
⎨
⎪⎪
⎩

w if ωτ∗ = a
∗t + s

w(λ∗, s) if ωτ∗ = a
∗t + s
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The Main Theorem

Main Result

Theorem 1.

Assume ρ(z) = u (u′−1(1/z)) is strictly concave and limz→∞ ρ
′(z) = 0.

There exists a unique equilibrium {λ∗,F ∗} in the zero-sum game,

in which supp{F ∗} = {s, s}.

Conditions are satisfied by many common utility functions; e.g.,

CRRA: u(w) = w1−γ , where γ > 1/2 (coefficient of RRA)

CARA: u(w) = 1 − eαw

Logarithmic: u(w) = log(αw + β)

HARA: u(w) =
γ

1−γ
(αw

γ
+ β)

1−γ
, where γ > 1/2
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The Main Theorem

Interpretation of Two-point Distribution

Given s < 0 < s, the principal uses the stopping rule

τ∗ = min {t > 0 ∶ Xt ∉ (a∗t + s, a∗t + s)} .

0 5 10 15 20 25 30

t
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The Main Theorem

Sketch of the Proof 1/3: Nature’s Best Response Skip

Nature best-responds to F ∈ F by solving supλ≥0 {EF [Z(λ, s)}.

This is equivalent to choosing λ ≥ 0 such that (IC) binds:

∫ su (w (λ, s))dF (s) = c ′(a∗) .

If (IC) binds for some λ < ∞, then this is the unique best response.

Otherwise, nature does not have a best response.
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The Main Theorem

Sketch of the Proof 2/3: Principal’s Best Response

Assumptions that ρ is strictly concave and limz→∞ ρ
′(z) = 0

⇒ Z(λ, ⋅) is convex-concave-convex if λ > λc , and convex otherwise.

0 s

Z( ,s)

Z
c
( ,s)

0 s

Z( ,s)

Z
c
( ,s)

1 Principal’s best-response, Fλ = arg supF∈F {EF [Z(λ, s)}, is unique.

2 A degenerate distribution cannot be part of an equilibrium.

Cannot satisfy (IC) for any λ, so nature does not have a best response.
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The Main Theorem

Sketch of the Proof 3/3: Existence & Uniqueness

Recall λ is a best response to F if & only if IC binds at {λ, F}; i.e.,

∫ su (w (λ, s))dF (s) = c ′(a∗) ,

and Fλ denotes the principal’s best response to λ.

Lemmas 10-11: There exists a λ∗ such that

i. IC binds at {λ∗,Fλ∗},

ii. IC is violated at {λ, Fλ} if λ < λ∗, and

iii. IC is slack at {λ, Fλ} if λ > λ∗.

Existence: λ∗ and Fλ∗ are best responses to each other.

Uniqueness: The principal’s best response Fλ is unique, and there

exists no different pair {λ′,Fλ′} such that (IC) binds.
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A First-Best Result

Attaining Efficiency Construction

First-best: Principal pays w and chooses F(s) = Is≥0 at cost = w .

Theorem 2.

Suppose that there exists some ζ > 1 such that

lim
w→∞

[u′(w)]
3

u′′(w)
[u(w)]

−
ζ−1
ζ = −∞ .

For every ε > 0, there exists a single-bonus wage scheme, and a

two-point distribution satisfying (IC) and (LL) such that Π∗ ≤ w + ε.

Condition satisfied if, for example, u(w) = w1−γ and γ < 1/2 (CRRA)

Optimal contract pays w , plus a large bonus with small probability.

i.e., inverse of a Mirrlees shoot-the-agent contract.
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Validating the First-Order Approach

Validating the First-Order Approach Skip

Fix any two-point distribution F ∈ F and wage scheme {W̃ (s)}.

F can be implemented at lowest cost by the stopping rule

τ = inf {t ∶ st ∉ (s, s)} , where {s, s} = supp(F) .

Noting that dst = (a − a∗)dt + dBt , we have

p(a) ∶= Pr {s = s ∣a} =
e−2(a−a

∗)s − 1

e−2(a−a∗)s − e−2(a−a∗)s

(IC) binds in any equilibrium, so wages must satisfy

u (W̃ (s)) − u (W̃ (s)) =
c ′(a∗)

p′(a∗)
.
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Validating the First-Order Approach

Validation of the First-Order Approach (Cont’d)

Thus, the global IC constraint can be written as:

a∗ ∈ arg max
a≥0

{u (W̃ (s)) + p(a)
c ′(a∗)

p′(a∗)
− c(a)} .

FOA is valid if maximand is single-peaked at a∗.

Proposition:

If c ′(a) is sufficiently small (large) for all a < a∗ (a > a∗), and c ′′(a∗)

is sufficiently large, then the first-order approach is valid.

Example: If c(a) = ak and a∗ = 1, then FOA is valid as long as k is

sufficiently large.
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Proposition:

If c ′(a) is sufficiently small (large) for all a < a∗ (a > a∗), and c ′′(a∗)

is sufficiently large, then the first-order approach is valid.

Example: If c(a) = ak and a∗ = 1, then FOA is valid as long as k is
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Comparative Statics

Comparative Statics: Varying the (constant) coeff. of RRA
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Comparative Statics

Comparative Statics: Varying the minimum wage
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Discussion

Robustness

Results hold if principal must satisfy (IR) constraint or effort is binary.

Main theorem holds also if the principal can choose F ∈ F at cost

EF [ϕ(s)] for some convex function such that ϕ′′′(s) ≥ 0 for all s > 0.

What if signals are discrete; i.e., each signal Xi ∼ G(⋅∣a)?

What if the principal observes a costless signal x0 ∼ G(⋅∣a) prior to

acquiring additional costly (Brownian) information?
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Discussion

Wrap Up

Flexible framework for analyzing design of performance measures.

Under certain conditions, optimal contract pays 2 wage levels.

Ideal performance measure is binary — model highlights trade-off.

Rationale for commonly observed single-bonus contracts.

Next steps:

Single-bonus contracts vs gaming?

How to think about performance measure design more broadly?

Techniques (info. design / zero-sum game) useful in other settings?
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Attaining Efficiency: Construction Return

Pick a ζ > 1 such that

lim
w→∞

[u′(w)]
3

u′′(w)
[u(w)]

−
ζ−1
ζ = −∞ (*)

Define the sequence of two-point distributions & wage schemes

Fn(s) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if s < −n−ζ

n
n+n−ζ

if s ∈ [−n−ζ ,n)

1 if s ≥ n

and wn(s) =

⎧⎪⎪
⎨
⎪⎪⎩

w if s = −n−ζ

wn if s = n ,

where wn is chosen such that (IC) binds.

As n →∞, the principal’s expected cost

n

n + n−ζ
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
→1 as n→∞

w +
n−ζ

n + n−ζ
u−1 (u(w) +

n + n−ζ

n1−ζ
c ′(a∗))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 as n→∞ by (*)

+
n1−2ζ + n2−ζ

n + n−ζ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 as n→∞ ∀ ζ>1

→ w
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