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OVERVIEW

Classic moral hazard model:

• Effort is either binary, or belongs to an interval.

• Main result: contracts are motivated by informativeness.

• Consequently, contracts are monotone only under MLRP.

Current paper:

• Allow agent to choose any output distribution.

• Contracts pinned down by an output-by-output FOC.

• Monotone costs ⟹ monotone contracts.

• In particular: Informativeness plays no role.



Two Examples



COMMON SETUP FOR EXAMPLES

A principal (she) contracts with an agent (he).

• Compact set X ⊂ R of possible outputs.

• Principal offers agent a (bounded) contract: w ∶ X → R.

• Agent can opt out and get u0.

• If opts in, agent covertly chooses α ∈ A ⊆ ∆(X).

• Effort costs: C ∶ A → R+, continuous, increasing in FOSD.

• Payoffs:

Principal: x − w Agent: u(w) − C(α).

u: strictly increasing, differentiable, unbounded, concave.



STANDARD BINARY EFFORT MODEL

X = [L,H] , A = {αl, αh}.
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∫ w(x)αh(dx) s.t. IR and IC.

The FOC from this cost minimization problem is:

1
u′ (w (x)) = λ + µ [1 −

fl (x)
fh (x)

]

So: w is monotone ⟺ MLRP holds.
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OUR MODEL

A principal (she) contracts with an agent (he).

• Compact set X ⊂ R of possible outputs.

• Principal offers agent a (bounded) contract: w ∶ X → R+.

• Limited liability: w(⋅) ≥ 0.

• Agent covertly chooses α ∈ A = ∆(X).

• Effort costs: C ∶ A → R+, continuous, increasing in FOSD.

• Payoffs:

Principal: x − w Agent: u(w) − C(α),

u: increasing, continuous, unbounded & u(0) = 0.



ASSUMPTIONS ON THE COST

Without loss: C is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) C is Gateaux differentiable: every
α admits a continuous kα ∶ X → R s.t.

lim
ϵ↓0

1
ϵ [C(α + ϵ(β − α)) − C(α)] = ∫ kα (x) (β − α) (dx)

for all β ∈ A.

(if X is finite: C smooth ⟺ differentiable, which holds a.e.)
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FIRST-ORDER APPROACH

Lemma. For a bounded v ∶ X → R, and α ∈ A,

α ∈ argmax
β∈A

[∫ v(x)β (dx) − C(β)]

if and only if

α ∈ argmax
β∈A

[∫ v(x)β(dx) − ∫ kα(x)β(dx)]

(the “only if” direction also works if C is not convex)
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PROOF: SUFFICIENCY

Because C is convex, every β ∈ A has

C(β) − C(α) ≥ ∫ kα(x)(β − α)(dx).
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BACK TO MODEL

A principal (she) contracts with an agent (he).

• Compact set X ⊂ R of possible outputs.

• Agent covertly chooses α ∈ A = ∆(X).

• Effort costs C ∶ A → R+: convex, increasing, smooth.

• Limited liability: w ≥ 0.

• Feasible contracts: W = {w ∶ X → R+ ∶ bounded}.
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u: increasing, continuous, unbounded & u(0) = 0.
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for all x, and with equality α-almost surely.
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Profit Maximization



THE PRINCIPAL’S PROBLEM

Let wα ∶= wm∗
α,α be the cost minimizing wage implementing α.

The principal’s problem is:

max
α∈A

[∫ xα(dx) − ∫ wα(x)α(dx)] .



ADDITIONAL ASSUMPTIONS

Nice Agent’s Payoffs. u is continuously differentiable, and
u′

> 0.

Continuous Derivative. The mapping α ↦ kα is
weak*-supnorm continuous.

2nd Order Differentiability. Every α admits a continuous
function hα ∶ X × X → R such that for

lim
ϵ→0

1
ϵ [kα+ϵ(β−α)(⋅) − kα(⋅)] = ∫ h(⋅, y)(β − α)(dy),

where convergence is in the supnorm.

(for finite X: equivalent to twice differentiability).
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PRINCIPAL FIRST ORDER CONDITION

Define the function:

χα(x) = ∫ hα(x, y)
u′ ◦ wα(y)

α(dy).

Theorem.

A profit maximizing α
∗ exists. Moreover, α∗ must solve

max
α∈A

∫ [x − wα∗(x) − χα∗(x)]α(dx).



NICE PROFIT MAXIMIZING DISTRIBUTIONS

For every α, let

πα(x) ∶= x − wα(x) − χα(x).

Corollary. Suppose X = [L,H] and α
∗ maximizes profits. Then,

(i) If πα is strictly quasiconcave ∀α, then ∣supp α
∗∣ = 1.

(ii) If πα is strictly quasiconvex ∀α, then supp α
∗
⊆ {L,H}.

(iii) If wα + χα is a non-affine & analytic ∀α, α∗ is discrete.
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FLEXIBLE MORAL HAZARD PROBLEMS

We showed that in flexible moral hazard problems:

• Incentive compatability pins down contract.

• Cost minimization is trivial.

• Every distribution can be implemented.

• Wages are monotone without loss.

Also obtained results about principal optimality.

• First order approach is valid.

• Optimality of single, binary, and discrete distributions.
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