Flexible Moral Hazard Problems

George Georgiadis

Northwestern University

Doron Ravid
University of Chicago

Balázs Szentes
University of Hong Kong

Overview

Classic moral hazard model:

- Effort is either binary, or belongs to an interval.
- Main result: contracts are motivated by informativeness.
- Consequently, contracts are monotone only under MLRP.

Current paper:

- Allow agent to choose any output distribution.
- Contracts pinned down by an output-by-output FOC.
- Monotone costs \Longrightarrow monotone contracts.
- In particular: Informativeness plays no role.

Two Examples

Common Setup for Examples

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w: X \rightarrow \mathbb{R}$.
- Agent can opt out and get u_{0}.
- If opts in, agent covertly chooses $\alpha \in \mathcal{A} \subseteq \Delta(X)$.
- Effort costs: $C: \mathcal{A} \rightarrow \mathbb{R}_{+}$, continuous, increasing in FOSD.
- Payoffs:

$$
\text { Principal: } x-w \quad \text { Agent: } u(w)-C(\alpha)
$$

u : strictly increasing, differentiable, unbounded, concave.

Standard Binary Effort Model

$$
X=[L, H], \quad \mathcal{A}=\left\{\alpha_{l}, \alpha_{h}\right\} .
$$

Standard Binary Effort Model

$$
X=[L, H], \quad \mathcal{A}=\left\{\alpha_{l}, \alpha_{h}\right\} .
$$

Suppose principal wants to implement α_{h}.

Standard Binary Effort Model

$$
X=[L, H], \quad \mathcal{A}=\left\{\alpha_{l}, \alpha_{h}\right\} .
$$

Suppose principal wants to implement α_{h}.
Then she offers a contract w that solves:

$$
\min _{w(\cdot)} \int w(x) \alpha_{h}(\mathrm{~d} x) \quad \text { s.t. } \quad \text { IR and IC. }
$$

Standard Binary Effort Model

$$
X=[L, H], \quad \mathcal{A}=\left\{\alpha_{l}, \alpha_{h}\right\} .
$$

Suppose principal wants to implement α_{h}.
Then she offers a contract w that solves:

$$
\min _{w(\cdot)} \int w(x) \alpha_{h}(\mathrm{~d} x) \quad \text { s.t. } \quad \text { IR and IC. }
$$

The FOC from this cost minimization problem is:

$$
\frac{1}{u^{\prime}(w(x))}=\lambda+\mu\left[1-\frac{f_{l}(x)}{f_{h}(x)}\right]
$$

Standard Binary Effort Model

$$
X=[L, H], \quad \mathcal{A}=\left\{\alpha_{l}, \alpha_{h}\right\} .
$$

Suppose principal wants to implement α_{h}.
Then she offers a contract w that solves:

$$
\min _{w(\cdot)} \int w(x) \alpha_{h}(\mathrm{~d} x) \quad \text { s.t. } \quad \text { IR and IC. }
$$

The FOC from this cost minimization problem is:

$$
\frac{1}{u^{\prime}(w(x))}=\lambda+\mu\left[1-\frac{f_{l}(x)}{f_{h}(x)}\right]
$$

So: w is monotone \Longleftrightarrow MLRP holds.

Flexible Binary Output Model

$$
X=\{L, H\}, \quad \mathcal{A}=\Delta(X) \equiv[0,1] .
$$

Flexible Binary Output Model

$$
X=\{L, H\}, \quad \mathcal{A}=\Delta(X) \equiv[0,1] .
$$

Suppose also C is convex and differentiable.

Flexible Binary Output Model

$$
X=\{L, H\}, \quad \mathcal{A}=\Delta(X) \equiv[0,1] .
$$

Suppose also C is convex and differentiable.
Agent's FOC for choosing $\alpha \in(0,1)$:
$u \circ w(H)-u \circ w(L)=C^{\prime}(\alpha)$

Flexible Binary Output Model

$$
X=\{L, H\}, \quad \mathcal{A}=\Delta(X) \equiv[0,1] .
$$

Suppose also C is convex and differentiable.
Agent's FOC for choosing $\alpha \in(0,1)$:

$$
u \circ w(H)-u \circ w(L)=C^{\prime}(\alpha) \Longrightarrow w(H)=u^{-1}\left(u \circ w(L)+C^{\prime}(\alpha)\right) .
$$

Flexible Binary Output Model

$$
X=\{L, H\}, \quad \mathcal{A}=\Delta(X) \equiv[0,1] .
$$

Suppose also C is convex and differentiable.
Agent's FOC for choosing $\alpha \in(0,1)$:
$u \circ w(H)-u \circ w(L)=C^{\prime}(\alpha) \Longrightarrow w(H)=u^{-1}\left(u \circ w(L)+C^{\prime}(\alpha)\right)$.
Implications:

- Cost minimization is trivial: $\min w(L)$ s.t. IR.

Flexible Binary Output Model

$$
X=\{L, H\}, \quad \mathcal{A}=\Delta(X) \equiv[0,1] .
$$

Suppose also C is convex and differentiable.
Agent's FOC for choosing $\alpha \in(0,1)$:
$u \circ w(H)-u \circ w(L)=C^{\prime}(\alpha) \Longrightarrow w(H)=u^{-1}\left(u \circ w(L)+C^{\prime}(\alpha)\right)$.
Implications:

- Cost minimization is trivial: $\min w(L)$ s.t. IR.
- IC contracts are monotone:

$$
w(H)=u^{-1}\left(u \circ w(L)+C^{\prime}(\alpha)\right) \geq u^{-1}(u \circ w(L))=w(L) .
$$

Model

OUR MODEL

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w: X \rightarrow \mathbb{R}_{+}$.
- Limited liability: $w(\cdot) \geq 0$.
- Agent covertly chooses $\alpha \in \mathcal{A}=\Delta(X)$.
- Effort costs: $C: \mathcal{A} \rightarrow \mathbb{R}_{+}$, continuous, increasing in FOSD.
- Payoffs:

$$
\text { Principal: } x-w \quad \text { Agent: } u(w)-C(\alpha)
$$

u : increasing, continuous, unbounded $\& u(0)=0$.

Assumptions on the Cost

Assumptions on the Cost

Without loss: C is convex.
(if not, replace α with cheapest mixing that averages to α)

Assumptions on the Cost

Without loss: C is convex.
(if not, replace α with cheapest mixing that averages to α)
Assumption. (smoothness) C is Gateaux differentiable: every α admits a continuous $k_{\alpha}: X \rightarrow \mathbb{R}$ s.t.

$$
\lim _{\epsilon \downarrow 0} \frac{1}{\epsilon}[C(\alpha+\epsilon(\beta-\alpha))-C(\alpha)]=\int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

for all $\beta \in \mathcal{A}$.

Assumptions on the Cost

Without loss: C is convex.
(if not, replace α with cheapest mixing that averages to α)
Assumption. (smoothness) C is Gateaux differentiable: every α admits a continuous $k_{\alpha}: X \rightarrow \mathbb{R}$ s.t.

$$
\lim _{\epsilon \downarrow 0} \frac{1}{\epsilon}[C(\alpha+\epsilon(\beta-\alpha))-C(\alpha)]=\int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

for all $\beta \in \mathcal{A}$.
(if X is finite: C smooth \Longleftrightarrow differentiable, which holds a.e.)

First-Order Approach

Lemma. For a bounded $v: X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$
\alpha \in \arg \max _{\beta \in \mathcal{A}}\left[\int v(x) \beta(\mathrm{d} x)-C(\beta)\right]
$$

if and only if

$$
\alpha \in \arg \max _{\beta \in \mathcal{A}}\left[\int v(x) \beta(\mathrm{d} x)-\int k_{\alpha}(x) \beta(\mathrm{d} x)\right]
$$

(the "only if" direction also works if C is not convex)

Relationship to Standard FOC

Consider the problem:

$$
\max _{x \in[0,1]}[x v-c(x)]
$$

where $v \in \mathbb{R}$ and c is convex and differentiable.

Relationship to Standard FOC

Consider the problem:

$$
\max _{x \in[0,1]}[x v-c(x)]
$$

where $v \in \mathbb{R}$ and c is convex and differentiable.
Standard way of writing FOC for optimal $x^{*} \in(0,1)$ is

$$
v-c^{\prime}\left(x^{*}\right)=0 .
$$

Relationship to Standard FOC

Consider the problem:

$$
\max _{x \in[0,1]}[x v-c(x)]
$$

where $v \in \mathbb{R}$ and c is convex and differentiable.
Standard way of writing FOC for optimal $x^{*} \in(0,1)$ is

$$
v-c^{\prime}\left(x^{*}\right)=0 .
$$

An equivalent way of writing the above condition is:

$$
x^{*} \in \operatorname{argmax}_{x \in[0,1]}\left[x v-x c^{\prime}\left(x^{*}\right)\right] .
$$

The lemma generalizes the second formulation.

First-Order Approach

Lemma. For a bounded $v: X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$
\alpha \in \arg \max _{\beta \in \mathcal{A}}\left[\int v(x) \beta(\mathrm{d} x)-C(\beta)\right]
$$

if and only if

$$
\alpha \in \arg \max _{\beta \in \mathcal{A}}\left[\int v(x) \beta(\mathrm{d} x)-\int k_{\alpha}(x) \beta(\mathrm{d} x)\right]
$$

(the "only if" direction also works if C is not convex)

Proof: Necessity

Fix $\beta \in \mathcal{A}$, and for every $\epsilon \in[0,1]$, define $\beta_{\epsilon}:=\alpha+\epsilon(\beta-\alpha)$.
Consider the following inequality chain for $\epsilon>0$:

Proof: Necessity

Fix $\beta \in \mathcal{A}$, and for every $\epsilon \in[0,1]$, define $\beta_{\epsilon}:=\alpha+\epsilon(\beta-\alpha)$.
Consider the following inequality chain for $\epsilon>0$:

$$
0 \geq \frac{1}{\epsilon}\left[\int v(x)\left(\beta_{\epsilon}-\alpha\right)(\mathrm{d} x)\right]-\frac{1}{\epsilon}\left[C\left(\beta_{\epsilon}\right)-C(\alpha)\right]
$$

(because $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}}\left[\int v(x) \beta(\mathrm{d} x)-C(\beta)\right]$)

Proof: Necessity

Fix $\beta \in \mathcal{A}$, and for every $\epsilon \in[0,1]$, define $\beta_{\epsilon}:=\alpha+\epsilon(\beta-\alpha)$.
Consider the following inequality chain for $\epsilon>0$:

$$
\begin{aligned}
0 & \geq \frac{1}{\epsilon}\left[\int v(x)\left(\beta_{\epsilon}-\alpha\right)(\mathrm{d} x)\right]-\frac{1}{\epsilon}\left[C\left(\beta_{\epsilon}\right)-C(\alpha)\right] \\
& =\int v(x)(\beta-\alpha)(\mathrm{d} x)-\frac{1}{\epsilon}\left[C\left(\beta_{\epsilon}\right)-C(\alpha)\right]
\end{aligned}
$$

(by definition of β_{ϵ})

Proof: Necessity

Fix $\beta \in \mathcal{A}$, and for every $\epsilon \in[0,1]$, define $\beta_{\epsilon}:=\alpha+\epsilon(\beta-\alpha)$.
Consider the following inequality chain for $\epsilon>0$:

$$
\begin{aligned}
0 & \geq \frac{1}{\epsilon}\left[\int v(x)\left(\beta_{\epsilon}-\alpha\right)(\mathrm{d} x)\right]-\frac{1}{\epsilon}\left[C\left(\beta_{\epsilon}\right)-C(\alpha)\right] \\
& =\int v(x)(\beta-\alpha)(\mathrm{d} x)-\frac{1}{\epsilon}\left[C\left(\beta_{\epsilon}\right)-C(\alpha)\right] \\
& \xrightarrow{\epsilon \rightarrow 0} \int v(x)(\beta-\alpha)(\mathrm{d} x)-\int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x) .
\end{aligned}
$$

(by Gateaux differentiability)

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

Explanation: By convexity,

$$
\epsilon C(\beta)+(1-\epsilon) C(\alpha) \geq C(\epsilon \beta+(1-\epsilon) \alpha) .
$$

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

Explanation: By convexity,

$$
\begin{aligned}
& \epsilon C(\beta)+(1-\epsilon) C(\alpha) \geq C(\epsilon \beta+(1-\epsilon) \alpha) . \\
\Longleftrightarrow & \epsilon[C(\beta)-C(\alpha)] \geq C(\epsilon \beta+(1-\epsilon) \alpha)-C(\alpha) .
\end{aligned}
$$

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

Explanation: By convexity,

$$
\begin{aligned}
& \epsilon C(\beta)+(1-\epsilon) C(\alpha) \geq C(\epsilon \beta+(1-\epsilon) \alpha) . \\
\Longleftrightarrow & \epsilon[C(\beta)-C(\alpha)] \geq C(\epsilon \beta+(1-\epsilon) \alpha)-C(\alpha) .
\end{aligned}
$$

Divide by ϵ,
$C(\beta)-C(\alpha) \geq \frac{1}{\epsilon}[C(\epsilon \beta+(1-\epsilon) \alpha)-C(\alpha)]$

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

Explanation: By convexity,

$$
\begin{aligned}
& \epsilon C(\beta)+(1-\epsilon) C(\alpha) \geq C(\epsilon \beta+(1-\epsilon) \alpha) . \\
\Longleftrightarrow & \epsilon[C(\beta)-C(\alpha)] \geq C(\epsilon \beta+(1-\epsilon) \alpha)-C(\alpha) .
\end{aligned}
$$

Divide by ϵ, and take $\epsilon \rightarrow 0$,
$C(\beta)-C(\alpha) \geq \frac{1}{\epsilon}[C(\epsilon \beta+(1-\epsilon) \alpha)-C(\alpha)] \rightarrow \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)$.

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

So, if $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \int\left(v-k_{\alpha}\right)(x) \beta(\mathrm{d} x)$, then for all β,
$0 \geq \int\left(v-k_{\alpha}\right)(x)(\beta-\alpha)(\mathrm{d} x)$

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

So, if $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \int\left(v-k_{\alpha}\right)(x) \beta(\mathrm{d} x)$, then for all β,
$0 \geq \int\left(v-k_{\alpha}\right)(x)(\beta-\alpha)(\mathrm{d} x)=\int v(x)(\beta-\alpha)(\mathrm{d} x)-\int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)$

Proof: Sufficiency

Because C is convex, every $\beta \in \mathcal{A}$ has

$$
C(\beta)-C(\alpha) \geq \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x)
$$

So, if $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \int\left(v-k_{\alpha}\right)(x) \beta(\mathrm{d} x)$, then for all β,

$$
\begin{aligned}
0 \geq \int\left(v-k_{\alpha}\right)(x)(\beta-\alpha)(\mathrm{d} x) & =\int v(x)(\beta-\alpha)(\mathrm{d} x)-\int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d} x) \\
& \geq \int v(x)(\beta-\alpha)(\mathrm{d} x)-[C(\beta)-C(\alpha)] .
\end{aligned}
$$

First-Order Approach

Lemma. For a bounded $v: X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$
\alpha \in \arg \max _{\beta \in \mathcal{A}}\left[\int v(x) \beta(\mathrm{d} x)-C(\beta)\right]
$$

if and only if

$$
\alpha \in \arg \max _{\beta \in \mathcal{A}}\left[\int v(x) \beta(\mathrm{d} x)-\int c_{\alpha}(x) \beta(\mathrm{d} x)\right]
$$

(the "only if" direction also works if C is not convex)

Back to Model

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Agent covertly chooses $\alpha \in \mathcal{A}=\Delta(X)$.
- Effort costs $C: \mathcal{A} \rightarrow \mathbb{R}_{+}$: convex, increasing, smooth.
- Limited liability: $w \geq 0$.
- Feasible contracts: $W=\left\{w: X \rightarrow \mathbb{R}_{+}:\right.$bounded $\}$.
- Payoffs:

$$
\text { Principal: } x-w \quad \text { Agent: } u(w)-C(\alpha) .
$$

u : increasing, continuous, unbounded $\& u(0)=0$.

CHARACTERIZATION OF IC

A contract-distribution pair $(w, \alpha) \in W \times \mathcal{A}$ is IC if and only if

$$
\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}}\left[\int u \circ w(x) \beta(\mathrm{d} x)-C(\beta)\right] .
$$

CHARACTERIZATION OF IC

A contract-distribution pair $(w, \alpha) \in W \times \mathcal{A}$ is IC if and only if

$$
\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}}\left[\int u \circ w(x) \beta(\mathrm{d} x)-C(\beta)\right] .
$$

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)
$$

for all x, and with equality α-almost surely.

Proof of Proposition

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)
$$

for all x, and with equality α-almost surely.

Proof.

Proof of Proposition

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)
$$

for all x, and with equality α-almost surely.
Proof. By Lemma, (w, α) is IC if and only if α solves

$$
\max _{\beta \in \mathcal{A}} \int\left[u \circ w(x)-k_{\alpha}(x)\right] \beta(\mathrm{d} x)
$$

Proof of Proposition

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)
$$

for all x, and with equality α-almost surely.
Proof. By Lemma, (w, α) is IC if and only if α solves

$$
\max _{\beta \in \mathcal{A}} \int\left[u \circ w(x)-k_{\alpha}(x)\right] \beta(\mathrm{d} x)
$$

or equivalently, the following holds α-almost surely:

$$
u \circ w(x)-k_{\alpha}(x)=\sup \left(u \circ w-k_{\alpha}\right)(X)
$$

Proof of Proposition

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)
$$

for all x, and with equality α-almost surely.
Proof. By Lemma, (w, α) is IC if and only if α solves

$$
\max _{\beta \in \mathcal{A}} \int\left[u \circ w(x)-k_{\alpha}(x)\right] \beta(\mathrm{d} x)
$$

or equivalently, the following holds α-almost surely:

$$
\begin{aligned}
u \circ w(x)-k_{\alpha}(x) & =\sup \left(u \circ w-k_{\alpha}\right)(X) \\
\Longleftrightarrow w(x) & =u^{-1}\left(k_{\alpha}(x)+\sup \left(u \circ w-k_{\alpha}\right)(X)\right) .
\end{aligned}
$$

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)
$$

for all x, and with equality α-almost surely.

Implications:

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)=: w_{m, \alpha}(x)
$$

for all x, and with equality α-almost surely.

Implications:

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)=: w_{m, \alpha}(x)
$$

for all x, and with equality α-almost surely.

Implications:

(i) If (w, α) is IC, $\left(w_{m, \alpha}, \alpha\right)$ is also IC, and gives the principal the same payoff.

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)=: w_{m, \alpha}(x)
$$

for all x, and with equality α-almost surely.

Implications:

(i) If (w, α) is IC, $\left(w_{m, \alpha}, \alpha\right)$ is also IC, and gives the principal the same payoff.
(ii) Cheapest contract implement α is $w_{m_{\alpha}^{*}, \alpha}$ for

$$
m_{\alpha}^{*}=-\min k_{\alpha}(X)
$$

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)=: w_{m, \alpha}(x)
$$

for all x, and with equality α-almost surely.

Implications:

(i) If (w, α) is IC, $\left(w_{m, \alpha}, \alpha\right)$ is also IC, and gives the principal the same payoff.
(ii) Cheapest contract implement α is $w_{m_{\alpha}^{*}, \alpha}$ for

$$
m_{\alpha}^{*}=-\min k_{\alpha}(X) .
$$

(iii) Every α can be implemented

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)=: w_{m, \alpha}(x)
$$

for all x, and with equality α-almost surely.

Implications:

(i) If (w, α) is IC, $\left(w_{m, \alpha}, \alpha\right)$ is also IC, and gives the principal the same payoff.
(ii) Cheapest contract implement α is $w_{m_{\alpha}^{*}, \alpha}$ for

$$
m_{\alpha}^{*}=-\min k_{\alpha}(X) .
$$

(iii) Every α can be implemented with a monotone contract

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$
w(x) \leq u^{-1}\left(k_{\alpha}(x)+m\right)=: w_{m, \alpha}(x)
$$

for all x, and with equality α-almost surely.

Implications:

(i) If (w, α) is IC, $\left(w_{m, \alpha}, \alpha\right)$ is also IC, and gives the principal the same payoff.
(ii) Cheapest contract implement α is $w_{m_{\alpha}^{*}, \alpha}$ for

$$
m_{\alpha}^{*}=-\min k_{\alpha}(X) .
$$

(iii) Every α can be implemented with a monotone contract (since C is FOSD monotone, k_{α} is increasing).

Profit Maximization

The Principal's Problem

Let $w_{\alpha}:=w_{m_{\alpha}^{*}, \alpha}$ be the cost minimizing wage implementing α.
The principal's problem is:

$$
\max _{\alpha \in \mathcal{A}}\left[\int x \alpha(\mathrm{~d} x)-\int w_{\alpha}(x) \alpha(\mathrm{d} x)\right] .
$$

Additional Assumptions

Nice Agent's Payoffs. u is continuously differentiable, and $u^{\prime}>0$.

Additional Assumptions

Nice Agent's Payoffs. u is continuously differentiable, and $u^{\prime}>0$.

Continuous Derivative. The mapping $\alpha \mapsto k_{\alpha}$ is weak*-supnorm continuous.

Additional Assumptions

Nice Agent's Payoffs. u is continuously differentiable, and $u^{\prime}>0$.

Continuous Derivative. The mapping $\alpha \mapsto k_{\alpha}$ is weak*-supnorm continuous.

2nd Order Differentiability. Every α admits a continuous function $h_{\alpha}: X \times X \rightarrow \mathbb{R}$ such that for

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[k_{\alpha+\epsilon(\beta-\alpha)}(\cdot)-k_{\alpha}(\cdot)\right]=\int h(\cdot, y)(\beta-\alpha)(\mathrm{d} y)
$$

where convergence is in the supnorm.
(for finite X : equivalent to twice differentiability).

Principal First Order Condition

Define the function:

$$
\chi_{\alpha}(x)=\int \frac{h_{\alpha}(x, y)}{u^{\prime} \circ w_{\alpha}(y)} \alpha(\mathrm{d} y) .
$$

Theorem.
A profit maximizing α^{*} exists. Moreover, α^{*} must solve

$$
\max _{\alpha \in \mathcal{A}} \int\left[x-w_{\alpha^{*}}(x)-\chi_{\alpha^{*}}(x)\right] \alpha(\mathrm{d} x)
$$

Nice Profit Maximizing Distributions

For every α, let

$$
\pi_{\alpha}(x):=x-w_{\alpha}(x)-\chi_{\alpha}(x)
$$

Nice Profit Maximizing Distributions

For every α, let

$$
\pi_{\alpha}(x):=x-w_{\alpha}(x)-\chi_{\alpha}(x)
$$

Corollary. Suppose $X=[L, H]$ and α^{*} maximizes profits. Then,

Nice Profit Maximizing Distributions

For every α, let

$$
\pi_{\alpha}(x):=x-w_{\alpha}(x)-\chi_{\alpha}(x)
$$

Corollary. Suppose $X=[L, H]$ and α^{*} maximizes profits. Then,
(i) If π_{α} is strictly quasiconcave $\forall \alpha$, then $\left|\operatorname{supp} \alpha^{*}\right|=1$.

Nice Profit Maximizing Distributions

For every α, let

$$
\pi_{\alpha}(x):=x-w_{\alpha}(x)-\chi_{\alpha}(x)
$$

Corollary. Suppose $X=[L, H]$ and α^{*} maximizes profits. Then,
(i) If π_{α} is strictly quasiconcave $\forall \alpha$, then $\left|\operatorname{supp} \alpha^{*}\right|=1$.
(ii) If π_{α} is strictly quasiconvex $\forall \alpha$, then $\operatorname{supp} \alpha^{*} \subseteq\{L, H\}$.

Nice Profit Maximizing Distributions

For every α, let

$$
\pi_{\alpha}(x):=x-w_{\alpha}(x)-\chi_{\alpha}(x)
$$

Corollary. Suppose $X=[L, H]$ and α^{*} maximizes profits. Then,
(i) If π_{α} is strictly quasiconcave $\forall \alpha$, then $\left|\operatorname{supp} \alpha^{*}\right|=1$.
(ii) If π_{α} is strictly quasiconvex $\forall \alpha$, then supp $\alpha^{*} \subseteq\{L, H\}$.
(iii) If $w_{\alpha}+\chi_{\alpha}$ is a non-affine \& analytic $\forall \alpha, \alpha^{*}$ is discrete.

Flexible Moral Hazard Problems

We showed that in flexible moral hazard problems:

- Incentive compatability pins down contract.
- Cost minimization is trivial.
- Every distribution can be implemented.
- Wages are monotone without loss.

Flexible Moral Hazard Problems

We showed that in flexible moral hazard problems:

- Incentive compatability pins down contract.
- Cost minimization is trivial.
- Every distribution can be implemented.
- Wages are monotone without loss.

Also obtained results about principal optimality.

- First order approach is valid.
- Optimality of single, binary, and discrete distributions.

Related Literature

- Flexible models with specific functional forms:
- CARA utility, monetary effort costs, finite X: Holmstrom and Milgrom (1987).
- Mean-measurable costs: Diamond (1998), Barron, Georgiadis, and Swinkels (2020).
- f-Divergence costs, finite X: Hebert (2018), Bonham (2021), Mattsson and Weibull (2022), Bonham and Riggs-Cragun (2023).
- Flexible Monitoring: Georgiadis and Szentes (2020), Mahzoon, Shourideh, and Zetlin-Joines (2022), Wong (2023).
- Robust contracting: Carroll (2015), Antic (2022), Antic and Georgiadis (2022), Carroll and Walton (2022).

Thanks!

