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OVERVIEW

Classic moral hazard model:
¢ Effort is either binary, or belongs to an interval.
® Main result: contracts are motivated by informativeness.

* Consequently, contracts are monotone only under MLRP.

Current paper:
* Allow agent to choose any output distribution.
® Contracts pinned down by an output-by-output FOC.
® Monotone costs = monotone contracts.

® In particular: Informativeness plays no role.
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COMMON SETUP FOR EXAMPLES

A principal (she) contracts with an agent (he).
® Compact set X C R of possible outputs.
® Principal offers agent a (bounded) contract: w : X - R.
® Agent can opt out and get u.

e If opts in, agent covertly chooses a € A ¢ A(X).

Effort costs: C : A - R, continuous, increasing in FOSD.

Payoffs:
Principal: x — w Agent: u(w) — C(«).

u: strictly increasing, differentiable, unbounded, concave.
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STANDARD BINARY EFFORT MODEL
X =[L,H], A = {oy, ap}.

Suppose principal wants to implement «y,.

Then she offers a contract w that solves:

min / w)ay(dx) st IRand IC.

The FOC from this cost minimization problem is:

T [1‘%}

So: w is monotone < MLRP holds.
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FLEXIBLE BINARY OUTPUT MODEL
X={L,H}, A=AX)=[0,1]

Suppose also C is convex and differentiable.
Agent’s FOC for choosing « € (0, 1):
uow(H)-uow(l)=Cla) = w(H)= u_l(u ow(L) + C'(r)).
Implications:

¢ Cost minimization is trivial: min w(L) s.t. IR.

¢ |C contracts are monotone:

w(H) = u_l(u ow(L) + C'(a)) 2 u_l(u ow(L)) = w(L).



Model



OUR MODEL

A principal (she) contracts with an agent (he).
® Compact set X C R of possible outputs.
® Principal offers agent a (bounded) contract: w : X - R,.
¢ Limited liability: w(:) = 0.

* Agent covertly chooses a € A = A(X).

Effort costs: C : A - R, continuous, increasing in FOSD.

Payoffs:
Principal: x — w Agent: u(w) — C(w),

u: increasing, continuous, unbounded & u(0) = 0.
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ASSUMPTIONS ON THE COST

Without loss: C is convex.

(if not, replace o with cheapest mixing that averages to «)

Assumption. (smoothness) C is Gateaux differentiable: every
a admits a continuous k, : X - R s.t.

hm L [Cla+ €8 - 0)] = /k (8 = a) (dx)

forall 5 € A.
(if X is finite: C smooth < differentiable, which holds a.e.)



FIRST-ORDER APPROACH

Lemma. Foraboundedv: X - R, and « € A,

o € arg max [/v(x),@ (dx) - C(ﬁ)}

BeA

if and only if

o € arg max [ / o(x)B(dx) - / ka(x)ﬁ(dx)}

BeA

(the “only if” direction also works if C is not convex)
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RELATIONSHIP TO STANDARD FOC

Consider the problem:

max [xv — ¢(x)]
x€[0,1]

where v € R and c is convex and differentiable.

Standard way of writing FOC for optimal x* € (0, 1) is
v—c(x")=0.
An equivalent way of writing the above condition is:
x* e argmax, g 3[xv - xc'(x*)].

The lemma generalizes the second formulation.
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PROOF: NECESSITY

Fix 8 € A, and for every € € [0, 1], define j, := a + ¢(5 — ).

Consider the following inequality chain for € > 0:
02 ¢ | [ota(e - alla) | - FLC(5) - Cla)
= [ o5 - a)dx) - £ [C(5) - Cle)]
-0

5 [0l - () - [ ka5 - a)(d).

(by Gateaux differentiability)
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Because C is convex, every /3 € A has

)2 [ kal)(8 - o))

Explanation: By convexity,
«C(B) + (1= )C(a) > Clef + (1 - e)a).
& ¢[C(B) = Cla)] 2 Clef + (1 = e)ar) = C(a).
Divide by ¢, and take ¢ - 0,

C(B)-Cla) = 2 [C

[Cef + (1 = €)a) - C(e)] */ka(X)(/B—a)(dx).
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PROOF: SUFFICIENCY

Because C is convex, every /3 € A has
C(8) - Cla) = [ kale)(3 - a)ick).
So, if v € argmax g 4 [(v = k4)(x)B(dx), then for all 3,

02 [ (o= k)6 - a)idx) = [o(x)(5 - a)(et) = [ kale)(8 - )t
> [olx)(3 - a)ldx) - [C(5) - Cla],



FIRST-ORDER APPROACH

Lemma. Foraboundedv: X - R, and « € A,

o € arg max [/v(x),é’ (dx) - C(ﬁ)}

BeA

if and only if

o € arg max [ / o(x)3(dx) — / ca(x)ﬁ(dx)]
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BACK TO MODEL

A principal (she) contracts with an agent (he).
® Compact set X C R of possible outputs.

® Agent covertly chooses a € A = A(X).

Effort costs C : A - R,: conve, increasing, smooth.

Limited liability: w = 0.

Feasible contracts: W = {w : X -» R, : bounded}.

Payoffs:
Principal: x — w Agent: u(w) — C(w).

u: increasing, continuous, unbounded & u(0) = 0.
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PROOF OF PROPOSITION
Proposition. (w, «) is IC if and only if a m € R exists such that
w(x) < u_l(ka(x) +m)
for all x, and with equality a-almost surely.

Proof. By Lemma, (w, «) is IC if and only if v solves

mas [ [0 w(x) = ka ()] A(d),

BeA

or equivalently, the following holds a-almost surely:

u o w(x) — ko (x) = sup(u o w - ko )(X)
-1

u  (kqo(x) + sup(u o w -k, )(X)) .

= w(x)
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Proposition. (w, «) is IC if and only if a m € R exists such that

w(x) < u_l(ka(x) + 1) =2 Wy ()

for all x, and with equality a-almost surely.

Implications:

(i) If (w, ) is IC, (wy, o, ) is also IC, and gives the principal
the same payoff.

(ii) Cheapest contract implement « is wy,» , for
i, = —min ko (X).

(iif) Every a can be implemented with a monotone contract

(since C is FOSD monotone, k,, is increasing).



Profit Maximization



THE PRINCIPAL’S PROBLEM

Let w,, := wy* o be the cost minimizing wage implementing c.

The principal’s problem is:

max [ / xa(dx) - / wa(x)a(dx)]
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ADDITIONAL ASSUMPTIONS

Nice Agent’s Payoffs. u is continuously differentiable, and
u' > 0.

Continuous Derivative. The mapping o & k, is
weak*-supnorm continuous.

2nd Order Differentiability. Every o admits a continuous
function h,, : X x X - R such that for

1
lim = [ka+e(5 a) /h (B — a)(dy),

-0
where convergence is in the supnorm.

(for finite X: equivalent to twice differentiability).



PRINCIPAL FIRST ORDER CONDITION

Define the function:
ha(x, )
alx) = [ ————aldy).
Xalt) = [ sl
Theorem.
A profit maximizing o* exists. Moreover, o* must solve

max [ [ = (x) = xar ()] a{dx).

acA
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NICE PROFIT MAXIMIZING DISTRIBUTIONS

For every o, let
Ta(x) 1= X = we(x) = xalx).
Corollary. Suppose X = [L, H] and a* maximizes profits. Then,
(i) If m, is strictly quasiconcave Yo, then |supp o*| = 1.
(i) If 7, is strictly quasiconvex Vo, then supp o* ¢ {L, H}.

(iii) If w, + X, is @ non-affine & analytic Va, o* is discrete.
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FLEXIBLE MORAL HAZARD PROBLEMS

We showed that in flexible moral hazard problems:
* Incentive compatability pins down contract.
® Cost minimization is trivial.
*® Every distribution can be implemented.

® Wages are monotone without loss.

Also obtained results about principal optimality.
® First order approach is valid.

® Optimality of single, binary, and discrete distributions.



RELATED LITERATURE

* Flexible models with specific functional forms:

® CARA utility, monetary effort costs, finite X: Holmstrom
and Milgrom (1987).

® Mean-measurable costs: Diamond (1998), Barron,
Georgiadis, and Swinkels (2020).

¢ f-Divergence costs, finite X: Hebert (2018), Bonham (2021),
Mattsson and Weibull (2022), Bonham and Riggs-Cragun
(2023).

¢ Flexible Monitoring: Georgiadis and Szentes (2020),
Mahzoon, Shourideh, and Zetlin-Joines (2022), Wong
(2023).

® Robust contracting: Carroll (2015), Antic (2022), Antic and
Georgiadis (2022), Carroll and Walton (2022).



Thanks!



