Flexible Moral Hazard Problems

George Georgiadis Northwestern University Doron Ravid University of Chicago

Balázs Szentes University of Hong Kong

OVERVIEW

Classic moral hazard model:

- Effort is either binary, or belongs to an interval.
- Main result: contracts are motivated by informativeness.
- Consequently, contracts are monotone only under MLRP.

Current paper:

- Allow agent to choose *any* output distribution.
- Contracts pinned down by an output-by-output FOC.
- Monotone costs \implies monotone contracts.
- In particular: Informativeness plays no role.

Two Examples

COMMON SETUP FOR EXAMPLES

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w : X \rightarrow \mathbb{R}$.
- Agent can opt out and get *u*₀.
- If opts in, agent covertly chooses $\alpha \in \mathcal{A} \subseteq \Delta(X)$.
- Effort costs: $C : A \rightarrow \mathbb{R}_+$, continuous, increasing in FOSD.
- Payoffs:

Principal:
$$x - w$$
 Agent: $u(w) - C(\alpha)$.

u: strictly increasing, differentiable, unbounded, concave.

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h .

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h . Then she offers a contract *w* that solves:

$$\min_{w(\cdot)} \int w(x) \alpha_h(\mathrm{d}x) \quad \text{s.t.} \quad \text{IR and IC}$$

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h . Then she offers a contract *w* that solves:

$$\min_{w(\cdot)} \int w(x) \alpha_h(\mathrm{d}x) \quad \text{s.t.} \quad \text{IR and IC.}$$

The FOC from this cost minimization problem is:

$$\frac{1}{u'(w(x))} = \lambda + \mu \left[1 - \frac{f_l(x)}{f_h(x)} \right]$$

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h . Then she offers a contract *w* that solves:

$$\min_{w(\cdot)} \int w(x) \alpha_h(\mathrm{d}x) \quad \text{s.t.} \quad \text{IR and IC}$$

The FOC from this cost minimization problem is:

$$\frac{1}{u'(w(x))} = \lambda + \mu \left[1 - \frac{f_l(x)}{f_h(x)} \right]$$

So: w is monotone \iff MLRP holds.

 $X = \{L, H\}, \qquad \mathcal{A} = \Delta(X) \equiv [0, 1].$

 $X=\{L,H\},\qquad \mathcal{A}=\Delta(X)\equiv [0,1].$

Suppose also *C* is convex and differentiable.

 $X=\{L,H\},\qquad \mathcal{A}=\Delta(X)\equiv [0,1].$

Suppose also *C* is convex and differentiable. Agent's FOC for choosing $\alpha \in (0, 1)$:

 $u\circ w(H)-u\circ w(L)=C'(\alpha)$

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta(X) \equiv [0, 1].$$

Suppose also *C* is convex and differentiable. Agent's FOC for choosing $\alpha \in (0, 1)$:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \implies w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta(X) \equiv [0, 1].$$

Suppose also *C* is convex and differentiable. Agent's FOC for choosing $\alpha \in (0, 1)$:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \implies w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

Implications:

• Cost minimization is trivial: min w(L) s.t. IR.

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta(X) \equiv [0, 1].$$

Suppose also *C* is convex and differentiable. Agent's FOC for choosing $\alpha \in (0, 1)$:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \implies w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

Implications:

- Cost minimization is trivial: min *w*(*L*) s.t. IR.
- IC contracts are monotone:

$$w(H) = u^{-1}(u \circ w(L) + C'(\alpha)) \ge u^{-1}(u \circ w(L)) = w(L).$$

Model

OUR MODEL

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w : X \to \mathbb{R}_+$.
- Limited liability: $w(\cdot) \ge 0$.
- Agent covertly chooses $\alpha \in \mathcal{A} = \Delta(X)$.
- Effort costs: $C : A \rightarrow \mathbb{R}_+$, continuous, increasing in FOSD.
- Payoffs:

Principal:
$$x - w$$
 Agent: $u(w) - C(\alpha)$,

u: increasing, continuous, unbounded & u(0) = 0.

Assumptions on the Cost

ASSUMPTIONS ON THE COST

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

ASSUMPTIONS ON THE COST

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) *C* is Gateaux differentiable: every α admits a continuous $k_{\alpha} : X \to \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_{\alpha} \left(x \right) \left(\beta - \alpha \right) \left(dx \right)$$

for all $\beta \in \mathcal{A}$.

ASSUMPTIONS ON THE COST

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) *C* is Gateaux differentiable: every α admits a continuous $k_{\alpha} : X \to \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_{\alpha} \left(x \right) \left(\beta - \alpha \right) \left(dx \right)$$

for all $\beta \in \mathcal{A}$.

(if *X* is finite: *C* smooth \iff differentiable, which holds a.e.)

FIRST-ORDER APPROACH

Lemma. For a bounded $v : X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta \left(\mathrm{d} x \right) - C(\beta) \right]$$

if and only if

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta(\mathrm{d}x) - \int k_{\alpha}(x)\beta(\mathrm{d}x) \right]$$

(the "only if" direction also works if *C* is not convex)

Relationship to Standard FOC

Consider the problem:

$$\max_{x\in[0,1]} [xv-c(x)]$$

where $v \in \mathbb{R}$ and *c* is convex and differentiable.

Relationship to Standard FOC

Consider the problem:

$$\max_{x \in [0,1]} [xv - c(x)]$$

where $v \in \mathbb{R}$ and *c* is convex and differentiable.

Standard way of writing FOC for optimal $x^* \in (0, 1)$ is

$$v-c'(x^*)=0.$$

Relationship to Standard FOC

Consider the problem:

$$\max_{x \in [0,1]} [xv - c(x)]$$

where $v \in \mathbb{R}$ and *c* is convex and differentiable.

Standard way of writing FOC for optimal $x^* \in (0, 1)$ is

$$v-c'(x^*)=0.$$

An equivalent way of writing the above condition is:

$$x^* \in \operatorname{argmax}_{x \in [0,1]}[xv - xc'(x^*)].$$

The lemma generalizes the second formulation.

FIRST-ORDER APPROACH

Lemma. For a bounded $v : X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta \left(\mathrm{d} x \right) - C(\beta) \right]$$

if and only if

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta(\mathrm{d}x) - \int k_{\alpha}(x)\beta(\mathrm{d}x) \right]$$

(the "only if" direction also works if *C* is not convex)

Fix $\beta \in A$, and for every $\epsilon \in [0, 1]$, define $\beta_{\epsilon} \coloneqq \alpha + \epsilon(\beta - \alpha)$.

Consider the following inequality chain for $\epsilon > 0$:

Fix $\beta \in A$, and for every $\epsilon \in [0, 1]$, define $\beta_{\epsilon} := \alpha + \epsilon(\beta - \alpha)$.

Consider the following inequality chain for $\epsilon > 0$:

$$0 \ge \frac{1}{\epsilon} \left[\int v(x) (\beta_{\epsilon} - \alpha) (dx) \right] - \frac{1}{\epsilon} \left[C(\beta_{\epsilon}) - C(\alpha) \right]$$

(because $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \left[\int v(x) \beta(dx) - C(\beta) \right]$)

Fix $\beta \in A$, and for every $\epsilon \in [0, 1]$, define $\beta_{\epsilon} := \alpha + \epsilon(\beta - \alpha)$.

Consider the following inequality chain for $\epsilon > 0$:

$$0 \ge \frac{1}{\epsilon} \left[\int v(x) (\beta_{\epsilon} - \alpha) (dx) \right] - \frac{1}{\epsilon} \left[C(\beta_{\epsilon}) - C(\alpha) \right]$$
$$= \int v(x) (\beta - \alpha) (dx) - \frac{1}{\epsilon} \left[C(\beta_{\epsilon}) - C(\alpha) \right]$$

(by definition of β_{ϵ})

Fix $\beta \in A$, and for every $\epsilon \in [0, 1]$, define $\beta_{\epsilon} := \alpha + \epsilon(\beta - \alpha)$.

Consider the following inequality chain for $\epsilon > 0$:

$$0 \ge \frac{1}{\epsilon} \left[\int v(x)(\beta_{\epsilon} - \alpha)(dx) \right] - \frac{1}{\epsilon} \left[C(\beta_{\epsilon}) - C(\alpha) \right]$$

= $\int v(x)(\beta - \alpha)(dx) - \frac{1}{\epsilon} \left[C(\beta_{\epsilon}) - C(\alpha) \right]$
 $\xrightarrow{\epsilon \to 0} \int v(x)(\beta - \alpha)(dx) - \int k_{\alpha}(x)(\beta - \alpha)(dx).$

(by Gateaux differentiability)

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

Explanation: By convexity,

$$\epsilon C(\beta) + (1 - \epsilon)C(\alpha) \ge C(\epsilon\beta + (1 - \epsilon)\alpha).$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

Explanation: By convexity,

$$\epsilon C(\beta) + (1 - \epsilon)C(\alpha) \ge C(\epsilon\beta + (1 - \epsilon)\alpha).$$
$$\iff \epsilon [C(\beta) - C(\alpha)] \ge C(\epsilon\beta + (1 - \epsilon)\alpha) - C(\alpha).$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

Explanation: By convexity,

$$\epsilon C(\beta) + (1 - \epsilon)C(\alpha) \ge C(\epsilon\beta + (1 - \epsilon)\alpha).$$
$$\iff \epsilon [C(\beta) - C(\alpha)] \ge C(\epsilon\beta + (1 - \epsilon)\alpha) - C(\alpha).$$

Divide by ϵ ,

$$C(\beta) - C(\alpha) \geq \frac{1}{\epsilon} \left[C(\epsilon\beta + (1 - \epsilon)\alpha) - C(\alpha) \right]$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

Explanation: By convexity,

$$\epsilon C(\beta) + (1 - \epsilon)C(\alpha) \ge C(\epsilon\beta + (1 - \epsilon)\alpha).$$
$$\iff \epsilon [C(\beta) - C(\alpha)] \ge C(\epsilon\beta + (1 - \epsilon)\alpha) - C(\alpha).$$

Divide by ϵ , and take $\epsilon \rightarrow 0$,

$$C(\beta)-C(\alpha) \geq \frac{1}{\epsilon} \left[C(\epsilon\beta + (1-\epsilon)\alpha) - C(\alpha) \right] \rightarrow \int k_{\alpha}(x)(\beta-\alpha)(\mathrm{d}x).$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

So, if $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \int (v - k_{\alpha})(x)\beta(dx)$, then for all β ,

$$0 \ge \int (v - k_{\alpha})(x)(\beta - \alpha)(\mathrm{d}x)$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

So, if $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \int (v - k_{\alpha})(x)\beta(dx)$, then for all β ,

$$0 \ge \int (v - k_{\alpha})(x)(\beta - \alpha)(\mathrm{d}x) = \int v(x)(\beta - \alpha)(\mathrm{d}x) - \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x)$$

Because *C* is convex, every $\beta \in A$ has

$$C(\beta) - C(\alpha) \ge \int k_{\alpha}(x)(\beta - \alpha)(\mathrm{d}x).$$

So, if $\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \int (v - k_{\alpha})(x)\beta(dx)$, then for all β ,

$$0 \ge \int (v - k_{\alpha})(x)(\beta - \alpha)(dx) = \int v(x)(\beta - \alpha)(dx) - \int k_{\alpha}(x)(\beta - \alpha)(dx)$$
$$\ge \int v(x)(\beta - \alpha)(dx) - [C(\beta) - C(\alpha)].$$

FIRST-ORDER APPROACH

Lemma. For a bounded $v : X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta \left(\mathrm{d} x \right) - C(\beta) \right]$$

if and only if

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta(\mathrm{d} x) - \int c_{\alpha}(x)\beta(\mathrm{d} x) \right]$$

(the "only if" direction also works if *C* is not convex)

BACK TO MODEL

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Agent covertly chooses $\alpha \in \mathcal{A} = \Delta(X)$.
- Effort costs $C : \mathcal{A} \rightarrow \mathbb{R}_+$: convex, increasing, smooth.
- Limited liability: $w \ge 0$.
- Feasible contracts: $W = \{w : X \rightarrow \mathbb{R}_+ : bounded\}.$
- Payoffs:

Principal:
$$x - w$$
 Agent: $u(w) - C(\alpha)$.

u: increasing, continuous, unbounded & u(0) = 0.

CHARACTERIZATION OF IC

A contract-distribution pair $(w, \alpha) \in W \times A$ is **IC** if and only if

$$\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \left[\int u \circ w(x) \beta(\mathrm{d}x) - C(\beta) \right].$$

CHARACTERIZATION OF IC

A contract-distribution pair $(w, \alpha) \in W \times A$ is **IC** if and only if

$$\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \left[\int u \circ w(x) \beta(\mathrm{d}x) - C(\beta) \right].$$

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$w(x) \le u^{-1}(k_{\alpha}(x) + m)$$

for all *x*, and with equality α -almost surely.

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

 $w(x) \le u^{-1}(k_{\alpha}(x) + m)$

for all *x*, and with equality α -almost surely.

Proof.

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$w(x) \le u^{-1}(k_\alpha(x) + m)$$

for all *x*, and with equality α -almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \mathcal{A}} \int \left[u \circ w(x) - k_{\alpha}(x) \right] \beta(\mathrm{d}x),$$

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that $w(x) \le u^{-1}(k_{\alpha}(x) + m)$

for all *x*, and with equality α -almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \mathcal{A}} \int \left[u \circ w(x) - k_{\alpha}(x) \right] \beta(\mathrm{d}x),$$

or equivalently, the following holds α -almost surely:

 $u \circ w(x) - k_{\alpha}(x) = \sup(u \circ w - k_{\alpha})(X)$

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that $w(x) \le u^{-1}(k_{\alpha}(x) + m)$

for all *x*, and with equality α -almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \mathcal{A}} \int [u \circ w(x) - k_{\alpha}(x)] \beta(\mathrm{d}x),$$

or equivalently, the following holds α -almost surely:

$$u \circ w(x) - k_{\alpha}(x) = \sup(u \circ w - k_{\alpha})(X)$$
$$\iff w(x) = u^{-1} (k_{\alpha}(x) + \sup(u \circ w - k_{\alpha})(X)).$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m)$$

for all *x*, and with equality α -almost surely.

Implications:

 $w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$

for all *x*, and with equality α -almost surely.

Implications:

 $w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$

for all *x*, and with equality α -almost surely.

Implications:

(i) If (w, α) is IC, $(w_{m,\alpha}, \alpha)$ is also IC, and gives the principal the same payoff.

 $w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$

for all *x*, and with equality α -almost surely.

Implications:

- (i) If (w, α) is IC, $(w_{m,\alpha}, \alpha)$ is also IC, and gives the principal the same payoff.
- (ii) Cheapest contract implement α is $w_{m_{\alpha}^*,\alpha}$ for

$$m_{\alpha}^* = -\min k_{\alpha}(X).$$

 $w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$

for all *x*, and with equality α -almost surely.

Implications:

- (i) If (w, α) is IC, $(w_{m,\alpha}, \alpha)$ is also IC, and gives the principal the same payoff.
- (ii) Cheapest contract implement α is $w_{m_{\alpha}^*,\alpha}$ for

$$m_{\alpha}^* = -\min k_{\alpha}(X).$$

(iii) Every α can be implemented

 $w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$

for all *x*, and with equality α -almost surely.

Implications:

- (i) If (w, α) is IC, (w_{m,α}, α) is also IC, and gives the principal the same payoff.
- (ii) Cheapest contract implement α is $w_{m_{\alpha}^{*},\alpha}$ for

$$m_{\alpha}^* = -\min k_{\alpha}(X).$$

(iii) Every α can be implemented with a monotone contract

 $w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$

for all *x*, and with equality α -almost surely.

Implications:

- (i) If (w, α) is IC, (w_{m,α}, α) is also IC, and gives the principal the same payoff.
- (ii) Cheapest contract implement α is $w_{m_{\alpha}^{*},\alpha}$ for

$$m_{\alpha}^* = -\min k_{\alpha}(X).$$

(iii) Every α can be implemented with a monotone contract (since *C* is FOSD monotone, k_{α} is increasing).

Profit Maximization

Let $w_{\alpha} \coloneqq w_{m_{\alpha}^{*},\alpha}$ be the cost minimizing wage implementing α . The principal's problem is:

$$\max_{\alpha \in \mathcal{A}} \left[\int x \alpha(\mathrm{d}x) - \int w_{\alpha}(x) \alpha(\mathrm{d}x) \right].$$

ADDITIONAL ASSUMPTIONS

Nice Agent's Payoffs. *u* is continuously differentiable, and u' > 0.

ADDITIONAL ASSUMPTIONS

Nice Agent's Payoffs. *u* is continuously differentiable, and u' > 0.

Continuous Derivative. The mapping $\alpha \mapsto k_{\alpha}$ is weak*-supnorm continuous.

ADDITIONAL ASSUMPTIONS

Nice Agent's Payoffs. *u* is continuously differentiable, and u' > 0.

Continuous Derivative. The mapping $\alpha \mapsto k_{\alpha}$ is weak*-supnorm continuous.

2nd Order Differentiability. Every α admits a continuous function $h_{\alpha} : X \times X \rightarrow \mathbb{R}$ such that for

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[k_{\alpha + \epsilon(\beta - \alpha)}(\cdot) - k_{\alpha}(\cdot) \right] = \int h(\cdot, y) (\beta - \alpha) (\mathrm{d}y),$$

where convergence is in the supnorm.

(for finite X: equivalent to twice differentiability).

PRINCIPAL FIRST ORDER CONDITION

Define the function:

$$\chi_{\alpha}(x) = \int \frac{h_{\alpha}(x, y)}{u' \circ w_{\alpha}(y)} \alpha(\mathrm{d} y).$$

Theorem.

A profit maximizing $\boldsymbol{\alpha}^{*}$ exists. Moreover, $\boldsymbol{\alpha}^{*}$ must solve

$$\max_{\alpha \in \mathcal{A}} \int \left[x - w_{\alpha^*}(x) - \chi_{\alpha^*}(x) \right] \alpha(\mathrm{d} x).$$

For every α , let

$$\pi_{\alpha}(x) := x - w_{\alpha}(x) - \chi_{\alpha}(x).$$

For every α , let

$$\pi_{\alpha}(x) \coloneqq x - w_{\alpha}(x) - \chi_{\alpha}(x).$$

Corollary. Suppose *X* = [*L*, *H*] and α^* maximizes profits. Then,

For every α , let

$$\pi_{\alpha}(x) := x - w_{\alpha}(x) - \chi_{\alpha}(x).$$

Corollary. Suppose *X* = [*L*, *H*] and α^* maximizes profits. Then,

(i) If π_{α} is strictly *quasiconcave* $\forall \alpha$, then $|\text{supp } \alpha^*| = 1$.

For every α , let

$$\pi_{\alpha}(x) \coloneqq x - w_{\alpha}(x) - \chi_{\alpha}(x).$$

Corollary. Suppose X = [L, H] and α^* maximizes profits. Then,

(i) If π_{α} is strictly *quasiconcave* $\forall \alpha$, then $|\text{supp } \alpha^*| = 1$.

(ii) If π_{α} is strictly *quasiconvex* $\forall \alpha$, then supp $\alpha^* \subseteq \{L, H\}$.

For every α , let

$$\pi_{\alpha}(x) \coloneqq x - w_{\alpha}(x) - \chi_{\alpha}(x).$$

Corollary. Suppose *X* = [*L*, *H*] and α^* maximizes profits. Then,

- (i) If π_{α} is strictly *quasiconcave* $\forall \alpha$, then $|\text{supp } \alpha^*| = 1$.
- (ii) If π_{α} is strictly *quasiconvex* $\forall \alpha$, then supp $\alpha^* \subseteq \{L, H\}$.
- (iii) If $w_{\alpha} + \chi_{\alpha}$ is a non-affine & analytic $\forall \alpha, \alpha^*$ is discrete.

FLEXIBLE MORAL HAZARD PROBLEMS

We showed that in flexible moral hazard problems:

- Incentive compatability pins down contract.
- Cost minimization is trivial.
- Every distribution can be implemented.
- Wages are monotone without loss.

FLEXIBLE MORAL HAZARD PROBLEMS

We showed that in flexible moral hazard problems:

- Incentive compatability pins down contract.
- Cost minimization is trivial.
- Every distribution can be implemented.
- Wages are monotone without loss.

Also obtained results about principal optimality.

- First order approach is valid.
- Optimality of single, binary, and discrete distributions.

Related Literature

- Flexible models with specific functional forms:
 - CARA utility, monetary effort costs, finite X: Holmstrom and Milgrom (1987).
 - Mean-measurable costs: Diamond (1998), Barron, Georgiadis, and Swinkels (2020).
 - *f*-Divergence costs, finite X: Hebert (2018), Bonham (2021), Mattsson and Weibull (2022), Bonham and Riggs-Cragun (2023).
- Flexible Monitoring: Georgiadis and Szentes (2020), Mahzoon, Shourideh, and Zetlin-Joines (2022), Wong (2023).
- Robust contracting: Carroll (2015), Antic (2022), Antic and Georgiadis (2022), Carroll and Walton (2022).

Thanks!