### Feedback Design in Dynamic Moral Hazard

### Jeffrey Ely, George Georgiadis and Luis Rayo

Northwestern University

### Introduction

We study the joint design of monetary and informational incentives in a dynamic agency model under moral hazard.

- In continuous-time, the agent chooses to work or shirk
- Working generates a binary signal, privately observed by the principal
- The principal designs a reward schedule and a feedback policy to maximize total effort net of payments to the agent

## Application

- Consider an associate at a professional partnership
  - Can be a "high" or a "low" type
- Signal represents conclusive evidence that the associate's type is high; e.g., has the necessary skills to be partner
  - > The firm is better informed whether the associate is "partner material"
- Firm values effort (billable hours). Decides *when* to tell the agent.

The optimal incentive scheme comprises two phases:

- A silent phase lasting until t\* during which the agent is provided no information, and is paid R if the signal arrives by t\*; and
- A *pronto* phase lasting from  $t^*$  until  $T^*$  during which the agent is told as soon as the signal arrives, and is paid a smaller reward

## **Related Literature**

#### Dynamic contract theory.

- Poisson output. Mason and Välimäki (2015); Green and Taylor (2016)
- Good-news experimentation. Halac, Kartik and Liu (2016)

Dynamic Information design. Information about payoff-relevant variable

- Receiver behaves myopically. Ely (2017) and Renault et al. (2017),...
- Strategic receiver. Ely and Szydlowski (2020), Orlov et al. (2020), Smolin (2021), Ball (2022),...
- Moral hazard. Varas et al. (2020), and Hörner and Lambert (2021), Kaya (2022), Ely et al. (Forthcoming) ...

Our model is (*one of*?) the first to study dynamic information design with a fully endogenous payoff structure

## Model – The Setting

Agent makes effort decision in continuous time to generate a binary signal

- Effort is binary (work / shirk) with flow cost c > 0
- Signal arrives stochastically as a function of accumulated effort
- Agent privately observes effort; principal privately observes the signal
- \* Signal structure ⇒ agent quits upon learning that the signal has arrived
  e.g., at that moment, the job market also learns he is a "high" type and the principal must pay him his marginal output going forward

## Model – The Setting

Agent makes effort decision in continuous time to generate a binary signal

- Effort is binary (work / shirk) with flow cost c > 0
- Signal arrives stochastically as a function of accumulated effort
- Agent privately observes effort; principal privately observes the signal
- $^{\star}$  Signal structure  $\Rightarrow$  agent quits upon learning that the signal has arrived
  - e.g., at that moment, the job market also learns he is a "high" type and the principal must pay him his marginal output going forward

## Model - Principal's Design Problem

At time 0, the principal chooses a "contract", which comprises

- **1** A terminal date *T*;
- A reward schedule R(t) specifying a reward for the agent as a function of the arrival date of the signal; and
- A feedback policy that specifies messages at each instant as a function of whether the signal has arrived and past messages.

The principal maximizes total effort net of monetary payments

Wolog, focus on designs that motivate working continuously until quitting

## Model - Principal's Design Problem

At time 0, the principal chooses a "contract", which comprises

- **1** A terminal date T;
- A reward schedule R(t) specifying a reward for the agent as a function of the arrival date of the signal; and
- A feedback policy that specifies messages at each instant as a function of whether the signal has arrived and past messages.

The principal maximizes total effort net of monetary payments

Wolog, focus on designs that motivate working continuously until quitting

### Assumptions

Denote by F(t) the probability that the signal arrives by t (assuming the agent has worked continuously until that time)

**A.1.**  $F(\cdot)$  is twice differentiable with pdf  $f(\cdot)$  and its hazard rate

$$\lambda(t) = \frac{f(t)}{1 - F(t)}$$

is weakly decreasing. (Implies that  $F(\cdot)$  is concave.)

**A.2.** The function  $\Phi(t) = F(t) \frac{d}{dt} \frac{1}{f(t)}$ is increasing. (Weak log-concavity of  $\lambda(\cdot)$  implies A.2)

### Assumptions

Denote by F(t) the probability that the signal arrives by t (assuming the agent has worked continuously until that time)

**A.1.**  $F(\cdot)$  is twice differentiable with pdf  $f(\cdot)$  and its hazard rate

$$\lambda(t) = \frac{f(t)}{1 - F(t)}$$

is weakly decreasing. (Implies that  $F(\cdot)$  is concave.)

A.2. The function

$$\Phi(t) = F(t) \frac{d}{dt} \frac{1}{f(t)}$$

is increasing. (Weak log-concavity of  $\lambda(\cdot)$  implies A.2)

# $F(\cdot)$ : Two Examples that satisfy Assumptions A.1-3

### I. Poisson signal

- · Conditional on working, signal arrives with constant hazard rate
- II. Poisson "good news" experimentation
  - Agent's type is either "high" or "low"
  - > Type is ex-ante unknown and the players share a common prior
  - Conditional on the agent being a high type and working, the signal arrives according to a Poisson process
  - If the agent is a low type, the signal never arrives

## The Challenge

The space of message/feedback policies is immense. For example:

- No messages at all (silence)
- Inform the agent as soon as the signal arrives (pronto)
- Inform with a delay
- Inform probabilistically
- Message at t can condition on messages at prior dates

# Simplifying the Problem

A-lá revelation principle, it suffices to consider direct policies in which the principal recommends to the agent to work or quit at each instant.

For each t, define the (survival) function

 $q(s|t) := \Pr\{\text{ask agent to work at least until } s \mid \text{signal arrived at } t\},\$ 

which must be non-increasing.

Wolog, ask the agent to work at all  $t \leq T$  if the signal has not arrived

## Simplifying the Problem

A-lá revelation principle, it suffices to consider direct policies in which the principal recommends to the agent to work or quit at each instant.

For each t, define the (survival) function

 $q(s|t) := \Pr\{\text{ask agent to work at least until } s \mid \text{signal arrived at } t\},\$ 

which must be non-increasing.

Wolog, ask the agent to work at all  $t \leq T$  if the signal has not arrived

## Simplifying the Problem

A-lá revelation principle, it suffices to consider direct policies in which the principal recommends to the agent to work or quit at each instant.

For each t, define the (survival) function

 $q(s|t) := \Pr\{\text{ask agent to work at least until } s \mid \text{signal arrived at } t\},\$ 

which must be non-increasing.

Wolog, ask the agent to work at all  $t \leq T$  if the signal has not arrived

## Payoffs

Let

$$p(s) \coloneqq 1 - F(s) + \int_0^s q(s|t)f(t)dt$$

#### be the unconditional probability the agent has $\mathbf{not}$ been told to quit by s

The agent's expected payoff when obeying the recommendations is



The **principal's objective** is to maximize

$$\int_0^T p(s)ds - \int_0^T R(s)f(s)ds$$

subject to the IC constraint that the agent obeys recommendations

## Payoffs

Let

$$p(s) \coloneqq 1 - F(s) + \int_0^s q(s|t)f(t)dt$$

be the unconditional probability the agent has not been told to quit by s

The agent's expected payoff when obeying the recommendations is



The **principal's objective** is to maximize

$$\int_0^T p(s)ds - \int_0^T R(s)f(s)ds$$

subject to the IC constraint that the agent obeys recommendations

## Payoffs

Let

$$p(s) \coloneqq 1 - F(s) + \int_0^s q(s|t)f(t)dt$$

be the unconditional probability the agent has not been told to quit by s

The agent's expected payoff when obeying the recommendations is



The principal's objective is to maximize

$$\int_0^T p(s)ds - \int_0^T R(s)f(s)ds$$

subject to the IC constraint that the agent obeys recommendations

## Towards Incentive Compatibility: Impact of Deviations

Fix a contract (terminal date, reward schedule & recommendation policy) We will focus on *local* incentive compatibility whereby the agent obeys recommendations to work except during some interval (t, t + dt)

#### This deviation has three effects:

Interval: The agent misses on any rents during this interval;

- Interpretation of the signal from t onwards changes; and
- (In the second s

We establish a condition that deters instantaneous pauses

We characterize the profit-maximizing contract subject to local IC. Then we verify that this contract also deters all global deviations.

## Towards Incentive Compatibility: Impact of Deviations

Fix a contract (terminal date, reward schedule & recommendation policy)

We will focus on *local* incentive compatibility whereby the agent obeys recommendations to work except during some interval (t, t + dt)

This deviation has three effects:

- The agent misses on any rents during this interval;
- 2 The arrival rate of the signal from t onwards changes; and
- Total effort changes (since recommendations depend on signal arrival)

We establish a condition that deters instantaneous pauses

We characterize the profit-maximizing contract subject to local IC. Then we verify that this contract also deters all global deviations.

## Towards Incentive Compatibility: Impact of Deviations

Fix a contract (terminal date, reward schedule & recommendation policy) We will focus on *local* incentive compatibility whereby the agent obeys recommendations to work except during some interval (t, t + dt)

This deviation has three effects:

The agent misses on any rents during this interval;

- 2 The arrival rate of the signal from t onwards changes; and
- Total effort changes (since recommendations depend on signal arrival)
   We establish a condition that deters instantaneous pauses

We characterize the profit-maximizing contract subject to local IC. Then we verify that this contract also deters all global deviations.

# Local Incentive Compatibility

### Proposition 1.

The reward schedule  $R(\cdot)$  and recommendation policy  $q(\cdot|\cdot)$  are locally IC if

$$R(t)f(t) - cp(t) \ge \int_t^T R(s)|f'(s)|ds - c \times \int_t^T \dot{p}(s|t)ds \text{ for all } t,$$

where  $\dot{p}(s|t)$  is the marginal change in p(s) following the deviation at t.

LHS measures the agent's on-path flow rents

RHS represents impact of pause on the  $\mathbb{E}[\text{rents}]$  going forward

- First term captures a *backward compounding effect*: For fixed *t*, raising any future *R*(*s*) makes delaying effort at *t* more tempting
- Second term measures the change in total effort cost

A key observation: Other things equal, raising R(s) tightens IC for all t < s

# Local Incentive Compatibility

### Proposition 1.

The reward schedule  $R(\cdot)$  and recommendation policy  $q(\cdot|\cdot)$  are locally IC if

$$R(t)f(t) - cp(t) \ge \int_t^T R(s)|f'(s)|ds - c \times \int_t^T \dot{p}(s|t)ds \text{ for all } t,$$

where  $\dot{p}(s|t)$  is the marginal change in p(s) following the deviation at t.

LHS measures the agent's on-path flow rents

RHS represents impact of pause on the  $\mathbb{E}[\text{rents}]$  going forward

- First term captures a *backward compounding effect*: For fixed *t*, raising any future *R*(*s*) makes delaying effort at *t* more tempting
- Second term measures the change in total effort cost

A key observation: Other things equal, raising R(s) tightens IC for all t < s

# Minimal "Implementing" Reward Schedule

### Proposition 2.

Fix a recommendation policy  $q(\cdot|\cdot)$ . The reward schedule

$$R^{*}(t) = c \left[ \frac{p(t)}{f(t)} - \int_{t}^{T} \frac{f'(s)}{f(s)^{2}} p(s) ds - \int_{t}^{T} 1 - q(s|t) ds \right]$$

satisfies IC and is pointwise smaller than any other implementing  $R(\cdot)$ 

- $1^{st}$  term. Reward that gives zero flow rent at time t
- 2<sup>nd</sup> term. Backward compounding effect modulated by the speed at which 1/f grows
- $3^{rd}$  term. "Information rebate" if agent is asked to quit before T

### Minimal Reward Schedule for 2 Polar Cases

A. Principal always asks the agent to work:

$$R^*_{silence} = \frac{c}{f(T)}$$

B. Principal asks the agent to quit as soon as the signal arrives:

$$R_{pronto}^{*} = c \times \frac{1 - F(T)}{f(T)}$$

• To give 0 flow rents, R(t) must increase in t. But this would lead the agent to pause, so  $R^*$  is closest to the ideal while meeting IC.

• Feedback reduces cost p.u effort but imposes a bound on max. effort.

## Minimal Reward Schedule for 2 Polar Cases

A. Principal always asks the agent to work:

$$R^*_{silence} = \frac{c}{f(T)}$$

B. Principal asks the agent to quit as soon as the signal arrives:

$$R_{pronto}^{*} = c \times \frac{1 - F(T)}{f(T)}$$

• To give 0 flow rents, R(t) must increase in t. But this would lead the agent to pause, so  $R^*$  is closest to the ideal while meeting IC.

• Feedback reduces cost p.u effort but imposes a bound on max. effort.

## Minimal Reward Schedule for 2 Polar Cases

A. Principal always asks the agent to work:

$$R^*_{silence} = \frac{c}{f(T)}$$

B. Principal asks the agent to quit as soon as the signal arrives:

$$R_{pronto}^* = c \times \frac{1 - F(T)}{f(T)}$$

- To give 0 flow rents, R(t) must increase in t. But this would lead the agent to pause, so  $R^*$  is closest to the ideal while meeting IC.
- Feedback reduces cost p.u effort but imposes a bound on max. effort.

# Simplifying the Principal's Objective

Using  $R^*(\cdot)$  we can write the principal's objective as a function of just  $p(\cdot)$ , the unconditional probability the agent has **not** been asked to quit by s

#### Lemma 1.

The principal's payoff evaluated at the minimal reward schedule is

$$\int_0^T p(t)dt - c \int_0^T p(t) \left[1 + \Phi(t)\right] - \left[1 - p(t)\right] dt$$

1<sup>st</sup> term: Total effort

 $2^{nd}$  term: True cost of effort + information rents

• Note that  $\Phi(t)$  initially equals 0 and is increasing by assumption A.2

### A Relaxed Problem

$$\max_{T \ge 0, p(\cdot)} \int_0^T p(t) [1 - 2c - c\Phi(t)] dt + cT$$
(RP)  
s.t.  $1 - F(t) \le p(t) \le 1$  for all t and non-increasing.

This is a relaxed problem because:

- i. No guarantee that a recommendation policy implementing  $p(\cdot)$  exists;
- ii. Local IC does not generally imply global incentive compatibility.

#### Proposition 3.

Let  $t^*$  be earliest time when  $1 - 2c - c\Phi(t) \le 0$ . (RP) is solved by setting

$$p(t) = \begin{cases} 1 & \text{if } t \in [0, t^*) \\ 1 - F(t) & \text{if } t \in [t^*, T^*] \text{ for some } T^* > t^*. \end{cases}$$

### A Relaxed Problem

$$\max_{T \ge 0, p(\cdot)} \int_0^T p(t) [1 - 2c - c\Phi(t)] dt + cT$$
(RP)  
s.t.  $1 - F(t) \le p(t) \le 1$  for all t and non-increasing.

This is a relaxed problem because:

- i. No guarantee that a recommendation policy implementing  $p(\cdot)$  exists;
- ii. Local IC does not generally imply global incentive compatibility.

Proposition 3.

Let  $t^*$  be earliest time when  $1 - 2c - c\Phi(t) \le 0$ . (RP) is solved by setting

$$p(t) = \begin{cases} 1 & \text{if } t \in [0, t^*) \\ 1 - F(t) & \text{if } t \in [t^*, T^*] \text{ for some } T^* > t^*. \end{cases}$$

### A Relaxed Problem

$$\max_{T \ge 0, p(\cdot)} \int_0^T p(t) [1 - 2c - c\Phi(t)] dt + cT$$
(RP)  
s.t.  $1 - F(t) \le p(t) \le 1$  for all t and non-increasing.

This is a relaxed problem because:

- i. No guarantee that a recommendation policy implementing  $p(\cdot)$  exists;
- ii. Local IC does not generally imply global incentive compatibility.

#### Proposition 3.

Let  $t^*$  be earliest time when  $1 - 2c - c\Phi(t) \le 0$ . (RP) is solved by setting

$$p(t) = \begin{cases} 1 & \text{if } t \in [0, t^*) \\ 1 - F(t) & \text{if } t \in [t^*, T^*] \text{ for some } T^* > t^*. \end{cases}$$

### Main Result

#### Theorem 1. Every optimal contract comprises at most two phases:

 $\varphi$ .1. Until  $t^*$ , the agent is asked to work under silence; i.e.,  $q(s|t) \equiv 1$ 

 $\varphi$ .2. During  $[t^*, T^*]$ , the agent is told to quit as soon as the signal arrives; i.e.,  $q(s|t) \equiv 0$  (a.k.a *pronto* feedback)

Reward  $\overline{R}$  if signal arrives by  $t^*$  and  $\underline{R} < \overline{R}$  if it arrives in  $(t^*, T^*]$ .

- Pronto feedback is always used because it minimizes the cost p.u of effort. But it bounds the total effort that can be elicited.
- To elicit extra effort, the agent must be sometimes kept in the dark.
- This requires larger rewards. And because rewards are compounded backwards, it is optimal to maximally frontload the silent period.

## Main Result

#### Theorem 1. Every optimal contract comprises at most two phases:

 $\varphi$ .1. Until  $t^*$ , the agent is asked to work under silence; i.e.,  $q(s|t) \equiv 1$ 

 $\varphi$ .2. During  $[t^*, T^*]$ , the agent is told to quit as soon as the signal arrives; i.e.,  $q(s|t) \equiv 0$  (a.k.a *pronto* feedback)

Reward  $\overline{R}$  if signal arrives by  $t^*$  and  $\underline{R} < \overline{R}$  if it arrives in  $(t^*, T^*]$ .

- Pronto feedback is always used because it minimizes the cost p.u of effort. But it bounds the total effort that can be elicited.
- To elicit extra effort, the agent must be sometimes kept in the dark.
- This requires larger rewards. And because rewards are compounded backwards, it is optimal to maximally frontload the silent period.

## Tying the loose ends: Optimal Reward Schedule

The rewards schedule is computed per Proposition 2 such that IC binds:

• If the signal arrives before  $t^*$ , then the agent is paid

$$R(t) = \overline{R} \coloneqq \frac{c}{\lambda(T^*)} + \frac{cF(t^*)}{f(t^*)}$$

• If the signal arrives during  $(t^*, T^*]$ , then the agent is paid

$$R(t) = \underline{R} := \frac{c}{\lambda(T^*)}.$$

Tying the loose ends: Global Deviations

During  $(t^*, T^*]$ :

- The agent earns rents that decrease in time (due to λ(t) declining), and is asked to work only if the signal hasn't yet arrived.
- So following the recommendations is a dominant strategy.

**During** [0, *t*\*]:

- Because the reward schedule is time-invariant and p(t) = 1, it suffices to check that shirking for any s ∈ (0, t\*] units of time is not profitable.
- This follows from the concavity of  $F(\cdot)$ .

Tying the loose ends: Global Deviations

**During**  $(t^*, T^*]$ :

- The agent earns rents that decrease in time (due to λ(t) declining), and is asked to work only if the signal hasn't yet arrived.
- So following the recommendations is a dominant strategy.

**During**  $[0, t^*]$ :

- Because the reward schedule is time-invariant and p(t) = 1, it suffices to check that shirking for any s ∈ (0, t\*] units of time is not profitable.
- This follows from the concavity of  $F(\cdot)$ .

## **Practical Implications**

- Obfuscating information can be a useful tool for eliciting more effort.
- Hiding information is costly & the cost depends on when information is withheld. In our setting, it is ideal to do so early on.
- A final phase of full transparency is desirable as it elicits additional effort at minimal cost.
- If the hazard rate falls sufficiently over time, it is best to give up on the employee; i.e., terminate the relationship at T<sup>\*</sup> < ∞.</li>
- Adopting a decreasing reward schedule helps prevent pauses and minimizes backward compounding.

## Remarks

- I. Optimal terminal date  $T^*$  is finite if the hazard rate falls sufficiently over time. If the hazard rate is constant, then  $T^* = \infty$ .
- II. Theorem 1 true if the hazard rate is hump-shaped with  $\lambda(t^*) \ge \lambda(T^*)$ e.g., with good-news experimentation where the "good" type "succeeds" with hazard rate that increases in cumulative effort.
- III. Theorem 1 true (albeit with a different  $T^*$ ) if the principal or the agent value the signal in and of itself.
- IV. If the agent can succeed repeatedly, then the principal optimally keeps the agent fully apprised and rewards them with  $c/\lambda$  for each success.

### Discussion

Dynamic agency model with joint design of monetary rewards & feedback In our setting, the optimal incentive scheme comprises two phases:

- $\varphi$ 1. No feedback with "success" accompanied by a relatively large reward
- $\varphi 2$ . Full transparency with success accompanied by a smaller reward

Broader agenda: Paying with information + money

- More general signal processes; e.g., multiple or continuous signals
- Many agents; e.g., contests (for experimentation)

### Robustness and Extensions

• If the reward schedule is given...

the optimal recommendation policy is generally more complicated; e.g., q(s|t) may depend on s and t in intricate ways.

• If the hazard rate is increasing...

the optimal contract features a silent phase, followed by a partial disclosure phase, and possibly a *pronto* phase at the end.

• With many agents and given a fixed prize...

the principal administers a *two-phase, weighted-egalitarian* contest: Each agent who succeeds during the first (silent) phase earns one share; each who succeeds during the second (*pronto*) phase earns  $\alpha < 1$  shares, and the prize is split according to the awarded shares.