Optimal Feedback in Contests

George Georgiadis (Northwestern Kellogg)

with

Jeff Ely • Sina Moghadas Khorasani • Luis Rayo
Model (1/4): Players & Timing

- **Players:** A principal and $n \geq 2$ agents

- At $t = 0$, the principal designs a contest comprising
 - i. a rule specifying *when* the contest will end,
 - ii. a rule for allocating a 1 prize, and
 - iii. a feedback policy

- At every $t > 0$, each agent
 - receives a message per the feedback policy, and
 - chooses effort $a_{i,t} \in [0,1]$

- When the contest ends, prize is awarded according to allocation rule
Model (1/4): Players & Timing

- **Players:** A principal and \(n \geq 2 \) agents

- At \(t = 0 \), the principal designs a contest comprising
 1. a rule specifying *when* the contest will end,
 2. a rule for allocating a $1 prize, and
 3. a feedback policy

- At every \(t > 0 \), each agent
 1. receives a message per the feedback policy, and
 2. chooses effort \(a_{i,t} \in [0,1] \)

- When the contest ends, prize is awarded according to allocation rule
Players: A principal and \(n \geq 2 \) agents

At \(t = 0 \), the principal designs a contest comprising

i. a rule specifying \textit{when} the contest will end,
ii. a rule for allocating a $1 prize, and
iii. a feedback policy

At every \(t > 0 \), each agent

- receives a message per the feedback policy, and
- chooses effort \(a_{i,t} \in [0,1] \)

When the contest ends, prize is awarded according to allocation rule
Model (2/4): Agents’ Output & “Who observes what”

- **Each agent’s output** takes the form of a Poisson “breakthrough”:
 - During \((t, t + dt)\) agent \(i\) “succeeds” with probability \(a_{i,t} dt\)
 - Each agent can succeed at most once
 - Denote \(x_{i,t} = 1\) if agent \(i\) has succeeded by \(t\), and \(x_{i,t} = 0\) otherwise

- **Who observes what:**
 - Principal observes successes but not efforts
 - Each agent observes his effort but not successes
 - **Denote** by \(p_{i,t}\) agent \(i\)’s belief at \(t\) that he has succeeded

\[\text{Note: Effort is worthwhile for an agent only if he hasn’t yet succeeded}\]
Each agent’s output takes the form of a Poisson “breakthrough”:

- During \((t, t + dt)\) agent \(i\) “succeeds” with probability \(a_i, t dt\)
- Each agent can succeed at most once
- Denote \(x_{i,t} = 1\) if agent \(i\) has succeeded by \(t\), and \(x_{i,t} = 0\) otherwise

Who observes what:

- Principal observes successes but not efforts
- Each agent observes his effort but not successes

Denote by \(p_{i,t}\) agent \(i\)’s belief at \(t\) that he has succeeded

Note: Effort is worthwhile for an agent only if he hasn’t yet succeeded
Model (3/4): Principal’s Choice Variables

- A **termination rule** τ is a stopping time w.r.t $x_t = \{x_{1,t}, \ldots x_{n,t}\}_{s \leq t}$
 - *e.g.*, contest *may* end at prespecified deadline or upon first success

- A **prize allocation rule** $q \in [0, 1]^n$ specifies the probability each agent wins the prize as function of x_τ; *i.e.*, each agent’s time of success
 - *e.g.*, prize *may* be awarded to the first agent to succeed or randomly

- A **feedback policy** \mathcal{M} specifies the message sent to each agent at every t as a function of x_t and past messages
 - *e.g.*, each agent *may* be kept appraised whether he has succeeded
 - **Alternatives:** Random feedback, feedback about others’ successes, feedback about feedback, etc
Model (3/4): Principal’s Choice Variables

- A **termination rule** τ is a stopping time w.r.t $x_t = \{x_{1,t}, \ldots x_{n,t}\}_{s\leq t}$
 - *e.g.*, contest *may* end at prespecified deadline or upon first success

- A **prize allocation rule** $q \in [0,1]^n$ specifies the probability each agent wins the prize as function of x_τ; *i.e.*, each agent’s time of success
 - *e.g.*, prize *may* be awarded to the first agent to succeed or randomly

- A **feedback policy** \mathcal{M} specifies the message sent to each agent at every t as a function of x_t and past messages
 - *e.g.*, each agent *may* be kept appraised whether he has succeeded
 - **Alternatives**: Random feedback, feedback about others’ successes, feedback about feedback, etc
Model (3/4): Principal’s Choice Variables

- A **termination rule** \(\tau \) is a stopping time w.r.t \(x_t = \{x_{1,t}, \ldots, x_{n,t}\}_{s \leq t} \)
 - e.g., contest *may* end at prespecified deadline or upon first success

- A **prize allocation rule** \(q \in [0, 1]^n \) specifies the probability each agent wins the prize as function of \(x_{\tau} \); i.e., each agent’s time of success
 - e.g., prize *may* be awarded to the first agent to succeed or randomly

- A **feedback policy** \(\mathcal{M} \) specifies the message sent to each agent at every \(t \) as a function of \(x_t \) and past messages
 - e.g., each agent *may* be kept appraised whether he has succeeded
 - *Alternatives:* Random feedback, feedback about others’ successes, feedback about feedback, etc
Model (4/4): Payoffs

- Given a contest, each agent’s expected utility is

\[u_{i,t} = \max_{a_i \in [0,1]} \mathbb{E} \left[q_i(x_\tau) - \int_t^\tau c a_i,s ds \right] \]

- **First term:** Probability agent \(i \) wins the prize
- **Second term:** Cost of effort where \(c \in (1/n, 1) \)

Principal chooses a contest \(\{\tau, q, M\} \) and effort recommendations to

\[\max_{\tau,q,M,a} \mathbb{E} \left[\sum_{i=1}^n \int_0^\tau a_{i,t} dt \right] \]

s.t. \(a_{i,t} \) is IC for all \(i, t \)

i.e., she maximizes aggregate effort subject to incentive compatibility
Model (4/4): Payoffs

Given a contest, each agent’s expected utility is

\[u_{i,t} = \max_{a_i \in [0,1]} \mathbb{E} \left[q_i(x_{\tau}) - \int_t^\tau ca_{i,s} ds \right] \]

- **First term**: Probability agent \(i \) wins the prize
- **Second term**: Cost of effort where \(c \in (1/n, 1) \)

Principal chooses a contest \(\{\tau, q, M\} \) and effort recommendations to

\[\max_{\tau, q, M, a} \mathbb{E} \left[\sum_{i=1}^n \int_0^\tau a_{i,t} dt \right] \]

s.t. \(a_{i,t} \) is IC for all \(i, t \)

i.e., she maximizes aggregate effort subject to incentive compatibility
A Motivating Example

- Consider a manager who uses a promotion, which acts as the prize, to motivate a group of employees.
- Each agent must clear some “bar” to be eligible for the promotion.
 - This “bar” is represented by a success in the model (hence agents can succeed only once).
- Agents don’t definitively know whether they have cleared said “bar”, but the principal can disclose this (or other) information.
- Manager cares about aggregate effort (not clearing the bar per-se).

Question: How to design contest to elicit maximum effort?
Remarks

i. *No discounting.*

- Model is equivalent to one in which players discount time at some rate, and the value of the prize appreciates at the same rate.

- *E.g.*, promotion pay raise may appreciate with the interest rate.

ii. *Agents don’t observe their own successes.*

- Goal is to give the principal full control of the agents’ information.

- In optimal contest, each agent is fully appraised of his own success; *i.e.*, main result would be unchanged if agents observed own successes.

iii. *Constant hazard rate of success.*

- Success during \((t, t + dt)\) depends only on effort during this interval.

- We extend model to allow success rate to increase with past efforts.
Remarks

i. *No discounting.*
- Model is equivalent to one in which players discount time at some rate, and the value of the prize appreciates at the same rate
- *E.g.*, promotion pay raise may appreciate with the interest rate

ii. *Agents don’t observe their own successes.*
- Goal is to give the principal full control of the agents’ information
- In optimal contest, each agent is fully appraised of his own success;
 - *i.e.*, main result would be unchanged if agents observed own successes

iii. *Constant hazard rate of success.*
- Success during \((t, t + dt)\) depends only on effort during this interval
- We extend model to allow success rate to increase with past efforts
Remarks

i. *No discounting.*

- Model is equivalent to one in which players discount time at some rate, and the value of the prize appreciates at the same rate
- *E.g.*, promotion pay raise may appreciate with the interest rate

ii. *Agents don’t observe their own successes.*

- Goal is to give the principal full control of the agents’ information
- In optimal contest, each agent is fully appraised of his own success; *i.e.*, main result would be unchanged if agents observed own successes

iii. *Constant hazard rate of success.*

- Success during \((t, t + dt)\) depends only on effort during this interval
- We extend model to allow success rate to increase with past efforts
Outline of Results

Proposition 1: Optimal contest *without* feedback

- No messages permitted and contest ends at some deterministic T
- *Egalitarian allocation rule* is optimal: Each agent who succeeds by T wins the prize with equal probability
Outline of Results

Proposition 2: Optimal contest with feedback

- Cyclical structure:
 - Initially, principal sets provisional deadline T^*
 - If one or more agents succeed by T^*, the contest ends at T^*
 - Otherwise, the deadline is extended to $t = 2T^*$
 - If no agent succeeds by $2T^*$, deadline extended until $3T^*$. And so on.

- When contest ends, prize is awarded according to egalitarian rule
 - *i.e.*, every agent who has succeeded wins prize with equal probability

- Agents are fully appraised of their own success. They are informed about their rivals’ successes periodically at $T^*, 2T^*, ..$
 - *i.e.*, if deadline is extended, then no one has succeeded yet
Outline of Results

Proposition 3: Optimal contest with increasing hazard rate

- Effort today makes success tomorrow more likely
- Optimal contest has similar structure to the one with constant hazard rate, except that each provisional deadline has a stochastic duration
No-feedback Contests

- First, we restrict attention to contests without feedback
 - No message transmission permitted (i.e., no direct feedback)
 - Principal chooses a deterministic deadline T (i.e., no indirect feedback)

- Fix a contest and for each agent define the reward function

$$R_{i,t} = \mathbb{E}\left[q_i(x_T) \mid dx_{i,t} = 1 \right]$$

i.e., agent’s expected reward conditional on succeeding at t

- The agent’s payoff can thus be expressed as

$$u_{i,t} = \max_{a_{i,s} \in [0,1]} \int_t^T (1 - p_{i,s}) a_{i,s} R_{i,s} - c a_{i,s} ds$$

- During $(t, t + dt)$, succeeds w.p $(1 - p_{i,t})a_{i,t} dt$, in which case earns $R_{i,t}$, and he incurs cost $c a_{i,t} dt$
No-feedback Contests

- First, we restrict attention to contests without feedback
 - No message transmission permitted \((i.e., \text{no direct feedback})\)
 - Principal chooses a deterministic deadline \(T\) \((i.e., \text{no indirect feedback})\)

- Fix a contest and for each agent define the \textbf{reward function}
 \[
 R_{i,t} = \mathbb{E} \left[q_i(x_T) \mid dx_{i,t} = 1 \right]
 \]
 \(i.e., \text{agent's expected reward conditional on succeeding at } t\)

- The agent’s payoff can thus be expressed as
 \[
 u_{i,t} = \max_{a_{i,s} \in [0,1]} \int_t^T (1 - p_{i,s}) a_{i,s} R_{i,s} - c a_{i,s} ds
 \]

- During \((t, t + dt)\), succeeds w.p \((1 - p_{i,t}) a_{i,t} dt\), in which case earns \(R_{i,t}\),
 - and he incurs cost \(c a_{i,t} dt\)
No-feedback Contests

- First, we restrict attention to contests without feedback
 - No message transmission permitted (i.e., no direct feedback)
 - Principal chooses a deterministic deadline T (i.e., no indirect feedback)

- Fix a contest and for each agent define the **reward function**

 \[R_{i,t} = \mathbb{E} \left[q_i(x_T) \mid dx_{i,t} = 1 \right] \]

 i.e., agent’s expected reward conditional on succeeding at t

- The agent’s payoff can thus be expressed as

 \[u_{i,t} = \max_{a_{i,s} \in [0,1]} \int_t^T (1 - p_{i,s}) a_{i,s} R_{i,s} - c a_{i,s} \, ds \]

 - During $(t, t + dt)$, succeeds w.p $(1 - p_{i,t}) a_{i,t} dt$, in which case earns $R_{i,t}$
 - and he incurs cost $c a_{i,t} dt$
Agents’ Problem

- Fix an arbitrary deadline T and reward function $R_{i,t}$. Agent solves

$$u_{i,0} = \max_{a_{i,t} \in [0,1]} \int_0^T \left[(1 - p_{i,t}) R_{i,t} - c \right] a_{i,t} dt$$

s.t. $\dot{p}_{i,t} = (1 - p_{i,t}) a_{i,t}$ with $p_{i,0} = 0$

- On the constraint:
 - Evolution equation for $p_{i,t}$ follows from Bayes’ rule
 - Captures fact that effort today lowers future probability of success

- Std. optimal control problem: Use Pontryagin’s maximum principle
Agents’ Problem: Incentive Compatibility

- Wolog can restrict attention to contests with \(a_{i,t} = 1 \) for all \([0, T]\)

Lemma 1.
- Consider no-feedback contest w. deadline \(T \) and reward function \(R_{i,t} \)
- Effort \(a_{i,t} = 1 \) is incentive compatible for all \(t \in [0, T] \) if and only if

\[
\underbrace{e^{-t} R_{i,t}}_{\text{MB at } t} \geq \underbrace{c}_{\text{direct MC}} + \underbrace{\int_t^T e^{-s} R_{i,s} ds}_{\text{strategic cost}} \quad \text{for all } t.
\]

- 1\(^{st}\) term: Success arrives at rate \(e^{-t} \), and reward is \(R_{i,t} \)
- 2\(^{nd}\) term: (Direct) marginal cost of effort
- 3\(^{rd}\) term: Success today eliminates possibility of success in the future
Agents’ Problem: Incentive Compatibility

- Wolog can restrict attention to contests with $a_{i,t} = 1$ for all $[0, T]$

Lemma 1.

- Consider no-feedback contest w. deadline T and reward function $R_{i,t}$
- Effort $a_{i,t} = 1$ is incentive compatible for all $t \in [0, T]$ if and only if

$$e^{-t} R_{i,t} \geq \frac{c}{\text{MB at } t} + \int_{t}^{T} e^{-s} R_{i,s} ds \text{ for all } t.$$

- **1st term:** Success arrives at rate e^{-t}, and reward is $R_{i,t}$
- **2nd term:** (Direct) marginal cost of effort
- **3rd term:** Success today eliminates possibility of success in the future
No-feedback Contest: Principal’s Problem

Optimal no-feedback contest solves the following problem:

\[
\max_{T, q} \quad n \int_0^T 1 \, dt
\]
\[
\text{s.t.} \quad e^{-t} R_{i,t} \geq c + \int_t^T e^{-s} R_{i,s} \, ds \quad \forall i, t
\]
\[
T \geq 0, \quad q \text{ is a feasible prize allocation rule}
\]

where \(R_{i,t} = \mathbb{E}[q_i(x_{i \tau}) | d x_{i,t} = 1] \).

The principal chooses
- a terminal date \(T \), and
- a prize allocation rule \(q \)

to maximize aggregate effort subject to IC constraint.

Restriction to symmetric contests with max. effort shown to be wolog.
No-feedback Contest: Principal’s Problem

Optimal no-feedback contest solves the following problem:

\[
\max_{T, q} \quad n \int_0^T 1 \, dt \\
\text{s.t.} \quad e^{-t} R_{i,t} \geq c + \int_t^T e^{-s} R_{i,s} \, ds \quad \forall i, t \\
T \geq 0, \quad q \text{ is a feasible prize allocation rule}
\]

where \(R_{i,t} = \mathbb{E} \left[q_i(x_{\tau}) \mid dx_{i,t} = 1 \right] \).

The principal chooses

- a terminal date \(T \), and
- a prize allocation rule \(q \)

to maximize aggregate effort subject to IC constraint

Restriction to symmetric contests with max. effort shown to be wolog
Optimal No-feedback Contest

- **Definition 1:** Egalitarian prize allocation rule (EGA)

 \[q_{i}^{ega}(x_T) = \frac{x_{i,T}}{\sum_{j} x_{j,T}} \]

 i.e., every agent who succeeds by \(T \) wins prize with equal probability

- **Definition 2:** \(\hat{T} \) is the unique solution of \(1 - e^{-n\hat{T}} = nc(e^{\hat{T}} - 1) \)

 Given EGA & no feedback, this is longest max. effort is IC

Proposition 1.

- The optimal no-feedback contest has deadline \(\hat{T} \) and egalitarian prize allocation rule \(q^{ega} \).

- In equilibrium, each agent exerts maximum effort for all \(t \in [0, \hat{T}] \).
Optimal No-feedback Contest

• Definition 1: Egalitarian prize allocation rule (EGA)

\[q_{i}^{ega}(x_T) = \frac{x_{i,T}}{\sum_{j} x_{j,T}} \]

• i.e., every agent who succeeds by \(T \) wins prize with equal probability

• Definition 2: \(\hat{T} \) is the unique solution of

\[1 - e^{-n\hat{T}} = nc(e^{\hat{T}} - 1) \]

• Given EGA & no feedback, this is longest max. effort is IC

Proposition 1.

• The optimal no-feedback contest has deadline \(\hat{T} \) and egalitarian prize allocation rule \(q^{ega} \).

• In equilibrium, each agent exerts maximum effort for all \(t \in [0, \hat{T}] \).
Optimal No-feedback Contest

- **Definition 1:** Egalitarian prize allocation rule (EGA)

 \[q_{i}^{ega}(x_T) = \frac{x_{i,T}}{\sum_{j} x_{j,T}} \]

 i.e., every agent who succeeds by \(T \) wins prize with equal probability

- **Definition 2:** \(\hat{T} \) is the unique solution of \(1 - e^{-n\hat{T}} = nc(e^{\hat{T}} - 1) \)

 Given EGA & no feedback, this is longest max. effort is IC

Proposition 1.

- The optimal no-feedback contest has deadline \(\hat{T} \) and egalitarian prize allocation rule \(q^{ega} \).

- In equilibrium, each agent exerts maximum effort for all \(t \in [0, \hat{T}] \).
Optimal No-feedback Contest: Heuristic Derivation (1/3)

- **Observation #1:** $R_{i,t} = ce^T$ satisfies IC with equality for all t
 - Time-invariant & symmetric $R_{i,t}$ corresponds to EGA allocation rule

- **Observation #2:**
 - Recall $R_{i,t}$ is prob. agent wins prize conditional on succeeding at t
 - Given $R_{i,t}$, agent i wins the prize with probability $\int_0^T e^{-t}R_{i,t}dt$. So
 $$\sum_i \int_0^T e^{-t}R_{i,t}dt \leq \frac{1 - e^{-nT}}{Pr\{at least one agent succeeds\}}$$
 - Pr\{prize is awarded\}
 - In other words, increasing $e^{-t}R_{i,t}$ entails an opportunity cost, and so the principal wants to minimize $e^{-t}R_{i,t}$ subject to satisfying IC.
Optimal No-feedback Contest: Heuristic Derivation (1/3)

Observation #1: $R_{i,t} = ce^T$ satisfies IC with equality for all t
- Time-invariant & symmetric $R_{i,t}$ corresponds to EGA allocation rule

Observation #2:
- Recall $R_{i,t}$ is prob. agent wins prize conditional on succeeding at t
- Given $R_{i,t}$, agent i wins the prize with probability $\int_0^T e^{-t}R_{i,t}dt$. So

$$\sum_i \int_0^T e^{-t}R_{i,t}dt \leq 1 - e^{-nT}$$

Pr\{prize is awarded\} \leq \Pr\{at least one agent succeeds\}

- In other words, increasing $e^{-t}R_{i,t}$ entails an opportunity cost, and so the principal wants to minimize $e^{-t}R_{i,t}$ subject to satisfying IC.
Consider alternative contest with $e^{-t\tilde{R}_{i,t}} > e^{-t}R_{i,t}$ on some interval.

- **Egalitarian contest:** IC at t' requires that $e^{-t'}R_{i,t'} \geq c + 1$

- **Alternative contest:** IC at t' requires that $e^{-t'}\tilde{R}_{i,t'} \geq c + 1 + 2$

Thus $e^{-t}\tilde{R}_{i,t} > e^{-t}R_{i,t}$ for all $t < t'$; i.e., $\tilde{R}_{i,t}$ is more expensive.
Consider alternative contest with $e^{-t}\tilde{R}_{i,t} > e^{-t}R_{i,t}$ on some interval

- **Egalitarian contest:** IC at t' requires that $e^{-t'}R_{i,t'} \geq c + \Box 1$

- **Alternative contest:** IC at t' requires that $e^{-t'}\tilde{R}_{i,t'} \geq c + (\Box 1 + \Box 2)$

Thus $e^{-t}\tilde{R}_{i,t} > e^{-t}R_{i,t}$ for all $t < t'$; i.e., $\tilde{R}_{i,t}$ is more expensive.
Consider alternative contest with $e^{-t}\tilde{R}_{i,t} > e^{-t}R_{i,t}$ on some interval

Egalitarian contest: IC at t' requires that $e^{-t'}R_{i,t'} \geq c + 1$

Alternative contest: IC at t' requires that $e^{-t'}\tilde{R}_{i,t'} \geq c + 1 + 2$

Thus $e^{-t}\tilde{R}_{i,t} > e^{-t}R_{i,t}$ for all $t < t'$; i.e., $\tilde{R}_{i,t}$ is more expensive
Thus, any non-egalitarian contest with deadline T can be replaced by EGA contest with same deadline that is cheaper for principal

- **Cheaper** ⇒ Can extend deadline and still satisfy IC for all t

It remains to pin down the optimal deadline \hat{T}

- Fix a T. Given the egalitarian allocation rule,

$$\Pr \{\text{agent } i \text{ wins prize}\} = \int_0^T e^{-t} R_{i,t}^{ega} dt = \frac{1 - e^{-nT}}{n}$$

- Since $R_{i,t}^{ega}$ is time-invariant, we have $R_{i,t}^{ega} = \left[1 - e^{-nT}\right]/\left[n(1 - e^{-T})\right]$

- By def. \hat{T} is largest deadline for which $R_{i,t}^{ega} \geq e^T c$; i.e., max effort IC
Thus, any non-egalitarian contest with deadline T can be replaced by EGA contest with same deadline that is *cheaper* for principal

Cheaper ⇒ Can extend deadline and still satisfy IC for all t

It remains to pin down the optimal deadline \hat{T}

Fix a T. Given the egalitarian allocation rule,

$$\Pr\{\text{agent } i \text{ wins prize}\} = \int_0^T e^{-t} R_{i,t}^{ega} \, dt = \frac{1 - e^{-nT}}{n}$$

Since $R_{i,t}^{ega}$ is time-invariant, we have $R_{i,t}^{ega} = [1 - e^{-nT}]/[n(1 - e^{-T})]$.

By def. \hat{T} is largest deadline for which $R_{i,t}^{ega} \geq e^T c$; *i.e.*, max effort IC
Optimality of Egalitarian Contest: Intuition

- Under the egalitarian contest, IC binds throughout $[0, \hat{T}]$ interval
- As an alternative, take “winner-takes-all” contest: at the deadline, the prize is awarded to the first agent who succeeded
 - This contest frontloads incentives: if agents exert max. effort until T, then IC binds at T but it is slack at all $t < T$.
- Principal has single unit of the prize \Rightarrow Limited “stock of incentives”
- So if IC is slack for $t < T$ under WTA contest, the egalitarian contest must motivate more effort
- Turns out the egalitarian contest maximally backloads incentives
- Hence it motivates the most effort among all no-feedback contests
Optimality of Egalitarian Contest: Intuition

- Under the egalitarian contest, IC binds throughout $[0, \hat{T}]$ interval
- As an alternative, take “winner-takes-all” contest: at the deadline, the prize is awarded to the first agent who succeeded
 - This contest frontloads incentives: if agents exert max. effort until T, then IC binds at T but it is slack at all $t < T$.
 - Principal has single unit of the prize \Rightarrow Limited “stock of incentives”
 - So if IC is slack for $t < T$ under WTA contest, the egalitarian contest must motivate more effort
- Turns out the egalitarian contest maximally backloads incentives
- Hence it motivates the most effort among all no-feedback contests
Optimality of Egalitarian Contest: Intuition

- Under the egalitarian contest, IC binds throughout $[0, \hat{T}]$ interval
- As an alternative, take “winner-takes-all” contest: at the deadline, the prize is awarded to the first agent who succeeded
 - This contest frontloads incentives: if agents exert max. effort until T, then IC binds at T but it is *slack* at all $t < T$.
 - Principal has single unit of the prize \Rightarrow Limited “stock of incentives”
 - So if IC is slack for $t < T$ under WTA contest, the egalitarian contest must motivate more effort
- Turns out the egalitarian contest *maximally* backloads incentives
 - Hence it motivates the most effort among all no-feedback contests
Key Lemma: Sufficient Condition for Optimality

- Next, we consider contests with arbitrary feedback policy

Lemma 2:
A contest is guaranteed to be optimal if in equilibrium:

1. The prize is awarded with probability 1; i.e., \(\sum_i \mathbb{E} [q_i(x_\tau)] = 1 \)

2. Each agent earns zero rents; i.e., \(u_{i,0} = 0 \) for all \(i \)

- The principal’s objective can be rewritten as

\[
\mathbb{E} \left[\sum_{i=1}^{n} \int_0^\tau a_{i,t} \, dt \right] = \frac{1}{c} \left[\sum_i \mathbb{E} [q_i(x_\tau)] - \sum_i u_{i,0} \right] \\
\text{Total Surplus} \leq 1 \quad \text{Rents} \geq 0
\]

- If a contest attains those bounds, it must be optimal (and first-best)
Key Lemma: Sufficient Condition for Optimality

- **Next, we consider contests with arbitrary feedback policy**

Lemma 2:
A contest is guaranteed to be optimal if in equilibrium:

1. The prize is awarded with probability 1; i.e., \(\sum_i E[q_i(x_{\tau})] = 1 \)

2. Each agent earns zero rents; i.e., \(u_{i,0} = 0 \) for all \(i \)

- The principal’s objective can be rewritten as

\[
E \left[\sum_{i=1}^{n} \int_{0}^{\tau} a_{i,t} dt \right] = \frac{1}{c} \left[\sum_i E[q_i(x_{\tau})] - \sum_i u_{i,0} \right]
\]

 - Total Surplus \(\leq 1 \)
 - Rents \(\geq 0 \)

- If a contest attains those bounds, it must be optimal (and first-best)
Step 1: Constructing a Zero-Rent Contest (1/2)

- We can write each agent's payoff as

\[u_{i,t} = \max_{a_{i,s} \in [0,1]} \int_t^T [(1 - p_{i,s}) R_{i,s} - c] a_{i,s} ds \]

- For a contest to concede no rents to the agents, it must have

\[(1 - p_{i,t}) R_{i,t} = c \text{ for all } i, t \]

- **Claim:** Whenever \(a_{i,t} > 0 \), such a contest must have \(p_{i,t} = 0 \)

 - Suppose there is an interval on which \(\dot{p}_{i,t} > 0 \) and \((1 - p_{i,t}) R_{i,t} = c \)

 - Agent can pause effort during first half of interval so \(p_{i,t}^{\text{private}} < p_{i,t}^{\text{eqm}} \)

 - Then \((1 - p_{i,t}^{\text{private}}) R_{i,t} > c \), so agent can earn rents during second half

- Thus feedback policy must keep agents appraised of own success

- Define the feedback policy \(M^{\text{pronto}} = \{ m_{i,t} = x_{i,t} \text{ for all } i, t \} \)
Step 1: Constructing a Zero-Rent Contest (1/2)

- We can write each agent's payoff as
 \[u_{i,t} = \max_{a_i,s \in [0,1]} \int_t^T [(1 - p_{i,s}) R_{i,s} - c] a_{i,s} ds \]

- For a contest to concede no rents to the agents, it must have
 \[(1 - p_{i,t}) R_{i,t} = c \text{ for all } i, t\]

- **Claim:** Whenever \(a_{i,t} > 0 \), such a contest must have \(p_{i,t} = 0 \)
 - Suppose there is an interval on which \(\dot{p}_{i,t} > 0 \) and \((1 - p_{i,t}) R_{i,t} = c \)
 - Agent can pause effort during first half of interval so \(p_{i,t}^{private} < p_{i,t}^{eqm} \)
 - Then \((1 - p_{i,t}^{private}) R_{i,t} > c \), so agent can earn rents during second half

- Thus feedback policy must keep agents appraised of own success
 - Define the feedback policy \(M^{pronto} = \{ m_{i,t} = x_{i,t} \text{ for all } i, t \} \)
Step 1: Constructing a Zero-Rent Contest (1/2)

- We can write each agent's payoff as
 \[u_{i,t} = \max_{a_{i,s} \in [0,1]} \int_t^T [(1 - p_{i,s}) R_{i,s} - c] a_{i,s} ds \]

- For a contest to concede no rents to the agents, it must have
 \[(1 - p_{i,t}) R_{i,t} = c \text{ for all } i, t \]

- **Claim:** Whenever \(a_{i,t} > 0 \), such a contest must have \(p_{i,t} = 0 \)
 - Suppose there is an interval on which \(\dot{p}_{i,t} > 0 \) and \((1 - p_{i,t}) R_{i,t} = c \)
 - Agent can pause effort during first half of interval so \(p_{i,t}^{\text{private}} < p_{i,t}^{\text{eqm}} \)
 - Then \((1 - p_{i,t}^{\text{private}}) R_{i,t} > c \), so agent can earn rents during second half

- Thus feedback policy must keep agents apprised of own success
 - Define the feedback policy \(M^{\text{pronto}} = \{ m_{i,t} = x_{i,t} \text{ for all } i, t \} \)
Step 2: Constructing a Zero-Rent Contest (2/2)

- Since $p_{i,t} = 0$ until each agent succeeds, contest must have
 $$R_{i,t} = c \quad \text{for all } i, t$$
- For $R_{i,t}$ to be time-invariant & symmetric, alloc. rule must be EGA
- Suppose prize is awarded according to EGA rule at some fixed T
- My reward conditional on succeeding at t, $R_{i,t}$, depends on how many rivals I expect to succeed by T
 - This number $N_T \sim \text{Binom}(n - 1, 1 - e^{-T})$, and
 $$R_{ega,i,t} = \mathbb{E} \left[\frac{1}{1 + N_T} \right]$$
 - If $T \approx 0$, no rivals will succeed a.s, so $R_{ega,i,t} \approx 1$
 - As $T \to \infty$, all $n - 1$ of my rivals will succeed a.s, so $R_{ega,i,t} \to 1/n$
 - There is a unique T^* such that $R_{ega,i,t} = c$
Step 3: Towards an Optimal Contest

- Consider the contest with:

 i. Deterministic deadline T^*

 ii. Egalitarian allocation rule

 iii. Feedback policy \mathcal{M}^{pronto}

- By construction,

 \[R_{i,t}^{ega} = c \] so ea agent exerts max. effort until he succeeds and $u_{i,t} = 0$

 But the prize is awarded with probability $\sum_i \mathbb{E}[q_i(x_T)] = 1 - e^{-nT^*} < 1$

 i.e., this contest satisfies part (ii) of Lemma 2, but \textbf{not} part (i)

- Next, we amend this contest such that $\sum_i \mathbb{E}[q_i(x_T)] = 1$

 By Lemma 2, that contest will be optimal.
Step 3: Towards an Optimal Contest

- Consider the contest with:
 - i. Deterministic deadline T^*
 - ii. Egalitarian allocation rule
 - iii. Feedback policy M^{pronto}

- By construction,
 - $R_{i,t}^{ega} = c$ so each agent exerts max. effort until he succeeds and $u_{i,t} = 0$
 - But the prize is awarded with probability $\sum_i \mathbb{E}[q_i(x_T)] = 1 - e^{-nT^*} < 1$
 i.e., this contest satisfies part (ii) of Lemma 2, but not part (i)

- Next, we amend this contest such that $\sum_i \mathbb{E}[q_i(x_T)] = 1$
 - By Lemma 2, that contest will be optimal.
Step 3: Towards an Optimal Contest

- Consider the contest with:
 1. Deterministic deadline T^*
 2. Egalitarian allocation rule
 3. Feedback policy \mathcal{M}^{pronto}

- By construction,
 - $R^{ega}_{i,t} = c$ so each agent exerts max. effort until he succeeds and $u_{i,t} = 0$
 - But the prize is awarded with probability $\sum_i \mathbb{E}[q_i(x_\tau)] = 1 - e^{-nT^*} < 1$
 i.e., this contest satisfies part (ii) of Lemma 2, but not part (i)

- Next, we amend this contest such that $\sum_i \mathbb{E}[q_i(x_\tau)] = 1$
 - By Lemma 2, that contest will be optimal.
Step 3: Cyclical Structure

- Consider the (cyclical) termination rule:

\[
\tau^* = \inf \left\{ t : t = kT^* , k \in \mathbb{N} \text{ and } \sum_i x_{i,t} \geq 1 \right\}
\]

- This contest comprises “cycles” of length \(T^* \), and is terminated at the end of the first cycle in which one or more agents have succeeded.

- Within each cycle, \(R_{i,t}^{ega} = c \) by construction, so maximum effort is IC, and each agent’s instantaneous payoff is 0. Thus, \(u_{i,t} = 0 \) for all \(t \).

- Since the contest doesn’t end until at least one agent succeeds, the prize is awarded with probability 1.

- i.e., the contest satisfies conditions of Lemma 2, and is hence optimal.
Step 3: Cyclical Structure

Consider the (cyclical) termination rule:

$$\tau^* = \inf \left\{ t : t = kT^* , k \in \mathbb{N} \text{ and } \sum_i x_{i,t} \geq 1 \right\}$$

This contest comprises “cycles” of length T^*, and is terminated at the end of the first cycle in which one or more agents have succeeded.

Within each cycle, $R_{i,t} = c$ by construction, so maximum effort is IC, and each agent’s instantaneous payoff is 0. Thus, $u_{i,t} = 0$ for all t.

Since the contest doesn’t end until at least one agent succeeds, the prize is awarded with probability 1.

i.e., the contest satisfies conditions of Lemma 2, and is hence optimal.
Step 3: Cyclical Structure

- Consider the (cyclical) termination rule:

\[\tau^* = \inf \left\{ t : t = kT^* , \ k \in \mathbb{N} \text{ and } \sum_i x_{i,t} \geq 1 \right\} \]

- This contest comprises “cycles” of length \(T^* \), and is terminated at the end of the first cycle in which one or more agents have succeeded.

- Within each cycle, \(R_{i,t}^{ega} = c \) by construction, so maximum effort is IC, and each agent’s instantaneous payoff is 0. Thus, \(u_{i,t} = 0 \) for all \(t \).

- Since the contest doesn’t end until at least one agent succeeds, the prize is awarded with probability 1.

 - i.e., the contest satisfies conditions of Lemma 2, and is hence optimal.
Proposition 2.

- The following contest is optimal:

 i’. termination rule \(\tau^* = \inf \{ t : t = kT^*, \ k \in \mathbb{N} \text{ and } \sum_i x_{i,t} \geq 1 \} \),

 ii. egalitarian prize allocation rule, and

 iii. feedback policy \(M^{pronto} \)

- In equilibrium, each agent exerts max. effort until he succeeds.

Intuition for cyclical structure:

- If rivals exert max. effort during \([0, T]\), my expected reward conditional on succeeding \(\downarrow T\) (because I will have to share prize with more rivals).
- By construction, \(T^*\) is critical value such that \(R_{i,t} = c\)
- Cycles inform agents no one has succeeded, “replenishing” incentives.
Optimal Contest (with Feedback)

Proposition 2.

- The following contest is optimal:

 i’. termination rule $\tau^* = \inf \{ t : t = kT^* , k \in \mathbb{N} \text{ and } \sum_i x_{i,t} \geq 1 \}$,

 ii. egalitarian prize allocation rule, and

 iii. feedback policy M^{pronto}

- In equilibrium, each agent exerts max. effort until he succeeds

Intuition for cyclical structure:

- If rivals exert max. effort during $[0, T]$, my expected reward conditional on succeeding ↓ T (because I will have to share prize with more rivals)

- By construction, T^* is critical value such that $R_{i,t} = c$

- Cycles inform agents no one has succeeded, “replenishing” incentives
Optimal feedback is most valuable when

- Marginal costs c are small or large, or
- Number of agents n is small
Increasing Hazard Rate

- So far, we have assumed constant (unit) hazard rate of success
 - \(i.e., \) each agent succeeds during \((t, t + dt)\) with probability \(a_{i,t}dt\)

- Suppose instead that success arrives at rate \(\lambda_{i,t}a_{i,t}\), and

\[
\dot{\lambda}_{i,t} = f(\lambda_{i,t})a_{i,t}dt
\]

for some function \(f(\cdot)\) and \(\lambda_{i,0} = \lambda\).

I. Case \(f(\lambda) < 0\): Effort today makes future success less likely
 - \(e.g., \) “Good news Poisson experimentation”: Halac et al. (2017)
 - A “zero-rent contest” does not exist ⇒ value creation/capture trade-off

II. Case \(f(\lambda) > 0\): Effort today makes future success more likely
 - Optimal contest has similar features & properties as in base model:
 - it awards the prize with probability 1 and extracts all rents
Increasing Hazard Rate

So far, we have assumed constant (unit) hazard rate of success

- i.e., each agent succeeds during \((t, t + dt)\) with probability \(a_{i,t}dt\)

Suppose instead that success arrives at rate \(\lambda_{i,t}a_{i,t}\), and

\[
\dot{\lambda}_{i,t} = f(\lambda_{i,t})a_{i,t}dt
\]

for some function \(f(\cdot)\) and \(\lambda_{i,0} = \lambda\).

I. Case \(f(\lambda) < 0\): Effort today makes future success less likely

- e.g., “Good news Poisson experimentation”: Halac et al. (2017)
- A “zero-rent contest” does not exist \(\Rightarrow\) value creation/capture trade-off

II. Case \(f(\lambda) > 0\): Effort today makes future success more likely

- Optimal contest has similar features & properties as in base model: it awards the prize with probability 1 and extracts all rents
Increasing Hazard Rate

- So far, we have assumed constant (unit) hazard rate of success
 - i.e., each agent succeeds during \((t, t + dt)\) with probability \(a_i, t dt\)

- Suppose instead that success arrives at rate \(\dot{\lambda}_{i,t} a_{i,t}\), and

\[
\dot{\lambda}_{i,t} = f(\lambda_{i,t}) a_{i,t} dt
\]

for some function \(f(\cdot)\) and \(\dot{\lambda}_{i,0} = \dot{\lambda}\).

I. Case \(f(\lambda) < 0\): Effort today makes future success less likely
 - e.g., “Good news Poisson experimentation”: Halac et al. (2017)
 - A “zero-rent contest” does not exist \(\Rightarrow\) value creation/capture trade-off

II. Case \(f(\lambda) > 0\): Effort today makes future success more likely
 - Optimal contest has similar features & properties as in base model:
 - it awards the prize with probability 1 and extracts all rents
Building Blocks

- **Assume:** $f(\lambda) \geq 0$ and $\lambda_{i,t} \in (c, nc)$
 - Suffices to assume $\lambda > c$ and $f(\lambda) = 0$ for some $\lambda \in (\lambda, nc)$

- Let λ^*_t solve $\dot{\lambda}_{i,t} = f(\lambda_{i,t})$ subject to $\lambda_{i,t} = \lambda$
 - This is trajectory of $\lambda_{i,t}$ if agent exerts max. effort throughout $[0, t]$

- By an earlier argument, feedback policy M^{pronto} to extract all rents

- For max. effort to be IC and rents to be 0, we must have
 \[
 \lambda^*_t R_{i,t} = c \quad \text{for all } i, t
 \]
 - Because λ^*_t increases in t, $R_{i,t}$ must decrease in t
 - i.e., incentives should be frontloaded since “earlier” success is “tougher”

- Suffices to find prize allocation and termination rules s.t $R_{i,t} = c/\lambda^*_t$
Building Blocks

- **Assume:** \(f(\lambda) \geq 0 \) and \(\lambda_{i,t} \in (c, nc) \)
 - Suffices to assume \(\lambda > c \) and \(f(\overline{\lambda}) = 0 \) for some \(\overline{\lambda} \in (\lambda, nc) \)
- Let \(\lambda^*_t \) solve \(\dot{\lambda}_{i,t} = f(\lambda_{i,t}) \) subject to \(\lambda_{i,t} = \lambda \)
 - This is trajectory of \(\lambda_{i,t} \) if agent exerts max. effort throughout \([0, t]\)
- By an earlier argument, feedback policy \(M^{pronto} \) to extract all rents
- For max. effort to be IC and rents to be 0, we must have
 \[
 \lambda^*_t R_{i,t} = c \quad \text{for all } i, t
 \]
 - Because \(\lambda^*_t \) increases in \(t \), \(R_{i,t} \) must decrease in \(t \)
 - *i.e.*, incentives should be frontloaded since “earlier” success is “tougher”
- Suffices to find prize allocation and termination rules s.t \(R_{i,t} = c/\lambda^*_t \)
Building Blocks

- **Assume:** $f(\lambda) \geq 0$ and $\lambda_{i,t} \in (c, nc)$
 - Suffices to assume $\lambda > c$ and $f(\lambda) = 0$ for some $\lambda \in (\lambda, nc)$

- Let λ_t^* solve $\dot{\lambda}_{i,t} = f(\lambda_{i,t})$ subject to $\lambda_{i,t} = \lambda$
 - This is trajectory of $\lambda_{i,t}$ if agent exerts max. effort throughout $[0, t]$

- By an earlier argument, feedback policy M^{pronto} to extract all rents

- For max. effort to be IC and rents to be 0, we must have

 $$\lambda_t^* R_{i,t} = c \quad \text{for all } i, t$$

 - Because λ_t^* increases in t, $R_{i,t}$ must decrease in t
 - i.e., incentives should be frontloaded since “earlier” success is “tougher”

- Suffices to find prize allocation and termination rules s.t $R_{i,t} = c/\lambda_t^*$
Optimal Contest

Proposition 3.

- There exists an optimal contest from the following class:
 1. **Cyclical stochastic structure**: Each cycle ends with rate $\gamma(t, \lambda_t)$
 2. At the end of each cycle, if a success has occurred, contest ends and prize is awarded according to EGA; otherwise, a new cycle starts
 3. Feedback policy M^{pronto}; i.e., agents appraised of own success

- In equilibrium, each agent exerts max. effort until he succeeds

- *i.e.*, similar structure to before, except cycles have stochastic length
 - If $\gamma = \infty$, contest is “winner-takes-all”
 - If $\gamma = 0$ for $t < T$ and $\gamma = \infty$ for $t \geq T$, the contest is egalitarian
 - By choosing function $\gamma(t, \lambda_t)$, can fine-tune degree of frontloading
Optimal Contest

Proposition 3.

- There exists an optimal contest from the following class:
 1. *Cyclical stochastic structure*: Each cycle ends with rate $\gamma(t, \lambda_t)$
 2. At the end of each cycle, if a success has occurred, contest ends and prize is awarded according to EGA; otherwise, a new cycle starts
 3. Feedback policy \mathcal{M}^{pronto}; i.e., agents appraised of own success

- In equilibrium, each agent exerts max. effort until he succeeds

 i.e., similar structure to before, except cycles have stochastic length

- If $\gamma = \infty$, contest is “winner-takes-all”

- If $\gamma = 0$ for $t < T$ and $\gamma = \infty$ for $t \geq T$, the contest is egalitarian

- By choosing function $\gamma(t, \lambda_t)$, can fine-tune degree of frontloading
Optimal Contest

Proposition 3.

There exists an optimal contest from the following class:

1. Cyclical stochastic structure: Each cycle ends with rate $\gamma(t, \lambda_t)$
2. At the end of each cycle, if a success has occurred, contest ends and prize is awarded according to EGA; otherwise, a new cycle starts
3. Feedback policy M^{pronto}; i.e., agents appraised of own success

In equilibrium, each agent exerts max. effort until he succeeds

i.e., similar structure to before, except cycles have stochastic length

If $\gamma = \infty$, contest is “winner-takes-all”

If $\gamma = 0$ for $t < T$ and $\gamma = \infty$ for $t \geq T$, the contest is egalitarian

By choosing function $\gamma(t, \lambda_t)$, can fine-tune degree of frontloading
Related Literature

- **Static tournaments / contests:**
 - Lazear & Rosen (’81), Green & Stokey (’83), Nalebuff & Stiglitz (’83)
 - *Optimal prize allocation:* Moldovanu & Sela (’01), Drugov & Ryvkin (’18, ’19), Olszewski and Siegel (’20)
 - *“Turning down the heat”:* Fang et al. (’18) and Letina et al. (’20)

- **Dynamic contests:**
 - Taylor (’95), Benkert & Letina (’20)
 - *Tugs of war:* Moscarini & Smith (’11), Cao (’14)

- **Feedback in contests:**
 - *“Reveal intermediate progress?”:* Yildirim (’05), Lizzeri et al. (’05), Aoyagi (’10), Ederer (’10), Goltsman & Mukherjee (’19)
 - *Contests for experimentation:* Halac et al. (’17)
Discussion

- Contest design with endogenous feedback
 - Cyclical structure
 - Egalitarian prize allocation rule (maximally backloads incentives)
 - Each agent is always appraised of own success, but is informed of rivals’ successes only periodically

- Future work
 - Continuous effort
 - Decreasing hazard rate
 - Continuous output / more general production functions
 - Asymmetric agents
Discussion

- Contest design with endogenous feedback
 - Cyclical structure
 - Egalitarian prize allocation rule (maximally backloads incentives)
 - Each agent is always appraised of own success, but is informed of rivals’ successes only periodically

- Future work
 - Continuous effort
 - Decreasing hazard rate
 - Continuous output / more general production functions
 - Asymmetric agents